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A new dust detection algorithm is developed by combining the results of multiple dust detection methods using
IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature
Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods.
However, BTDmethods have limitations in identifying the offset values of the BTD todiscriminate clear-sky areas.
The current algorithm overcomes the disadvantages of previous dust detection methods by considering the
Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical
properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the
current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally,
the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations.
From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the
fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI).
The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also
ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm
shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Wind-blown dust is one of the important trans-boundary pollutants
affecting air quality over East Asia in spring, with its main sources being
the Gobi and Taklamakan deserts located in China andMongolia. Dust is
lifted up in dry weather condition over hot desert surfaces and then
is transported to surrounding regions by strong winds, which results in
air quality problems and significant reductions in visibility (Darmenova,
Sokolik, & Darmenov, 2005). During the transport, Asian dust is partly
mixed with anthropogenic aerosols over East Asia due to abundant pol-
lutant sources (Chu et al., 2005).

The chemical and physical properties of dust aerosol affect the
radiation fields over wide wavelength regions from ultraviolet (UV) to
infrared (IR), while those of anthropogenic aerosols have minor effect
on the IR wavelengths due to their small particle size. By using these
radiative properties, several optical observation techniques have been

developed to detect and quantify dust aerosols. The AErosol RObotic
NETwork (AERONET), a federated ground-based observation network,
provides various optical properties of aerosols, including the spectral
aerosol optical depth (AOD), refractive indices, and size distribution
in the UV through near-infrared wavelength ranges over the globe
(Holben et al., 1998).

Satellite remote sensing also provides global information on aerosol
optical properties by using shortwave channels during daytime over
both land and ocean (e.g. Hsu, Tsay, King, & Herman, 2004; Kim et al.,
2007; Lee, Kim, Yang, & Hsu, 2012; Lee et al., 2010; Levy, Remer,
Mattoo, Vermote, & Kaufman, 2007; Remer et al., 2005). In addition,
satellite observation in thermal IR wavelengths has the advantage
of allowing dust observation at nighttime in addition to daytime
(c.f. Ackerman, 1997; Chomette, Legrand, & Marticorena, 1999; Hansell
et al., 2007; Pierangelo, Chedin, Heilliette, Jacquinet-Husson, & Armante,
2004),which allowsmore frequentmonitoring of dust transport. The op-
tical properties of dust at the IR wavelengths are related to the spectral
refractive indices of their combined minerals and their size distribution
(Sokolik & Toon, 1999; Sokolik, Toon, & Bergstrom, 1998). Ackerman
(1997) reported that the real (i.e. scattering properties) and imaginary
(i.e. absorption properties) parts of complex refractive indices for quartz
are strongly dependent on wavelength in the thermal IR (8–12 μm) and
hence can be useful for detecting dust with a large sand component.
Ackerman (1997) also showed the spectral variability of the imaginary
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term for common dust components such as hematite and ammonium
sulfate in the thermal IR region. More recently, Hudson, Gibson, Young,
Kleiber, and Grassian (2008) illustrated that simulations considering
non-spherical particles of dust in the thermal IR better reproduce exper-
imental extinction spectra for common components of dust aerosols.

Based on the optical properties of dust, dust detectionmethods have
been developed by using thermal IR channels. Shenk and Curran (1974)
investigated a dust detection method for the Saharan dust using the
temperature change of the IR channels observed by the Nimbus-4 satel-
lite. They showed that the dust plume changes the temperature contrast
between the surface and atmosphere. Ackerman (1997) introduced
a method using a combination of the Brightness Temperature (BT)
change for multiple channels. The BT is dependent on the optical prop-
erties of dust, which is influenced by the chemical composition, size dis-
tribution (Merchant, Embury, Le Borgne, & Bellec, 2006; Sokolik et al.,
1998), and layer heights (Pierangelo et al., 2004). For these reasons,
previous studies introduced the algorithms based on the Brightness
Temperature Difference (BTD) between two wavelength channels
(e.g. Ackerman, 1997;Darmenov& Sokolik, 2005).Moreover, additional
channels were used (e.g. Hansell et al., 2007;Miller, 2003; Roskovensky
& Liou, 2005), where the correction factors and fixed threshold values
were employed to minimize the errors due to different properties
of surface and dust minerals. The results of these methods, however,
were dependent on changes of the correction factors. Baddock, Bullard,
and Bryant (2009) presented the advantages of simultaneously using
the results of several dust detection methods, to identify the dust-laden
area over land in Australia. This previous study showed that dust pixels
are consistently detected near the source regions for several cases using
the results of the three dust detection methods.

In this study, we propose a new dust index by combining four differ-
ent dust detectionmethods by using theDust Confidence Index (DCI). To
estimate the DCI, a new test using Brightness Temperature Ratio (BTR)
between two wavelength channels is added to distinguish between
the dust and surface signals more accurately, in addition to the widely
used dust detection methods including BTD. The combination of several
methods results in the improvement in accuracy and reliability of dust
detection. The BTR method is also applied to minimize the errors due
to the emissivity spectra difference for various surface types. By

combining several tests together with the newly introduced test, the
overall performance of dust detection is improved. These results are
expected to provide more quantitative information in detecting dust
from satellite imagery. The paper is organized as follows. Section 2 dis-
cusses the data used, while Section 3 presents an overview of the algo-
rithm. Detection results and validation are given in Section 4 and
finally a summary and conclusion are presented in Section 5.

