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The effective maintenance of air quality aboard spacecraft cabins will be vital to future 

human exploration missions.  A key component will be the air cleaning filtration system 

which will need to remove a broad size range of particles derived from multiple biological 

and material sources. In addition, during surface missions any extraterrestrial planetary 

dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat 

will also need to be managed by the filtration system inside the pressurized habitat 

compartments. An indexing media filter system is being developed to meet the demand for 

long-duration missions that will result in dramatic increases in filter service life and loading 

capacity, and will require minimal crew involvement. The filtration system consists of three 

stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, 

packaged in a stacked modular cartridge configuration. Each stage will target a specific 

range of particle sizes that optimize the filtration and regeneration performance of the 

system. An 1/8
th

 scale and full-scale prototype of the filter system have been fabricated and 

have been tested in the laboratory and reduced gravity environments that simulate 

conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-

gravity flight tests data will be presented. The features of the new filter system may also 

benefit other closed systems, such as submarines, and remote location terrestrial 

installations where servicing and replacement of filter units is not practical. 

Nomenclature 

A = filter element cross-sectional area 

Cc = slip coefficient 

d50 =  particle diameter at 50% efficiency 

dj =  impactor jet diameter 

Kp = medium permeability 

L = length of rectangular jet impactor 

P = penetration 

p = pressure 

Q = flow rate 

Stk50 = Stokes number at d50 

U = jet velocity 

W = width of rectangular jet impactor 

w = width of impactor plate, or collection strip  

 

ε = Particle collection efficiency 

μ = viscosity 
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ρp = particle density 

τ = relaxation time 

I. Introduction 

n order to provide safe and sustainable, breathable air aboard crewed space vehicles and extraterrestrial outposts, 

effective dust mitigation techniques are needed for remote and long duration space operation. Filtration systems 

are a vital component of life support systems. They serve to remove nuisance and harmful particulates and 

ultimately provide clean air and comfort for human health.  However, filtering of airborne particles under the 

environmental constraints and conditions of spacecraft and planetary surface system poses unique challenges. The 

filter system not only must be capable of removing common particulate matter such as skin flakes, hair and clothing 

fibers, and particulate matter from food and hygiene operations, but it must also remove particulate debris from 

operating machinery and equipment, and planetary dust tracked in by extravehicular activity (EVA). Thus the 

system must be capable of filtering particle sizes spread over several orders of magnitude. Furthermore, since 

servicing or replacing filters in space is not a trivial task, the system is also required to last extraordinary life times, 

of the order of several years.  

 Filtration technologies are well established in terrestrial applications. However, they rely on replacement 

units for continued operation. On long duration crewed space missions this practice may not be very feasible. 

Specifically, high efficiency fibrous filters, which make up the bulk of filter elements on air handling systems, are 

excellent at providing greater than 99.9% particle capturing efficiency, but are virtually impossible to regenerate 

without damage to the filter medium. This is because dust particles adhere tenaciously to the fibers throughout the 

depth of the filter. However, HEPA (High Efficiency Particulate Air) filters for example if properly pre-filtered can 

have extensive service lives. Therefore it is proposed that regeneration needs to be accommodated through alternate 

filtration or separation means in conjunction with high efficiency filtration. This paper describes a novel multi-stage 

filter system that has been designed under an Innovative Partnership Program (IPP) project between NASA and 

Aerfil. Prototypes of the Indexing Media Filtration system (also known as the scroll filter) have been developed. The 

filter system is designed to meet the demand for long-duration missions by providing dramatic increases in filter 

service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three 

stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked 

modular cartridge configuration. Each stage targets a specific range of particle sizes that optimize the filtration and 

regeneration performance of the system. This modular design also provides the flexibility to add more stages of 

filters for performance optimization, and to meet design and operational requirements of any space or sealed 

environment mission.  

The objective of this investigation was to characterize the overall performance of the new filtration system. The 

filter system was prototyped and then tested for its filtration performance and self-cleaning operation. Details of the 

design and features of the filter system are presented. The “Results and Discussion” section provides the first 

assessment of the filter system.  

