

High Temperature Superconductor Coil Expansion Test Using 2G YBCO

Test Day: Friday August 23, 2013

Engineering Design and Development

EP4/Shayne Westover & Coop/Pooja Desai, EP5/Frank Davies

Engineering Test Support

EP6/Cindy Situ, Mike Reddington

- Objective: Protect humans from space radiation for extended missions in deep space
- Possible Solution: Deflect charged particles away from habitat region with high temperature superconducting electromagnets
- Use Lorentz forces to "inflate" or expand the protective shield/coils for a light weight approach

Assembled 6:1 configuration

Proof of Concept

 Sensitivity testing previously conducted to evaluate superconductor operation and Lorentz forces

Next test – demonstrate coil expandability

Analysis

Ran a case on a solenoid and verified results with hand calculations

$$B = u_0 \left(\frac{N}{\sqrt{4R^2 + L^2}} \right)$$
 I (for a solenoid)

magentic field,

= permeability constant

number of turns on a solenoid
radius of the coil,
length of coil,

Vhere

current

Solenoid Case

B 6

Simulation with Star Shaped Coil

 β field is approximately 46 mT (460 G) in the middle of the Coil (~slightly higher than the cylindrical coil case)

Magnetic pressure would then be around **0.122** psi.

*120 amp power supplied.

B 2

B 3

B 4

Surface Force Magnitude

Additional Plots B[tesla] 4.6105e-002 4.5885#-002 4,5662e-002 4.5440e-082 4.5218e-002 4.4998e-002 4.47746-082 4.45536-082 4.4331e-002 4.4109e-002 4.3887x-082 4.3665e-002 4.34496-002 4.3222e-082 **Volume Force Density**: 4.3800e-082 3*10^5 - 6*10^5 N/m^3 Yo Tune-Force[N/ 8.0723x+085 7.5341e+885 6.9968e+085 6.4578±+885 5.9197e+885 S. 3815e+885 4.8434e+885 **Magnetic Field** 4. 3852e+885 3.7671e+885 3-2289e+885 2.6988e+885 2.1526e+885 1.8145e+885 1.0763e+885 5.3815e+084 8.0000e+000

Assembly

Blankets attached to coil and harness to provide structural stability

Entire assembly to be dunked in LN2

14 in

Test Setup

Top View

Coil Design Specs

- Cylindrical Specs
 - 45 turns (originally designed for 47 turns)
 - 1 turn was lost due to bent superconductor during assembly process
 - 1 turn was lost due to coil to blanket design fitting during assembly
 - Coil length of ~12 inches
 - Star shape (7 inch diameter tip to tip) expanded to 8.75 inches
 - Current increase to 120 amps

Post Test

Condensation

Test Results Summary

- Demonstrated the following:
 - Partial coil expansion with 114 amps
 - In place, on the fly coil splice
 - YBCO quench to failure
- Design points to address
 - Mechanical resistances
 - Blanket binding in vertical orientation due to gravity
 - Condensation build up on mechanical parts

Design modifications required to demonstrate scaled full coil expansion in LN2 and gravity environment

Cycle between the next two slides to see partial inflation

The third slide following points out the visible changes

