

Medication Storage and Protection System Operational Concepts and Requirements

Aerospace Medicine Research Rotation

Final presentation

May 31 2013

By

Christian Iorio-Morin, Ph.D.

Intern NASA JSC/UTMB/Wyle

M.D. Candidate, Université de Sherbrooke

Sherbrooke, Canada

Under

Sharmila D. Watkins, M.D., M.P.H.

Element Scientist

Exploration Medical Capability

NASA Human Research Program

www.nasa.gov

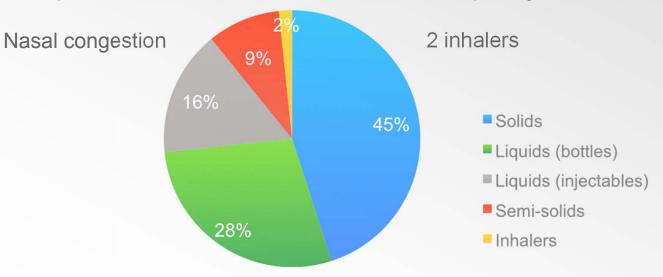
Context

• Risk of Unacceptable Health and Mission Outcomes Due to Limitations of Inflight Medical Capabilities

Gap ExMC 4.17

Lack of adequate protection for medications to preserve stability and shelf life
 4.17 in exploration class missions

Medication use on STS and ISS


Most frequent medical complaints:

Space Motion Sickness

Headaches

Sleep disturbance

Back pain

ISS CHeCS Medical Kit (2008): 120 medications

54 solid formulations (tablets, capsules)

11 semi-solid formulations (creams, ointments)

34 liquid formulations in bottles

19 liquid injectable formulations

Medication shelf life

About medication stability

Chemical • Chemical integrity and potency of active ingredient

Physical • Appearance, dissolution, suspendability

Microbiological • Resistance to microbial growth

Toxicological • No increase in toxicity

About medication stability

- Some expired medications are ineffective
- Some expired medications are toxic

Ineffective	Toxic		
Amoxicillin + Clavulanate Mupirocin Levothyroxin Epinephrine Risedronate	Ibuprofen Gabapentin 		

Context

 Risk of Unacceptable Health and Mission Outcomes Due to Limitations of Inflight Medical Capabilities

• Lack of adequate protection for medications to preserve stability and shelf life in exploration class missions

Task • Development of methods/technologies for protecting medications in spaceflight

Deliverable . TRL 6 system to preserve stability and shelf life of medications

Medication Storage and Protection System (MSPS)

Project goals

Identify factors affecting medication stability

 \downarrow

Generate operational concepts for MSPS

 \downarrow

Write functional requirements for MSPS

 \downarrow

Draft verification requirements for MSPS

Factors affecting medication stability

- Water content variation
- Temperature
- Light
- lonizing radiations?
- Oxygen exposure
- Microbial contamination
- pH

Acetaminophen Acetylsalicylic acid

Semi-solids Liquids

Water content variation

Medication degradation rate


$$\ln k = \ln A - \frac{E_{\rm a}}{\rm RT} + B(\rm RH)$$

Critical relative humidity

Table 1. Critical Relative Humidity (CRH) Values for Representative Excipients¹¹

Excipient	CRH at 20°C	CRH at 40°C
Dextrose	100	88
Sorbitol	80	69
Sucrose	86	83
Xylitol	91	73
Tartaric acid	84.5	78
Potassium chloride	84	82
Sodium chloride	75	75
Sodium citrate	60.5	78
Polyethylene glycol (PEG3350)	94	85
Sodium carboxymethylcellulose	84	84

Environment

Acetaminophen Acetylsalicylic acid

Semi-solids Liquids

Water content variation

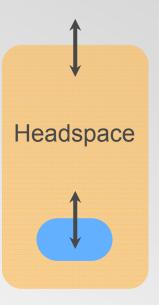
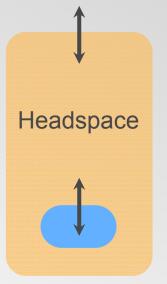

Moisture vapor transmission rate

Table 5. Representative Moisture Vapor Transmission Rates (MVTR) for a Number of Pharmaceutical Packages