2. Dataset

IR bands of the MODerate resolution Imaging Spectroradiometer
(MODIS) onboard Aqua satellite are used to detect dust over East Asia.
MYD02, level 1B calibrated radiance data, and MYD03, geo-location
data, are used in this study. MODIS is a 36-band spectrometer covering
spectral range from the visible to infrared onboard sun synchronous
satellites, with an equatorial crossing time of 1:30 PM for Aqua. The
IR bands have a spatial resolution of 1 km × 1 km (http://modis.gsfc.
nasa.gov/about/specifications.php). There are 16 bands in IR (bands
20 to 36, except band 26), including the atmospheric window channels,
bands 29 (8.400–8.700 μm), 31 (10.78–11.28 μm) and 32 (11.77–
12.27 μm). Most of the signals for the three bands in the atmospheric
window are from the surface (cf. Tang & Li, 2008). Therefore, the Bright-
ness Temperatures (BTs) of these three bands are used to detect dust
effectively, because the dust layer is mostly located in the lower-half of
the troposphere. Among the three bands, however, band 29 is influenced
by the weak absorption of sulfur dioxide. For this reason, bands 31 and
32 are used as the primary, and band 29 is used as an ancillary band. In
addition to the conventional method for screening clouds by utilizing
band 31, a water vapor absorption band (band 28, 7.175–7.475 μm)
is used to improve the cloud masking. In this study, the analysis area
was selected over East Asia, defined by the area from 100°E to 160°E in
longitudes, and from 25°N to 60°N in latitudes. The MODIS IR data
from Aqua are used for the period from January to June, 2006.

3. Algorithm

The characteristics of dustminerals affect the radiative spectra directly
through emissivity, particle size, and refractive index (e.g. Caquineau,

Fig. 1. Flowchart of the combined IR dust detection algorithm.
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Gaudicet, Gomes, & Legrand, 2002; Sokolik et al., 1998). For this reason,
Darmenov and Sokolik (2005) showed the different thresholds of BTD
between11 and12 μm, ranging from−1.0 to 0.5 K,with regard to source
regions. Seemann, Borbas, Knuteson, Stephenson, and Huang (2008) also
showed that the emissivity structure in the IRwavelength range changed
based on the variation of surface type. Therefore, resolving variations of
the mineralogical properties of dust aerosol and the surface type are
essential to improve dust detection from satellite. In this study, threshold
values are defined by taking into consideration the spatial and temporal
dependence to reflect the effects of these variations. In addition, new
cloud masking techniques using the IR bands are implemented to mini-
mize the effect of cloud contamination on dust detection.

3.1. Dust detection methods

Satellite observed BT (TB) is a function of surface temperature
(TS) and emissivity, ε(λ), depending on the wavelength, λ. However,
in general, surface temperature (TS) is independent of the
wavelength.

BTD is generally defined by the difference of the BT between two
wavelengths (λ1 and λ2) so that BTD(λ1 − λ2) can be expressed as
follows:

BTD λ1−λ2ð Þ ¼ TB λ1ð Þ−TB λ2ð Þ: ð1Þ

Fig. 2. (a) BTR(11/12), (b) C-BTR(11/12), and (c) difference between observed BTR(11/12) and C-BTR(11/12) on March 11, 2006 over East Asia.
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The BTD method has been used widely when estimating the differ-
ence in the emissivity between two wavelengths in order to identify
the dust signals. However, the BTD is dependent not only on the emis-
sivity change, but also on the surface temperature. The emissivity of
surface remains almost constant throughout the year as shown in the
results from the IR spectral emissivity database based on the MODIS
product (http://cimss.ssec.wisc.edu/iremis). However, annual and diur-
nal variations of surface temperature are 30 K and 15 K over East Asia,
respectively (Wang & Lu, 2006), which affect the respective BTD values
by 10% and 5%. For this reason, the BTR value is introduced to minimize
errors due to the surface temperature variation in this study. BTR is

defined as a ratio of the BT between two wavelengths, which can be
expressed as follows:

BTR λ1=λ2ð Þ ¼ TB λ1ð Þ=TB λ2ð Þ: ð2Þ

Therefore, zero values of BTD correspond to 1 in BTR, and negative
(or positive) BTD values correspond to values that are lower (or higher)
than 1 in BTR.

In this study, the dust detection algorithm is constructed by combin-
ing a BTD test, two BTR tests, and the D*-parameter test developed by
Hansell et al. (2007). The BTD test uses a fixed threshold to determine

Fig. 2 (continued).

Fig. 3. Flowchart of cloud masking.
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dust pixels. The two BTR tests use spatially different thresholds to con-
sider the surface characteristics. These tests use wavelength pairs of
11 μm/12 μm, and 11 μm/8.6 μm, respectively. The D*-parameter test,
which is basically a combination of the BTDs for two different wave-
length pairs, is used to reduce the effect of cloud contamination.