 

II. Hardware Description 

A. The filter system 

 Two different scale prototypes of the scroll filter system were designed and fabricated, and subsequently tested 

under laboratory and low-g conditions. First, a  reduced-scaled (approximately 1/8
th

 scale, based on the ratio of 

cross-sectional areas) prototype, 10.8 cm x 10.8 cm in cross-section, of the filtration system was fabricated through 

stereolithography (SLA)-based rapid-prototyping. The prototype filtration system consisted of three stages: an 

inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular 

cartridge configuration. Subsequently, a full scale prototype of the filter system was fabricated through an 

international partner (contracted through Aerfil). A picture of the full scale prototype is provided in Fig. 1a, while a 

another picture comparing the size of the full and scaled prototypes is shown in Fig. 1b. The full-scale prototype has 

a cross-sectional area of 30 cm x 30 cm and was built structurally from aluminum sheet metal. It has the same staged 

design as the scaled prototype. The main components shown in Fig. 1a  include the test articles, the impactor and 

scroll stages, and the entrance and conic duct sections used for testing purposes. The high-efficiency filter 

component, described above, was not included because it was not used in testing. Both prototypes were designed to 

be flexible to accommodate different performance characteristic filter elements. They were designed to operate at a 

nominal flow rate in atmospheric air of 0.047 m
3
/s (100 cfm, full scale performance) and 0.0057 m

3
/s (12 cfm) 
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respectively for the full scale and 1/8
th

 scale prototypes. The associated face velocity approaching the filter surface 

in both cases is 0.5 m/s, which is a the nominal face velocity used with high efficiency filters for terrestrial use.
‡
 

  

 

 
 

 Each stage of  multi-stage air filtration system plays a specific role in the filtration process.  The inertial filter 

stage was designed to capture the largest particulates in order to reduce the loading on the indexing media filter and, 

depending on configuration, the HEPA filter stage, thereby prolonging the filter system’s service life. The indexing 

media filter, or scroll stage, captures intermediate particle sizes (typically a few microns). Since this filter stage is 

expected to become heavily loaded with particulate matter over long operations, due to high loading events, it must 

be regenerated or replenished by dust mitigation means involving very low-maintenance components. To minimize 

maintenance, the indexing media filter will be replenished by means of a motorized spool that rolls up the dust laden 

portion of the filter medium on one side of the filter housing, thereby removing the accumulated dust and 

replenishing the dust-laden filter section with fresh media. As an added feature, in addition to containing and storing 

the collected dust material within the filter medium as it is tightly wound up in a roll, the rolled medium can be 

subsequent analyzed to determine dust generation (or loading) rates and dust composition throughout the mission. 

The HEPA filter is the last stage of filtration and therefore its role is to capture the remaining (smallest) particulates 

with very high efficiency. The HEPA stage was not installed for testing since HEPA air filter performance is well 

characterized throughout the industry.  

 The principle of the impaction stage is based on the transport behavior of particles impinging on bluff flat 

surfaces normal to the flow. A conceptual schematic of the flow with particle trajectories is shown in Fig. 2. The 

flow is accelerated through the aperture on the orifice plate and then is suddenly redirected near the flat surface of 

the impaction plate, or collection strip, directly behind the aperture. The high turning angle causes relatively large 

particles to impact the plate while the smaller particles, which are well entrained in the flow, pass around the plate 

surface and continue downstream with the flow. Equation 1 provides a relationship between the d50 cut size (i.e. the 

particle diameter at which 50% of particles of this diameter are collected on the impaction plate and the other 50% 

penetrate through) and the particle transport (Stoke’s number) and flow (flow rate) parameters.
1
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Or for a rectangular jet, 

                                                           
‡
 The maximum attainable flow velocity of the full-scale prototype was 0.4 m/s with the size of blower used and the 

impactor and scroll filter stages installed. 

