Convective and diffusive O_2 transport components of peak oxygen uptake following longduration spaceflight

C.J. Ade¹, A.D. Moore²

¹University of Oklahoma, Department of Health and Exercise Science, Norman OK ²Wyle Science, Technology & Engineering Group, Houston TX

Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O₂ transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective $(\dot{Q}O_2)$ and peripheral diffusive (DO₂) components of O₂ transport to changes in peak O₂ uptake ($\dot{V}O_{2PEAK}$). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure $\dot{V}O_{2PEAK}$ prior to and 2 days post-flight. Cardiac output (\dot{Q}) was measured at three submaximal work rates via carbon dioxide rebreathing. The \dot{Q} : $\dot{V}O_2$ relationship was extrapolated to $\dot{V}O_{2PEAK}$ to determine Q_{PEAK}. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in $\dot{Q}O_2$ and DO_2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). VO_{2PEAK} decreased postflight from 3.72 to 3.45 l min⁻¹, but \dot{Q}_{PEAK} increased from 24.5 to 27.7 l min⁻¹. The decrease in $\dot{V}O_{2PEAK}$ post-flight was associated with a 21.2% decrease in DO₂, an 18.6% decrease in O₂ extraction, but a 3.4% increase in $\dot{Q}O_2$. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.