Here, we introduce and calculate the DCI for each of the aforemen-
tioned dust detectionmethod. The respective DCI is a normalized confi-
dence level of each test, and therefore represents the confidence in dust
detection for each method by scaling the value linearly between the
clear sky and dusty conditions. The total DCI (TDCI), as a mean of the all
DCIs, detects the pixels with dust, by comparing them with the criterion.
The flowchart of the algorithm is represented in Fig. 1. The details of the
flowchart are provided below.

3.1.1. BTD(11–12) method
This method was introduced by Shenk and Curran (1974) for the

first time, and has been used widely for dust detection. BTD(11–12) is

defined by a difference in the BT at 11 and 12 μm,which shows negative
values for dust-laden areas. In contrast, the BTD(11–12) is known to
show positive values for non-dust and cloud-covered areas. For this
reason, many previous studies used the negative value of BTD(11–12)
for dust detection (e.g.Ackerman, 1997; Ackerman et al., 2002; Hansell
et al., 2007). However, the negative BTD(11–12) can be also observed
over volcanic ash particles occurring at high altitudes (Prata, 1989), or
over sulfate aerosol (Watson et al., 2004), which can potentially gener-
ates errors in discriminating dust. In addition, the spectral changes
of surface emissivity for the different surface type affect the BTD values
over land in particular. Therefore, the detection results aremore reliable
over ocean or for the case of strong dust events.

3.1.2. 30-day composite BTR (C-BTR)(11/12) method
Basically, C-BTR(11/12)method is similar to the BTD(11–12)method

except that BTR(11/12) is used as a reference value to determine the
“clear” regions, which are not significantly influenced by clouds and/or

Fig. 4. (a) The result of cloud masking using BT(11), R2, and BT(11)-variation tests and (b) MODIS RGB image on April 8, 2006.
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dust. A clear reference scene defined by the maximum BT at 11 μm
averaged over each gridded area (0.5° × 0.5°) is selected within a 30-
day window that proceeds the day of interest. To determine the refer-
ence value, BTR(11/12), on a clear day without considerable dust events
and clouds, is selected for the day with the maximum BT at 11 μm in
each gridded area of 0.5° × 0.5° for the previous 30 days. Because most
of the emissivity from the surface within a 30-day period is invariable
from the IR spectral emissivity database, the effect of the emissivity
change is negligible. Therefore, the BTR(11/12) on the selected day at
each grid point is defined and compiled as the clear-sky C-BTR(11/12).
The DCI of the BTR(11/12) test, at a given grid, is calculated by the differ-
ence between the current BTR(11/12) and C-BTR(11/12). Note that
the reference day can be different from one grid to another because the
day of maximum BT(11) is affected by different characteristics of cloud
contamination and surface condition, etc. Fig. 2 shows an example
of the BTR(11/12), C-BTR(11/12) and difference between the two for a
dust case on March 11, 2006. The BTR(11/12) values are lower than 1
over the dust region. However, most of the region with the BTR(11/12)
lower than 1 is also affected by the signal from the surface as shown
in the result for the C-BTR(11/12). The classic BTD(11–12) would have
provided false detection for the dust in this region. Fig. 2(c) shows the
difference between BTR(11/12) and C-BTR(11/12), where the negative
values coincide with the dust region as the surface signals are removed
by the C-BTR(11/12). Therefore, the C-BTR method allows us to distin-
guish the detected BTR signal of dust layers from the surface emission,
by taking the difference between the BTR and the C-BTR.

The emissivity spectra of dust and desert surface have similar
tendencies between 11 and 12 μm because the composition of the
desert surface is similar to that of floating dust. Therefore, it is difficult
to distinguish dust over the desert surface from the desert surface itself.
For this reason,we classify desert surfaces byusing theC-BTR(11/12), so
that noDCI is calculated over the selected area. The desert surface can be
distinguished by its low C-BTR(11/12) values, because of the rapidly
varying spectral absorption features of surface materials near 10 to
11 μm compared to those at 11 to 12 μm (Elachi & van Zyl, 2006). The
threshold of the C-BTR(11/12) is set as 0.995, because all of the surface
types except for desert and savanna (mostly located in the tropics)
show the emissivity ratio between 11 and 12 μm [ε(11)/ε(12)] larger
than 0.995 based on the work from Chen, Sun-Mack, Minnis, Young,
and Smith (2002).

3.1.3. C-BTR(11/8.6) method
De Paepe and Dewitte (2009) showed that BTD(11–8.6) has the

advantage of detecting dust over bright surfaces. An emissivity of the
bright surface near 8.6 μm shows a low value due to the reststrahlen
band of mineral compositions, and its band intensity increases with
increasing particle size. Meanwhile, the emissivity at 11 μm increases
with increasing particle size (e.g. Salisbury & Wald, 1992; Wald,
Kaufman, Tanre, & Gao, 1998; Wald & Salisbury, 1995; Wenrich &
Christensen, 1996). Therefore, the BTR(11/8.6) shows a higher value
over the desert surface than dust-laden condition because the particle
size of dust is smaller than that of the particles on the desert surface.