Package	Package Size	MVTR (mg/day), 23°C/75%RH	MVTR (mg/day), 40°C/75%RH
HDPE	40 cm ³ bottle ¹	0.15	0.70
	$60\mathrm{cm}^3$ bottle	0.262	1.352
	$180\mathrm{cm}^3$ bottle	0.521	2.688
Polyvinylchoride (PVC) blister (250 µm thick)	$23.9 \times 9.5 \times 8.2 \mathrm{mm}$ capsule	1.187	3.885
	$13.3 \times 7.5 \times 4.4 \mathrm{mm \; capsule^2}$	0.259	
Polyvinylidine chloride (PVDC) blister (190 µm thick)	$23.9 \times 9.5 \times 8.2 \mathrm{mm}$ capsule	0.230	1.200
Polychlorotrifluoroethylene (PCTFE), Aclar TM UltRx 2000 blister	$23.9 \times 9.5 \times 8.2 \mathrm{mm}$ capsule	0.028	0.142
	$14.5 \times 0.3 \mathrm{mm} \mathrm{round}$	0.013	0.100
Polychlorotrifluoroethylene (PCTFE), Aclar $^{\rm TM}$ UltRx 3000 blister	$23.9 \times 9.5 \times 8.2 \mathrm{mm}$ capsule	0.018	0.103
	$14.5 \times 0.3 \mathrm{mm} \mathrm{round}$	0.007	0.062
Polychlorotrifluoroethylene (PCTFE), Aclar TM RX160 blister (305 μm thick)	$13.3 \times 7.5 \times 4.4 \mathrm{mm} \mathrm{capsule}^2$	0.008	
Foil-foil cold-formed blister	$23.9 \times 9.5 \times 8.2 \mathrm{mm}$ capsule $13.3 \times 7.5 \times 4.4 \mathrm{mm}$ capsule ²	0.00067 0.001	0.0037

The MVTR values were determined using gravitimetric changes for each container according to USP24/NF18 at 23°C, and modified accordingly for 40°C.

Environment


Acetaminophen Acetylsalicylic acid

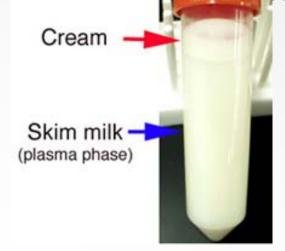
Semi-solids Liquids

Water content variation

Environment

Temperature

Definitions:

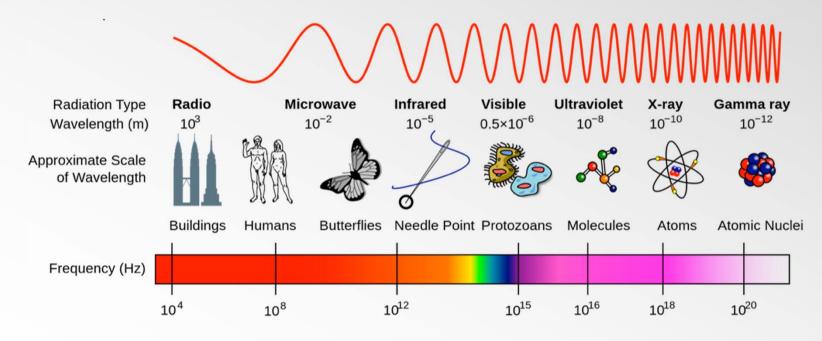

Cold: <8° C


Cool: 8-15° C

Controlled Room Temperature: 15-30° C, mean

<25° C

Some medications have specific requirements



Morphine
Promethazine
Omeprazole
Temazepam
TMP-SMX
Ciprofloxacine

Light

- < 200 nm → Absorbed by air
 </p>
- 320-350 nm (UV) → Maximal medication sensitivity
- > 800 nm → Heat transfer
- 44% of solid medications in CHeCS are light-sensitive

Ionizing radiations

- Solar Particle Events (SPE)
- Galactic Cosmic Rays (GCR)

Effective shields: water, polyurethane

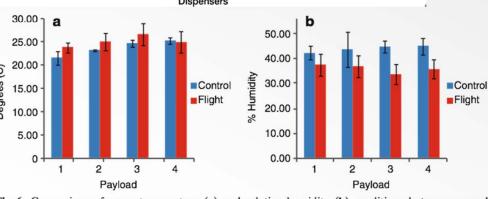


Fig. 6. Comparison of mean temperature (a) and relative humidity (b) conditions between ground and spaceflight

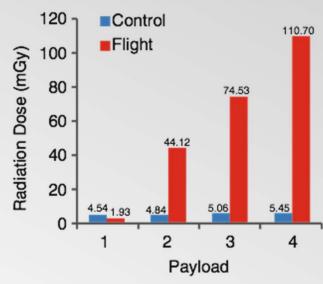
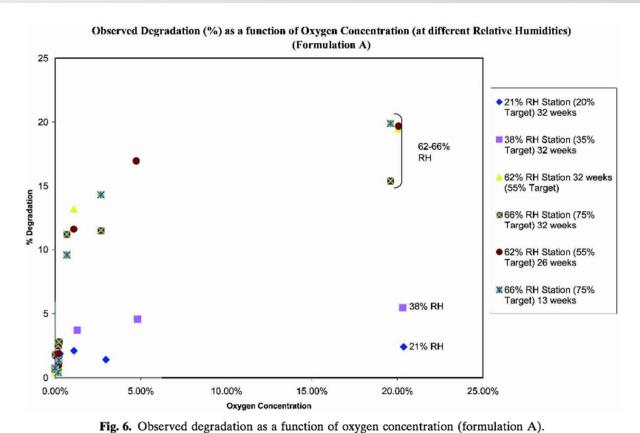