Entrance duct 
Impactor 

Stage 

 

Scroll 

Stage 

Conic 

duct 

Figure 1: Prototype hardware (a) full scale Indexing Media Filter System, (b) full and 

reduced-scale prototypes (scale model placed inside full scale model for size comparison). 
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Where dj is the jet diameter for a round jet, W and L are the width and length of the orifice plate aperture in the case 

of a rectangular jet, Cc is the Cunningham Slip Correction factor, ρp is the particle density, Q is the flow rate and 

Stk50 is the Stokes number evaluated at the d50 particle diameter. The Stokes number is defined as, 
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The variable τ is the relaxation time which is the time needed by the particle to adjust, or relax, to changes in 

flow conditions, defined as, 
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and μ is the fluid viscosity. 

 

 
 

 

Based on these equations, the jet diameter, or width and length for a rectangular jet, is chosen based on the d50 

particle filtration requirement and flow conditions. The classical plot of the collection efficiency of an impactor, 

represented in Fig. 3a, is characterized by a steep rise at the d50 particle size from  zero efficiency to 100% efficiency 

for particle sizes larger than d50.The performance of the impactor is not very sensitive to the width of the collection 

surface or the separation distance between the orifice and collection surface. The hardware or system constraints and 

requirements can dictate these dimensions, while the width of the collectin surface needs to be at least slightly wider 

than dj. In the scale prototype, the orifice openings consisted 4 sets of  approximately two hundred 1 mm diameter 

straight hole perforations in a long rectangular raster pattern that were micro-machined on a thin 1.5 mm thick 

orifice plate. Alternately, because of the challenge of scaling up this type of fabrication and to minimize air 

resistance the orifice openings on the full scale prototype consisted of eight 3 mm wide slots machined on the orifice 

plate. A nominal d50 of 5μm was selected for the current filter designs. 

Figure 2: Flow schematic through an inertial impactor 

dj 

Orifice 

plate 

Impaction 

plate 
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The impactor stage incorporates endless bands or belts that span across most of the width of the duct just behind 

(downstream) of the orifice plate. A thin layer of grease on the surface of the belt facing the incoming flow 

minimizes particle rebound and facilitates their cleaning. The belts ride on pulleys mounted on vertical spindles 

placed internally near the inside of the duct side walls. The user has access to the tops of the spindles that extend 

above the top wall and can manually rotate the spindles. Alternatively, the spindles can be motorized and 

electronically controlled for remote or autonomous operation. As one of the spindles is rotated from above, the belts 

are translated across the width of the duct and eventually cycle all the way around the belt loop. In the full scale 

prototype the belts encounter a wiper or scrapper that removes the layer of particles and grease as they cycle through 

the loop. Although there is a clear utility in using the wiper, its presence in the internal duct volume may introduce 

flow complexities that cannot easily be discerned. 

The scroll filter stage provides excess filter media that is supplied and collected on spools. A servo motor is 

activated to start scrolling the medium while exposing a fresh surface of the medium to the flow. The filter medium 

is threaded through a series of internal spindles that allow the medium to form pleats inside the duct. Pleats are very 

beneficial in air filtration because they increase the filter surface area and reduce the media velocity, both aspects 

leading to better filter performance. All internal spindles and outer spools are mounted on roller bearings to facilitate 

the spooling operation and reduce the motor power requirements. The design of the system allows for installation of 

any grade of filter media to meet the desired filtration specification of the scroll filter. In the prototypes tested, 

commercial grade filter media with performance in the MERV (Minimum efficiency reporting value) 11 to 15 range, 

typically used to capture submicron to micron size particulates, were installed on the scroll filter stage. Nominally 

MERV 10 to 11 filters provide collections efficiencies of 60 to 70% in the 1 μm to 3 μm particle range, while 

MERV 12 – 14 filters achieve capturing efficiencies, in the 0.3 μm to 1 μm range, of 80% to 90%. In the upper 

range, MERV 14-15 filters offer efficiencies of 90% to 95%. Fibrous filter media are used ubiquitously in air 

filtration because it is cost-effective and also provides an effective method of filtration known as depth filtration. 