Fig. 5. Count distribution of determination coefficient (R2) of BT between 7.3 and 11 μm
(a) for clear and (b) cloudy condition. Fig. 6. Count distribution of BT(11) variation (a) for clear and (b) cloudy conditions.
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The estimation of C-BTR(11/8.6) follows the same process as the
calculation of C-BTR(11/12) except for the wavelength pair of 11 and
8.6 μm. BTR(11/8.6) can be used even over the desert surface. Gangale,

Prata, and Clarisse (2010) showed that the BTs between 8.6 and 11 μm
have an inclination in dust conditions, while the values become almost
constant in clear conditions. However, the absorption bands of the sulfur

Fig. 7. (a)MODIS RGB image, (b) dust from IR algorithm, (c)MODIS AOD, (d) FMF, (e) OMIAI, and (f) dust detection (yellow color) fromMODIS-OMI algorithm (MOA) onMarch 11, 2006.
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dioxide and water vapor in the MODIS 8.6 μm band have an effect on
the BTR(11/8.6). Although the absorption in 8.6 μm is weak, even small
errors can cause an error in dust detection because of the low BTR

sensitivity to dust. Furthermore, cloud also affects the dust detection.
Gangale et al. (2010) showed that the BT variation between 11 and
8.6 μm in dust conditions was similar to that in cloud conditions.

Fig. 8. Same as in Fig. 7 except for the case on April 8, 2006.
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Therefore, accurate cloud detection techniques are necessary to separate
dust and cloud signal for this method.

3.1.4. D*-parameter test
Thin cirrus clouds are occasionally misclassified as dust plumes

when using a single BTD test. For this reason, Hansell et al. (2007) inves-
tigated a D*-Parameter (D*) test to distinguish cirrus clouds from dust
signals. The D*-parameter is estimated by the following expression

D� ¼ exp BTD 11−12ð Þ−að Þ= BTD 8:6−11ð Þ−bð Þ½ � ð3Þ

where a and b are offset values for BTD(11–12) and BTD(8.6–11),
respectively. From Hansell et al. (2007), the offset values used
were −0.5 and 15.0 for a and b, respectively. Extensive model calcula-
tions showed that theD*-parameter increases for dust,while it decreases
for cirrus with increasing optical depth. Based on this result, the D* value
can be used to classify cirrus and dust without cloud masking. The
previous studies (Baddock et al., 2009; Hansell et al., 2007) proposed a
D* threshold value of 1.0 to detect dust.

3.2. Cloud masking

Cloud is one of the main error sources for dust detection. Theoreti-
cally, the BTD(11–12) values of cloud show weakly positive values
and the values increase with the cloud optical depth (Roskovensky &
Liou, 2005). However, high-level clouds and high latitudinal clouds are
frequently observed with negative or near zero values of BTD(11–12)
(Iino, Kinoshita, Tupper, & Yano, 2004). In addition, the inclination of
the BT values between 8.6 and 11 μm observed for clouds is similar
to that for dust conditions. Therefore, cloud needs to be masked out
before the DCI calculation for better accuracy. In this study, three tests
are applied for cloud detection. First, the conventional BT(11) test is
performed to detect clouds. Second, the correlation of the BTs deter-
mined by the determination coefficient (R2) between 7.3 and 11 μm
is used [referred to as the R2(7.3–11) test hereafter]. These two tests are
performed in a 10 km × 10 km grid box to detect spatially larger clouds.
Third, the dynamic range of the BT(11) within the 10 km × 10 km grid
box is used additionally to detect sub-grid clouds [BT(11) variation test
hereafter] from 1 km × 1 km observation data. The flowchart of the
cloud masking technique is presented in Fig. 3, and an example of the

Fig. 9. The agreement and the false detection of dust between IR algorithm and MODIS FMF for the case of (a) March 11, and (b) April 8, 2006.
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cloud masking result is shown in Fig. 4. In Fig. 4(a), the current cloud
masking method defines the cloud and non-cloud regions, which are
indicated by blue and white coloring, respectively. In comparison with
the RGB image in Fig. 4(b), the cloud regions are well defined by the
current cloud masking method. Although more accurate cloud detection
can be achieved using the visible band, only the IR bands are used for
nighttime application.

3.2.1. BT(11) test
BT(11) is a simple way to obtain skin temperatures of surface and

optically thick materials. For thick clouds, BT(11) shows lower value
compared to those of the terrestrial surface. For this reason, BT(11)
is a powerful tool to detect optically thick clouds or clouds at high-
altitudes. In this study, the maximum value of BT(11) was calculated
for the past 30 days (Tmax) as a reference value. Then, the threshold
of cloud temperature (Tcld) is calculated bymultiplying Tmax by a coeffi-
cientα of 0.95 based on the upper threshold of BT(11) (= 273 K) from
Ackerman et al. (1998) and the surface temperature (288.2 K) from the

US standard atmosphere (1976). The low-level clouds (e.g. stratus
and stratocumulus), however, cannot be detected using this method
due to the difficulty in distinguishing signals of low clouds from that
of surface, as well as the weak contrast of BT(11) between terrestrial
surface and low-level cloud.