Fig. 7. Comparison of cumulative radiation dose between ground and spaceflight

Oxygen

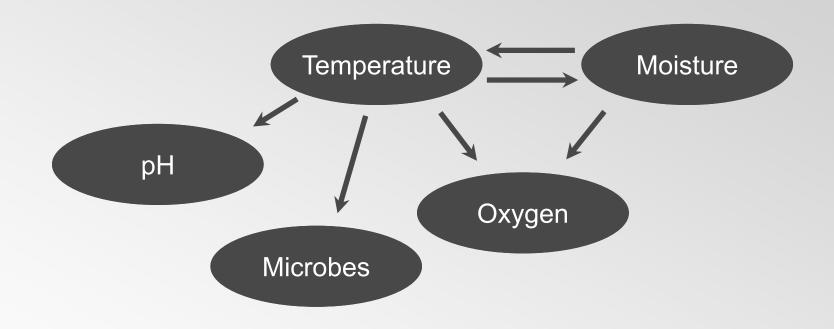
Microbial contamination

Semi-solids Liquids

pН

Solutions on earth

- Packaging
 - Blister packs
 - Amber-coloured containers
- Storage environment
- Repackaging


Current NASA practice

- Medications repackaged in plastic bags
- Stored in Nomex cases within CHeCS

Extending shelf life

Radiations

Extending shelf life

1x Moisture Relative humidity <40% 1-1.25x Complete protection between 200 nm and 800 nm during storage Light Partial protection between 290 nm and 450 nm during access 2-4x Temperature Mean storage temperature between 8° C and 15° C 1x Hq Microbes Standard USP packaging requirements 1-1.25x Oxygen Protection from oxygen contact 1x? Shielding from solar particle events Radiations Shielding from galactic cosmic rays

Stability assessment

- Non-destructive
- 3 strategies:

Visual inspection

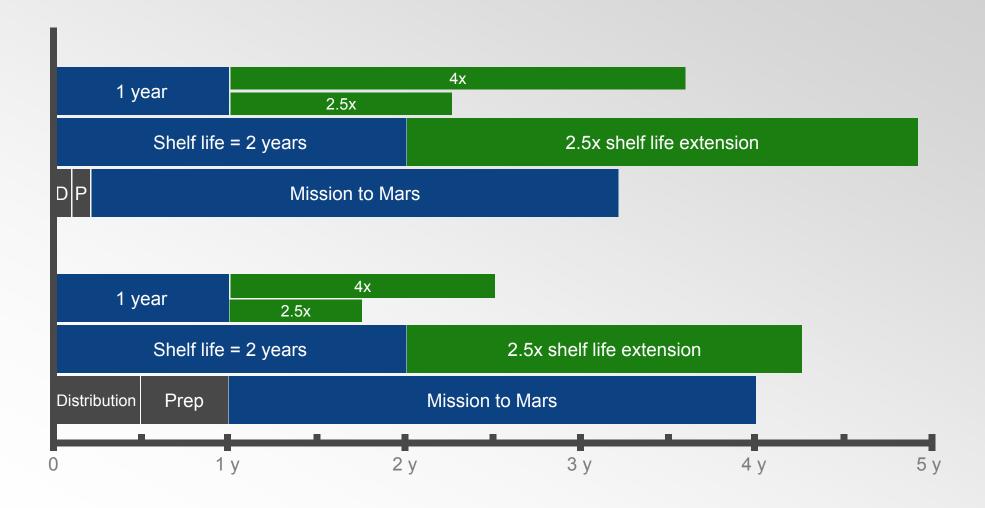
Raman spectroscopy

Near-infrared spectroscopy

Other requirements

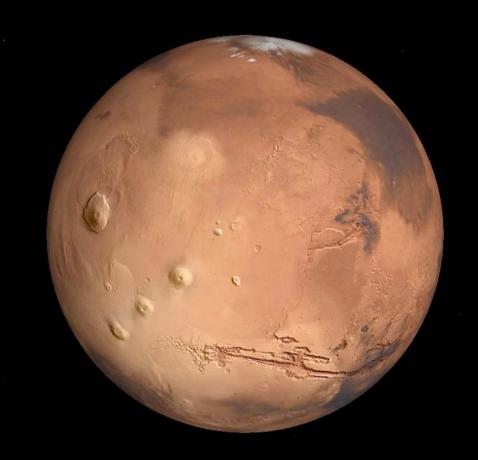
- Fast access
 - < 60 seconds (nominal)?
 - < 30 seconds (emergency)?
- Ability to repackage opened medications
- Integration with the Medical Consumables Tracking system

The next steps


- Requirements review
- Design
- Testing

Ground verification

ISS test run



Beyond MSPS

Thanks

- Dr Sharmila Watkins
- Dr Virginia Wotring
- Tianna Shaw
- Elisca Hicks
- Yvette Schulz
- Dr Raffi Kuyumjian
- Dr David Saint-Jacques