Fig. 3b shows a typical filtration performance curve for depth filters. Depth filters can capture most particles sizes 

with virtually 100% efficiency, while a portion of the particles in the narrow band between 0.03 and 0.5 μm, 

typically, can penetrate through. This is due to a less than complementary transition from the  diffusional mode of 

filtration (at the smallest particles sizes) to the inertial mode of filtration (at the largest particle sizes), that permits a 

small amount of particle penetration in this size range. These effects are represented in Fig. 3b. However, despite the 

success and practicality of depths filters in terrestrial applications, depths filters are highly susceptible to particle 

saturation and even caking which drives up their air resistance and in turn requires more system power to continue in 

operation until the filter is changed. The scroll filter is in effect a self-changing or self-cleaning filter system where 

the filter medium is autonomously (or through user control) replaced. 

 

 
 

 

 

B. Testing platform 

The prototypes were assembled and tested on a portable test rig which was used in the laboratory setting as well 

as installed on the Zero-g aircraft for low gravity testing. A picture of the test rig configured for flight appears in 

Fig. 4. The experimental rig was designed as a multi-use test stand to assess the performance of filter systems and 

Diffusion 

mechanism 

impaction 

mechanism 

Efficiency 

Particle size 

Figure 3: Typical capturing efficiency curve for: (a) an impactor; (b) a depth filter showing the contribution to 

efficiency from the diffusional and inertial impaction capturing mechanisms.  
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Particle size 
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components. The scaled prototype was tested first and was internally mounted to an existing duct assembly from a 

previous flight experiment. Therefore, the flow had to internally transition between the larger duct dimensions to the 

that of the scaled prototype. The flow was driven by a bank of four axial fans in a square configuration at the end of 

the duct length. Alternatively, the full scale prototype was mounted on the same test rig but no flow transition 

section was required in the entrance region because the ducting of the filter system itself was used to interface 

directly to the flow source. The flow was driven by a high capacity commercial HEPA vacuum cleaner that 

suctioned the flow through the entrance duct and filter stages. The vacuum cleaner inlet interfaced with the ducted 

sections through a transition conic section shown in Fig. 1a. In both prototypes a HEPA filter element was installed 

at the start of inlet duct to remove most of the room- or cabin-air particulates that would have interfered with the 

challenge aerosol stream produced by the particle generator. The bottom shelf of the test rig provides the power and 

signal avionics required for testing. Measurements of pressure drops across filter elements, entrance duct flow 

speeds, particle counts and sizes, and imaging of the particle flow were conducted on the rig. Pressure measurements 

were performed with low pressure differential pressure transducers. Flow velocities were measured in clean air, 

before particles were introduced in the flow, using hot-wire based velocity probes. A pair of optical particle counters 

(OPC) were used to simultaneously measure the particle counts upstream and downstream of the filter elements. 

These OPC’s permit simultaneous measurement of six channels of particle sizes from 0.3 to 10 microns. Sampling 

times were limited to 20 seconds in low-g testing, and ranged from 20 seconds to 2 minutes in the laboratory tests. 

The pressure and velocity data were logged through a USB-interfaced data logger. Samples were taken at 1 kHz 

sampling rate for 20 seconds to 2 minutes to average out any transients. One high definition (HD) camcorder along 

with a high intensity Light Emitting Diode (LED) light source, for illumination, and some optical components were 

used to image the particle flow in the upstream region as well as image the indexing/scrolling operations. 

A custom designed particle generator initially designed for close-system operation was used in all tests. A 

description of the particle generator is provided in Ref. 2. It provides sustained solid particle injections without 

introducing additional air flow into the system. Since it produces a wake flow, instead of a jet flow as with some 

commercial particle injectors, it can produce faster spreading and mixing of the particles as they advect downstream. 

While the particle generator performed well in both sets of tests, it was found by subsequent analysis that the shorter 

distance between the particle generator and the first (upstream) sampling probe in the scale prototype case most 

likely did not allow for sufficient particle dispersion at this measuring station. As a consequence the upstream 

particle counts were considered to be significantly skewed to larger values. This is issue is discussed later in the 

“Results and Discussion” section. 

 

 
Figure 4: Test rig with full scale prototype installed in the Zero-G aircraft. 
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III. Materials and Methods 

Methods for testing conventional filters, such as the filter media used in the current set of tests, are fairly 

standard. In the industry, these methods rely on well established, often large, testing facilities that provide uniform 

air and particulate flows. Similar methods will be applied to the new filter system, noting however that under the 

current test plan testing was confined to a smaller footprint testing platform and that it involved the use of certain 

non-conventional, non-media, components. Also to achieve relevant sealed environment conditions, alternate 

approaches to particle injection or generation methods were also taken. 