3.2.2. R2(7.3–11) test
Theweighting functionpeak of theMODIS band28 (7.3 μm) is located

at around 500 to 600 hPa (Tang & Li, 2008). In contrast, the peak of the
MODIS band 31 (11 μm) is located at the surface. Therefore, BT(7.3) and
BT(11) change simultaneously over high-level clouds, while only BT(11)
changes over dust-laden pixels due to the insensitivity of dust at 7.3 μm.
For these reasons, the R2 value between BT(7.3) and BT(11) becomes
higher for cloudy condition than that for the clear condition.

Fig. 5 shows the count distributions of calculated R2 over East Asia
for the period from January to June, 2006. The R2 is calculated for each
10 × 10 pixels, with data in 1 km × 1 km resolution. This result was
compared with the MODIS standard products introduced by Martins

Fig. 10. (a) The agreement and the false detection of dust between the IR algorithm and the OMI AI and (b) MOA for the case of March 11, and April 8, 2006.

33S.S. Park et al. / Remote Sensing of Environment 141 (2014) 24–39



et al. (2002) and Remer et al. (2005). To minimize the false detection of
clouds, only 4.2% of the clear pixels are allowed to be detected as cloudy,
so that 47.7% of the cloud pixels can be detected by the R2 threshold of
0.9 for the time period.

3.2.3. BT(11) variation test
The BT(11) in cloudy pixels is lower than that of clear pixels. While

the decrease in the mean BT(11) in the 10 km × 10 km resolution is
hardly visible for small-scale clouds, the BT(11) in the1 km × 1 kmres-
olution can detect better signals from small-scale clouds than the 10 km
pixel resolution. The difference between the maximum and minimum
values of the BT(11) observed in the 1 km pixel resolution in the target
grid (10 × 10 pixels) is expected to show a higher value when covered
by small-scale clouds. To minimize errors caused by locality, the varia-
tion is defined by the difference between the mean BT(11) of the
upper 20% and that of lower 20% (ΔTsub). Fig. 6 shows the count distribu-
tion of the ΔTsub over East Asia. When allowing for 0.7% false detection,
theΔTsub threshold of 5.0 K is determined to have a 51.9% of cloud detec-
tion rate. The rest of the 48.1% is mainly due to large-scale clouds, which
can be detected effectively by the previous two tests.

4. Detection results and validation

To evaluate the developed algorithm (IR algorithm hereafter),
detected results are compared with the RGB images, the AOD and fine
mode fraction (FMF) from MODIS, the UV aerosol index (AI) from the
Ozone Monitoring Instrument (OMI), and dust classification from the
so-called MODIS-OMI algorithm (MOA hereafter) (Jeong & Li, 2005;
Kim et al., 2007; Lee, Kim, Lee, & Takemura, 2007). The FMF is defined
as a ratio of the fine-mode AOD to the total AOD, so this value can be
used to identify dominant aerosol size, i.e. coarse or finemode. Because
dust is the coarse-mode dominant aerosol, the results of the IR algo-
rithm are compared with the FMF as a reference. The AI is an index to
contrast the wavelength dependence of the backscattered UV radiation
between the aerosol-concerned atmosphere and pure molecular atmo-
sphere (Herman et al., 1997). Therefore, the AI shows absorption char-
acteristics of aerosols in the UV wavelength range. The MOA classifies
dust as optically thick, UV-absorbing coarse-mode particles by using

the Angstrom Exponent (AE) from MODIS for the aerosol size parame-
ter, and the AI from OMI for the aerosol absorptivity in UV, simulta-
neously. Due to the different geometry of the pixels between MODIS
and OMI, the results of MOA are gridded data resolution of 1.0° × 1.0°.
Similarly, the data of AI from OMI is also gridded at a resolution of
1.0° × 1.0° for comparison purposes. The AI from OMI uses the thresh-
olds for AOD N 0.4 and AI N 0.7. The MOA uses the thresholds for
AOD N 0.4, AE b 0.7 and AI N 0.7 (Kim et al., 2007). Note that AOD and
FMF represent the values at 550 nm unless specified in the subscript.

4.1. Case study

Strong Asian dust case on March 11 and April 8, 2006 is shown
in Figs. 7 and 8, respectively. On March 11, 2006, thick dust layer,
mixedwith clouds, is observed over the Yellow Sea through the eastern
part of the Korean Peninsula from the MODIS RGB image as shown in
Fig. 7(a). The new IR algorithm successfully detects the thick dust
layer with TDCI values of almost 100, and it also detects a relatively
thin dust layer over the northern part of Japan with values at around
70 to 80, as shown in Fig. 7(b). Fig. 7(c) and (d) shows the thick dust
layer with AODs higher than 1.5 and FMF lower than 0.5, respectively,
which indicates coarse-mode dominance. Fig. 7(e) shows AI from
OMI with values higher than 2.5, representing strong UV absorption,
over the dust layer located from the Yellow Sea to the northern part of
Japan. As inferred from the aerosol type classification from the MOA
[Fig. 7(f)], dust aerosols are detected over the dust-laden area as
inferred from the RGB image and the retrieval results from MODIS.
The dust layer over the Korean Peninsula is not detected by the
MODIS shortwave algorithms, while the AI from OMI shows significant
sensitivity to the dust layer over the clouds. The current IR algorithm
shows the continuous structure of the dust layer detected over the
Korean Peninsula compared to the operational MODIS shortwave
algorithm over land. In addition, the IR algorithm shows sensitivity to
the weak dust layer over Northeastern China with the TDCI higher
than 70.0, where the AOD was about 0.3.

