NeuroMapping	
R. D. Seidler	
	VERSITY OF CHIGAN
Spaceflight Effects on Neurocognitive Performance: Extent, Longevity, & Neural Bases (NeuroMapping)	
R. D. Seidler (PI), P. A. Reuter-Lorenz University of Michigan A. P. Mulavara (CoI), J. J. Bloomberg (CoI), S. J. Wood (CoI), I. S. Kofman, Neuroscience Laboratories, NASA / JSC	
a b	

R. D. Seidler

Science Background

- Spaceflight affects balance, spatial orientation, & motor control
- Rodent models have shown sensorimotor neural structural changes
- This study will address whether these neural structural changes occur in humans and how they impact astronaut functional performance
- We will also investigate whether spaceflight affects sensorimotor adaptation; important for transitioning between varying gravitational environments

R. D. Seidler

Pre & Post Flight Test Descriptions *Functional Performance*

1. Functional Mobility Test (FMT): navigate obstacle course with foam pylons, a gate, an obstacle, and a 'portal'.

2. Purdue Pegboard test: assemble pegs and washers bimanually and place into

board.

3. Digit symbol substitution test: transcribe symbols to numbers.

R. D. Seidler

Pre & Post Flight Test Descriptions

4. Postural Stability: Maintain balance on swayreferenced support surface with eyes closed. This test will be performed with and without head movements.

5. Tests of spatial cognition & working memory:

a. Rod & frame- align a rod to perceived vertical

b. Card rotation rotate 2-dimensional
shapes to match

c. Cube rotation rotate 3-dimensional
shapes to match

R. D. Seidler

Pre & Post Flight Test Descriptions

6. Vestibular stimulation: the vestibular system will be stimulated by either a brief acoustic stimulus or a brief tap to the forehead. Muscle responses will be recorded.

R. D. Seidler

Pre & Post Flight Test Descriptions

Brain Structural & Functional Assessments

1. Structural MRI: lie still while we take a 3 dimensional image of your brain structure.

GPe GPi

Caudate Putamen.

R. D. Seidler

Pre & Post Flight Test Descriptions

3. Resting state functional connectivity MRI: lie still while we image functional network interactions.

4. Functional MRI during single and dual task finger tapping: tap buttons bimanually in response to cues on the screen, count # of appearances of a target color, or both simultaneously.

R. D. Seidler

Pre & Post Flight Test Descriptions

5. Functional MRI during manual sensorimotor adaptation task: move a joystick to hit targets on the computer screen.

6. Functional MRI during spatial working memory task: mentally rotate2-dimensional shapes to match targets.

7. Functional MRI during vestibular stimulation: the vestibular system will be stimulated by either a brief acoustic stimulus or a brief tap to the forehead.

R. D. Seidler

In Flight Test Descriptions

1. Cube rotation- rotate 3-dimensional shapes to match

2. Single and dual task finger tapping: tap buttons bimanually in response to cues on the screen, count # of appearances of a target color, or both simultaneously.

3. Manual sensorimotor adaptation task: move a joystick to hit targets on the computer screen.

Control Pad (rear view

R. D. Seidler

Study Relevance

- First interdisciplinary assessment of the effects of space flight on brain structure-function and functional performance changes.
- 2) Will allow us to assess the risk of long duration spaceflight on brain structure / function and impact on performance.