The two main performance parameters that describe filter functionality is permeability and collection efficiency. 

High permeability coupled with high particle capturing efficiency is a desired characteristic of high efficiency 

filtration. These parameters are typically determined by subjecting the filter media to well controlled flow conditions 

and challenging it with aerosol standards (see ASHRAE
3
, IEST

4
, ISO 29463

5
 test standards). In these test protocols 

the  pressure drop across the filter element, and particle counts in the flow upstream and downstream of the filter 

element are used in the calculation of the performance parameters. However, since our interest is in the overall 

performance of the filter system under relevant sealed environment conditions, certain variations of the standard test 

protocol were adapted. First, the filter system was tested in the customized test rig described in the previous section 

which constrained some of the testing techniques. An additional level of flow characterization was required of the 

impaction collection device which was expected to significantly alter the flow in the surrounding flow field. The 

hydrodynamic performance of the impactor stage was characterized by its performance (or resistance) curves, 

pressure vs. flow rate. This characterization is relevant because it relates to the level of power usage to drive the 

flow. To account for the scroll filter’s pleated configuration, permeability for the scroll filter medium is given in 

terms of the flow rate per unit area at a specified pressure drop, i.e. K = Q/A at a prescribed pressure drop, Δp. 

Lastly, because of the interest in testing under relevant environmental conditions and over a range of particle sizes, a 

lunar dust simulant was used instead of using particle standards. 

Particle penetration, P, is determined from the ratio of particle counts upstream and downstream of the filter 

element, i.e.  

 

  

upstream

downstream

N

N
P                                                                          (5) 

 

Where N is the particle count or total number of particles sampled. The associated collection efficiency is then given 

by, 

  

P1                                                                               (6).  

 

High collection efficiency indicates that the downstream counts are low compared to the upstream counts (low 

penetration), while low collection efficiency is obtained when the downstream counts are similar in level to the 

upstream counts (high penetration).The challenge aerosols used in this case, were derived from JSC-1af lunar dust 

simulant and JSC-Mars-1 equivalent simulants. JSC-1af is a basaltic based mineral powder with 20 wt % of the 

particles below 10 μm in size.
6
 The Martian simulant is an equivalent JSC-Mars 1 simulant derived from palagonite 

mineral from Mauna Kea, Hawaii. These simulants have an average density of 2.9 g/cm
3
 which tends to make them 

settle relatively quickly during testing. To mitigate this, the entrance region where the particles are introduced is 

made shorter than standard entrance or development regions for filter testing, that typically require an entrance 

length of several characteristic duct lengths (i.e. duct diameter or width). The shorter entrance length however can 

reduce the mixing and spreading of the aerosols needed for proper testing prior to the measuring stations. The other 

mitigating approach is to test in low or micro-gravity conditions which can reduce or eliminate particle settling. 

Although this helps with minimizing settling, the dispersion of the particles prior to reaching the first filter stage is 

still constrained by the shorter entrance length. In fact the length of the entrance duct was kept short in anticipation 

of low-g testing, in which often there is a benefit in containing the overall size of the flight payload for manifesting 

purposes. 

Limited low-g testing of both prototypes were performed on the Zero-G Corporation aircraft through NASA’s 

Flight Opportunities Program. The aircraft performs parabolic arc maneuvers that transition between low-g levels 

(zero to planetary surface gravity levels) to high-g (approximately 1.8 earth g’s) levels. Multiple simulated low-g 

gravity periods are performed during a typical flight, which provides the researchers with about 20 seconds each 

period of steady low-g levels for testing their hardware. 
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Table 1 provides a list of test configurations presented in the results section. 