Fig. 8 shows another dust outbreak on April 8, 2006. A thick dust
layer can be observed over the Korean Peninsula extending to the
western part of Japan in the RGB image as shown in Fig. 8(a). The
MODIS shortwave retrieval shows strong coarse-mode dominant aero-
sols, which have the AOD ranging from 1.0 to 3.0 [see Fig. 8(c)] and
the FMF ranging from 0.1 to 0.6 [see Fig. 8(d)], over the dust-laden
area as inferred from the RGB image. Fig. 8(e) shows the AI values higher
than 1.5 over the investigated region. In particular, the AI shows the core
of the dust plume observed from the Korean Peninsula to Japan with the
AI values higher than 2.5. The result of the MOA also classifies the dust
type aerosol over this area as shown in Fig. 8(f). The result of the current
IR algorithm in Fig. 8(b) also shows high confidence of the dust
(TDCI N 70.0) over both land and ocean. In particular, the TDCI reaches
almost 100 over the dust layer with a very high AOD value (AOD N 2.0)
and low FMF value (FMF b 0.2). In addition, the developed algorithm
detects dust with a TDCI higher than 60 over the Gobi Desert, where
OMI AI shows enhanced values, but the MODIS AOD indicates thin
aerosol layer.

To evaluate the statistical results of the developed algorithm,
the agreement and false detection are calculated by using following
equations,

Agreement ¼ YIR&SW=YSW ð4Þ

False detection ¼ 1−YIR&SW=YIR ð5Þ

where YIR&SW denotes the number of dust pixels defined by both the IR
algorithm and the shortwave (SW) algorithms, simultaneously (low
FMF, high AI, and dust result from MOA). YIR and YSW denote the num-
ber of dust pixels detected by the IR algorithm and the SW algorithms,
respectively. For statistical calculations, the pixels with the AOD value

Table 1
The agreement of dust between the IR algorithm and FMF.

Agreement (false detection) FMF b 0.4

AOD N 0.4 AOD N 0.6 AOD N 0.8 AOD N 1.0

TDCI N 30.0 0.207
(0.513)

0.424
(0.499)

0.651
(0.490)

0.814
(0.418)

TDCI N 35.0 0.175
(0.476)

0.366
(0.471)

0.616
(0.460)

0.799
(0.396)

TDCI N 40.0 0.146
(0.444)

0.313
(0.446)

0.562
(0.433)

0.764
(0.379)

Agreement (false detection) FMF b 0.5

AOD N 0.4 AOD N 0.6 AOD N 0.8 AOD N 1.0

TDCI N 30.0 0.194
(0.263)

0.388
(0.240)

0.620
(0.189)

0.779
(0.115)

TDCI N 35.0 0.161
(0.219)

0.331
(0.207)

0.572
(0.163)

0.755
(0.095)

TDCI N 40.0 0.132
(0.190)

0.277
(0.189)

0.504
(0.151)

0.711
(0.082)

Agreement (false detection) FMF b 0.6

AOD N 0.4 AOD N 0.6 AOD N 0.8 AOD N 1.0

TDCI N 30.0 0.162
(0.146)

0.345
(0.131)

0.557
(0.074)

0.724
(0.032)

TDCI N 35.0 0.133
(0.105)

0.293
(0.098)

0.510
(0.052)

0.689
(0.027)

TDCI N 40.0 0.108
(0.078)

0.245
(0.078)

0.448
(0.042)

0.643
(0.022)
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higher than 0.4 are used for intercomparison to ensure the retrieval
accuracy of the SW algorithms. By doing so, the coarse-mode aerosol
determined by a low FMF from MODIS can be assumed to be dust,
because theAOD for sea salt is very low in general. Due to the inaccuracy
of the size information retrieval from MODIS over land (Levy, Remer,
Tanre, Mattoo, & Kaufman, 2009), the FMF and MOA are used only
over ocean.

Fig. 9(a) and (b) shows the agreement and false detection of dust
results between the IR algorithm and the MODIS FMF on March 11
and April 8, 2006, respectively. Because the FMF can be influenced by
cloud fraction (Zhang, Reid, & Holben, 2005), the results are compared
only with the data with a cloud fraction lower than 0.1. The agreement
between the dust inferred from the FMF and the IR algorithm ranges from
0.747 (FMF b 0.6 and TDCI N 40.0) to 0.969 (FMF b 0.3 and TDCI N 30.0),
and from 0.405 (FMF b 0.6 and TDCI N 40.0) to 0.669 (FMF b 0.3
and TDCI N 30.0) for the case on March 11 and April 8, respectively.
Furthermore, the false detection ranges from 0.000 to 0.283, and from
0.005 to 0.169 for the case on March 11 and April 8, respectively. The
agreement and the false detection decrease with increase in the FMF
threshold.

Fig. 10 shows the comparison results of the IR algorithm with the
OMI AI and the MOA. Prospero, Ginoux, Torres, Nicholson, and Gill
(2002) suggested that the Total Ozone Mapping Spectrometer (TOMS)
can be used to detect the dust region with the AI value higher than
0.7. For this reason, the AI higher than 0.7 from the OMI is used as a
reference value, assuming similar performance between the TOMS
and OMI. Similar to the FMF, the AE is also influenced by cloud contam-
ination. Therefore, the gridded AE for theMOA is calculated by averaging
the operational MODIS AE only for the pixel with a cloud fraction lower
than 0.3. The agreement between the IR algorithm and the AI ranges
from 0.648 to 0.745, while the false detection ranges from 0.000 to

0.333 for the two cases. In comparison with dust-laden pixels identified
by the MOA, high values in agreement are observed, ranging from 0.920
to 0.940, and from 0.892 to 0.973, while the false detection ranges from
0.061 to 0.130 and from 0.083 to 0.100 on March 11, 2006 and on April
8, 2006, respectively.

For the two selected dust cases, the agreement ranges from 0.65 to
0.98, and the false detection is less than 0.34 in general, from the com-
parisons among the several different algorithms. For the case on April
8, the agreement with the FMF is decreased down to 0.4 with the FMF
threshold of 0.6, as the observed AOD is lower than 0.5, due to weak
signals over the area within 25°N–30°N and 130°E–140°E, in which
dust is not detected by the MOA. However, a thin aerosol plume was
observed over this region in the RGB image, which was detected as a
thin-layered polluted dust by FMF and AI by its higher spatial resolution
compared to the MOA.

In addition, the agreement with the MOA is higher than the agree-
ment with the FMF and the AI by 20%, and the false detection with the
MOA is lower than that with the FMF and the AI. This result indicates
that the degeneration of statistical scores for the FMF and the AI arises
primarily from the lack of aerosol information. As a result, the current
IR algorithm correctly defines the dust pixels, and shows the transport
of the dust plume for several dust cases over East Asia.

4.2. Long-term validation

For long-term evaluation, the results between the IR algorithm and
the shortwave algorithms are compared for six months from January
to June, 2006. Table 1 summarizes the agreement and the false detection
as functions of the thresholds for TDCI, AOD, and FMF. The agreement
increases significantly as the threshold of the AOD increases. For the
cases with AOD N 1.0, the agreement ranges from 0.643 (FMF b 0.6
and TDCI N 40.0) to 0.814 (FMF b 0.4 and TDCI N 30.0). In contrast,
the false detection decreases with an increase in the TDCI and FMF
thresholds. From these results, it can be inferred that the IR algorithm
detects severe dust events over ocean reasonably well. Fig. 11 shows
the agreement between the IR algorithm and the MOA as a function
of the AOD over ocean. Note that the AOD value in Fig. 11 means that
the gridded AOD value is within the range of ±0.25. The agreement

Fig. 11. The agreements of dust between the IR algorithm and MOA as a function of AOD for the period from January to June, 2006.

Table 2
The agreement of dust between the IR algorithm and MOA.

Agreement (false detection) TDCI N 30.0 TDCI N 35.0 TDCI N 40.0

East Asia—ocean 0.452
(0.464)

0.405
(0.390)

0.376
(0.322)
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generally increases with the AOD value due to the increased sensitivity
of the IR measurements. The agreement between the IR algorithm and
the MOA ranges from 0.724 to 0.950 for the MODIS AOD values higher

than 1.25. For cases with low AOD values, however, the agreement
ranges from 0.156 to 0.231, and from 0.447 to 0.540 with AOD values
lower than 0.75 and values in the range of 0.75 to 1.25, respectively.
Because of the low agreement in this case, the agreement between the
IR algorithm and theMOA ranges from 0.376 to 0.452 in all of the pixels
as listed in Table 2. Furthermore, the false detection ranges from 0.322
to 0.464. The effective radius of aerosol from theMODIS has limitations
due to the algorithm and sensor uncertainties for cases with low AOD
values (Remer et al., 2002). Therefore, the large inconsistency between
the IR algorithm and the shortwave algorithms for low AOD values
is caused by not only the weak sensitivity of the IR measurements, but
also by the uncertainties of the size parameters, the FMF and the AE,

Fig. 12. The agreement between the IR algorithm and OMI AI in each bin (a) over East Asia, and (b) over non-polluted land area. Each AI interval is defined by AI between fore-median and
aft-median of each AI value in the x-axis.

Table 3
The agreement of dust between the IR algorithm and AI (AI N 0.7).

Agreement (false detection) TDCI N 30.0 TDCI N 35.0 TDCI N 40.0

East Asia 0.403
(0.372)

0.349
(0.308)

0.309
(0.232)

Non-polluted land 0.668
(0.289)

0.644
(0.244)

0.601
(0.212)
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from MODIS due to the estimation error of the effective radius of
aerosol.