 

 
Table 1: Filter test configuration 

Configuration Prototype Impactor Scroll filter Environment 

1 1/8
th

 scale Impactor No media Lab. and flight 

2 1/8
th

 scale Scroll media MERV 13 and 15 Lab. and flight 

3 1/8
th

 scale Impactor and Scroll filter MERV 13 and 15 Lab. and flight 

4 Full scale  Impactor and Scroll filter No media, just scroll housing Lab. and flight 

5 Full scale Impactor and Scroll filter MERV 11 Lab. and flight 

 

IV. Results and Discussion 

The laboratory and flight test data are presented in this section. Since the data is preliminary in nature, discussions 

and interpretations of the results are provided. The two subsections that follow focus on the flow and particle 

transport performance and filtration performance of the prototype filter systems. 

A. Flow and Particle Transport Performance. 

The flow performance of the impactor stage was one of the first performance characterisitcs investigated and the 

results are given in the graphs in Fig. 5. The graphs show the pressure drop produced across the impactor stages at 

various velocities under laboratory ambient conditions. There is clear distinction between the scaled and full scale 

prototype in the magnitude of pressure drop. There seems to be significant differences in the slopes of the two 

curves, with distinctly steeper slopes attributed to the scaled prototype (note that due to the large difference in 

nominal flow rates of the two prototypes their respective curves could not be plotted on the same basis scale). This, 

most likely, was due to the design of the orifice plate on the scale prototype which consists of several hundred 1 mm 

diameter size holes in front of each band, as compared to the larger slots on the full scale prototype. As is seen in 

both cases, although more so with the scaled prototype, the pressure drop rises rather significantly with small 

changes in face velocities. At about 0.52 m/s the pressure drop has reached 125 Pa or 0.5 inches of water on the full 

scale prototype, and 150 Pa for the scaled prototype. Based on these curves, it seems there is an advantage 

hydrodynamically to using the more open design of the full scale prototype.  

The permeability of each filter element was determined to ascertain its flow performance. Based on the 

definition of permeability given previously, the higher the permeability the greater the flow capacity through the 

filter. The permeability of the two different scale filter samples are presented in Table 2. A significant difference in 

permeability was produced between the two MERV media, almost a two-fold difference, even though there was a 

moderate (28 %) difference in rated efficiency. Permeability was not expected to change with gravity levels. 

Light sheet imaging was used a diagnostic tool to characterize the upstream flow and associated particle 

transport. The picture in Fig. 6 clearly shows a particle cloud emanating from the particle generator (left). The image 

also shows that the particle cloud spreads quickly after leaving the particle generator. While the particle flow 

structures visible in the particle cloud appear to disperse with downstream distance, the short length of the inlet 

section did not provide sufficient time for proper homogeneous dispersion of the particle flow at the upstream 

sampling station. However, it was found that the placement of the upstream sampling probe slightly away from the 

facility center line provided consistent readings of particle counts with the downstream probe, in the absence of any 

filter elements. This configuration was used for filter testing.  

.  

 



 

American Institute of Aeronautics and Astronautics 
 

 

9 

 
Figure 5: Impactor stage performance curves (a) scaled prototype, (b) full scale prototype 

 

 

 
Table 2: Filter media permeability 

Filter type Permeability @ 100 Pa  
[m

3
 vol. flow/m

2
 area/s] 

Full Scale Scroll filter (MERV 11) 0.13 

1/8th scale scroll filter (MERV 13) 0.07 

 

 

(b) 

(a) 
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B. Filtration testing 

Particle penetration, or capturing efficiency, performance was obtained for two filter configuration cases: one 

with only the impactor filter stage, and the second with the combined impactor and scroll filter stages. First a note of 

caution should be highlighted here. We are using testing methods designed for media filters, in which flow patterns 

are expected to be steady and remain fairly rectilinear. This may not be the case here because of the use of the 

impactor stage which produces local flow curvature and the inclusion of a wiper device that can cause an additional 

level of flow complexity. The effects of flow unsteadiness can be factored out through statistical sampling over 

sufficiently long times, while to account for the flow divergence, or curvilinear motion, one must assume that there 

are direct streampaths between the upstream and downstream sampling probe. The collection efficiency is presented 

here with these caveats. In addition, the laboratory data was considered statistically more significant than the flight 

data because of the greater number of tests that were performed and longer sampling times obtained. Another aspect 

of the low-g measurement is that operations during the flight were challenging because of variations in low-g levels 

and the transition from high-g to low-g levels that affected the transport of the solid particles as they left the particle 

generator. Lastly, the shorter distance between the particle generation source and the upstream particle sampling 

probe in the scale prototype further limited particle dispersion, which most likely produced more conservative 

upstream particle count numbers and thereby skewed the capturing efficiency calculations. Therefore, the results 

presented in this section are focused mostly on the collection efficiency data of the full scale prototype, with some 

comparison to the data from the scaled prototype. 

Figure 7 gives the efficiency data for the impactor stage alone. The tests were nominally conducted at face 

velocity of 0.5 m/s to simulate the nominal design flow rates. However, one of the tests was performed at 0.4 m/s to 

match the maximum velocity attainable in the impactor and scroll stage configuration (described next). The error 

bars in the plots represent the relative error for each size bin. The graph shows that the laboratory data sets, at the 

two different flow speeds, tend to follow each other closely over most of the particle range. Also, there seems to be 

an indication that the presence of the wiper had little to no effect on the filtration performance as can be seen by 

comparing the two plots at 0.5 m/s. In contrast, the low-g data is significantly different at the smallest particle sizes 

up to 2.5 μm, while at the largest particle sizes it is closer to the laboratory data. In general, no indication of a 

classical impactor cut size curve, as described in section II.A, could be discerned, particularly with the laboratory 

data. While the flight data does show some signs of a cut curve, the level of particle capturing remained significantly 

Particle flow 

Figure 6: Laser sheet image of upstream particle flow (the particle generator and particle flow are enhanced in the image 

to aid the reader). 
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high below the particle cut size. There are a few possibilities for the high efficiencies below the cut size in the 

laboratory and flight data. For one, there could be excessive particle settling in the laboratory tests due to the use of 

the dense simulant particles used, that would result in a miss-representation of higher particle collection on the 

impactor stage below the cut size. However, because capturing efficiencies are expected to approach 100% above 

the cut size, i.e. low to no downstream particle counts, the enhanced particle settling did not affect the data above the 

cut size. Another effect can be connected to the presence the collection belt which provides two consecutive bluff 

surfaces in the flow after the impactor orifice. The wake flow from the first surface could interact with the second 

surface providing additional particle capturing on this surface.  If so there would be an added benefit to the belt 

configuration. Further studies into this aspect of the impactor stage, or the nature of the low counts on the 

downstream probe, will be worth pursuing. 

The capturing efficiency for the two combined stages, impactor and scroll filter, is given in Fig. 8. Note first that 

because of the higher flow resistance of the stacked impactor and scroll stage configuration and the power limitation 

on the vacuum cleaner blower, the highest face velocity attainable in the full scale prototype was 0.4 m/s. Higher 

velocities were possible with the scaled prototype. The plots show that there is generally better agreement between 

the laboratory and low-g data in the range of larger particle sizes, down to the 2.5 μm, with achieved efficiencies 

greater than 99%. The capturing efficiencies remained above 99% in the laboratory data, but the flight data exhibited 

a gradual drop in efficiency approaching the smallest particle sizes down to a value of 87% efficiency at 0.3 μm. The 

slightly lower efficiencies in the flight tests are most likely due to edge leaks resulting from the slack in the medium. 

This is because the filter system lacked a media tensioning mechanism, and the slack in the filter medium caused the 

medium to bow out, due to flow pressure, between the spindles used to form the pleats. This effect also produced 

gaps between the edge of the medium and the inside duct walls. The filter system was tested under these conditions 

in the flight tests, while manual tensioning was applied on laboratory tests. The flight data also had much larger 

relative error as indicated by the error bars in the plot that may be attributed to the limited data sets and possibly 

from transients arising from the g-level transitions into the low-g periods of the flight. The error bars for the 

laboratory data are too small to be seen in the plots, and the error bar for the scale prototype flight could not 

determined because of the more restricted number of test runs The efficiencies presented in this graph are the 

aggregate efficiencies of the impactor stage and scroll filter stage. Therefore, a comparison of the plots in Fig. 7 and 

8 shows that, in the laboratory tests, the scroll filter stage added another 4% in collection efficiency. However, it 

needs to be determined whether the high efficiencies attributed to the impactor stage are a real effect of enhanced 

collection or due to some other undetermined effect.  

After the filter medium and impactor collection surfaces were loaded with an accumulation of particles from 

multiple test runs, the self-cleaning operation was performed. The clean side of the collection belts on the impactor 

stage were translated half way around the belt loop to face upstream, while the filter medium on the scroll stage was 

rolled up on the collection spool in order to expose the flow to a fresh portion of the medium. Pictures of the loaded 

impactor stage belts are shown in Fig. 9. The particle deposits show up as streaks on the full scale prototype because 

of the use of orifice slots, while distinct circular spot deposits are visible in the loaded impactor bands of the scale 

prototype produced by the arrays of millimeter diameter orifice holes. The indexing (or scrolling) operation on the 

scroll stage was activated by switching on the servo motor. This operation was observed during several trials which 

consistently showed that the loaded filter medium rolled up tightly and orderly on the collection spool. The power 

draw on the servo motor was 7.2 watts at a rotation rate of 0.26 revolutions per second. Fig. 8 shows a comparison 

of efficiencies before and after the scrolling of the filter medium. The two plots generally agree well. For these two 

cases, the medium was manually tensioned using a hand crank at the supply spool to mitigate the medium bowing 

effect. The similar high levels of efficiency before and after scrolling of the medium show that there was no adverse 

effect produced by the self-cleaning operation of scrolling the medium. 
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Figure 7: Particle Collection Efficiency of Impactor Stage (error bars represent relative error). 

 

 
Figure 8: Particle collection efficiency of combined filter system (error bars are the relative error). 
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V. Conclusion 

 A novel air filtration system for crewed vehicles and extraterrestrial outposts has been developed through a 

partnership between NASA and Aerfil. The filter system consists of several stages of filtration including an inertial 

impaction stage, an indexing (or scroll) media stage, and a final high efficiency filter media stage. An 1/8-th scale 

and full scale prototype of the filter system were constructed and subsequently tested at NASA GRC under 

laboratory ambient conditions and on the Zero-G Corp aircraft in low gravity. The tests demonstrated the filter 

system provided good overall performance. Particle collection efficiencies of 99% and greater were found for the 

system as a whole in the laboratory tests, and slightly lower in the flight tests. The scroll filter media self-cleaning 

operation was also shown to perform satisfactorily at relatively low power. There was general agreement between 

the ground and laboratory tests, but discrepancies were found at the smallest particle sizes. Additional testing at low-

g conditions may be required to resolve this discrepancy. Areas of improvement were identified through testing of 

the filter system. These included better sealing on the edges of the filter medium, relocation of wiper device, and 

provision for tensioning the scroll filter medium. 

 

Appendix A: Glossary of keywords 

 

d50: The particle diameter at which 50% of particles are collected on the impaction plate and the other 50% 

penetrate through the impactor.  

 

Depth Filtration: The trapping of particles as they pass through the tortuous path between fibers in fibrous filters. 

 

Filter efficiency: A measure of the particle collection performance of the filter element obtained through a ratio 

of the number of particles trapped on the filter and the number of particles found in the air or gas upstream of the 

filter. 

 

Figure 9: Picture of impactor collection bands after regeneration. (a) Full scale prototype, (b) scale prototype (the loaded 

belt surfaces were translated to other side of the impactor stage for viewing purposes). 

Particle  

deposits 
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(b) 
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Permeability: A measure of a medium’s capacity for the filtration typically calculated from the measured flow 

rate at a defined pressure drop.   

 

Penetration: The ratio of particles counts found downstream of the filter to particle counts upstream of the filter. 

 

Relaxation time: A characteristic time that is required for a particle in the flow to adjust (or relax) to new flow 

conditions. 

 

Appendix B: Acronyms 

 

HEPA  High Efficiency Particulate Air 

IPP  Innovative Partnership Program 

ISRU  In-Situ Resource Utilization 

MERV Minimum efficiency reporting value 
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