Fig. 12 shows the agreement between dust pixels from the IR
algorithm and the OMI AI in each bin. From the result, the agreement
increases with an increase in the AI. For all of the OMI AI intervals, the
agreement over the non-polluted land region is higher than that over
East Asia by 20%. The non-polluted region is defined as the area from
40°N to 50°N and from 100°E to 120°E. As listed in Table 3, the agree-
ment of the dust between the IR algorithm and the OMI AI ranges
from 0.309 to 0.403, and the false detection ranges from 0.232 to
0.372 over East Asia. Otherwise, the value ranges from 0.601 to 0.668
and from 0.212 to 0.289 for the agreement and the false detection,
respectively, over the non-polluted land area. The difference in the
agreement can be explained by the existence of fine-mode absorbing
aerosols (e.g. black carbon), which also results in high AI values.

Table 4 shows the agreements compared with the FMF, AI, and
dust from the MOA over ocean. Over ocean, the agreement of the
BTD(11–12) method is higher than that of the current IR algorithm,
but the false detection of the BTD(11–12) method is also higher than

that of the IR algorithm. The agreement values ranged from 20 to 40%,
and the false detection values ranged from 20 to 60%, of the BTD,
which are larger than those of the IR algorithm. As a result, we conclude
that the accuracy of dust detection is comparable between the two
results over ocean. Over land (especially over the non-polluted land
region), the agreement of the BTD with the AI shows 0.809, compared
with from 0.604 to 0.668 with those of TDCI values. However, the false
detection of the BTD method is 0.405, which is larger than that of the
IR algorithm by 40 to 100%. This high false detection value from the
BTD method implies that a large portion of the desert area is detected
as a dust-laden area due to the limitation in resolving the surface
properties.

Fig. 13 compares the dust detection between the IR algorithm
and the AERONET observations at four AERONET sites, as summarized
in Table 5. For the aerosol type classification from the AERONET,
the dust-laden date from the AERONET is defined by AE b 0.8 with
AOD N 0.4 as suggested by Lee et al. (2007). For this comparison,
the proportion of dust pixels from the IR algorithm is investigated by
the ratio between the number of dust pixels and that of the total pixels

Table 4
The agreements of dust for the IR algorithm and negative BTD(11–12) referenced by (a) FMF, (b) AI and MOA.

(a)

Agreement (false detection) BTD(11–12) vs FMF

AOD N 0.4 AOD N 0.6 AOD N 0.8 AOD N 1.0

FMF b 0.4 0.269
(0.581)

0.532
(0.577)

0.741
(0.552)

0.887
(0.462)

FMF b 0.5 0.272
(0.317)

0.524
(0.309)

0.734
(0.260)

0.861
(0.170)

FMF b 0.6 0.228
(0.202)

0.473
(0.197)

0.674
(0.137)

0.820
(0.070)

(b)

Agreement (false detection) BTD(11–12) vs AI BTD(11–12) vs MOA

East Asia Non-polluted land

0.543
(0.513)

0.809
(0.405)

0.550
(0.576)

Fig. 13. The mean proportion of dust pixels from the IR algorithm around AERONET sites for AE from AERONET lower than 0.8 and higher than 1.0.
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in a 0.5° × 0.5° grid centered at each AERONET site. The spatial scale
of the dust plume is typically on the order of at least 10 km, so the
dust proportion value is expected to increase for the dust condition.
For the dust-laden case determined by AERONET, themean proportions
of dust pixels from the IR algorithm are higher than the upper one
standard deviation of the proportions for the non-dust case (defined
by AE N 1.0 and AOT N 0.4) at four different locations. Therefore, the
IR algorithm shows statistical significance for dust detection.

5. Summary & conclusion

A combined dust detection algorithm is developed by using the
MODIS IR bands. Because the BTs by IR bands are influenced by cloud,
water vapor, surface type, and sulfur dioxide, the algorithm is developed
by the combination of several dust detection methods, including the
BTD(11–12), BTR(11/12), BTR(11/8.6) and D* method, as well as the
newly introduced C-BTR method. The BTD(11–12) method detects
dust as negative values of BTD(11–12). Two C-BTR methods use the
30-day composite of the BTR based on the maximum BT(11) to deter-
mine the surface property. The D* method uses three bands to distin-
guish between dust and cirrus signals as suggested by Hansell et al.
(2007). Tominimize error due to cloud contamination, the current algo-
rithm includes three methods for cloud masking, BT(11), R2(7.3–11),
and BT(11) variation. Each dust detection method calculates the DCI
value, which serves as a confidence index for dust detection. After each
DCI calculation, the TDCI as a mean value of all of the DCIs is suggested
as the final detection result.

The results of the IR algorithm for two dust events on March 11 and
April 8, 2006 are compared with shortwave algorithms, i.e. FMF from
MODIS, AI from OMI, and the MOA. The agreement ranges from 0.405
to 0.969, from 0.648 to 0.745, and from 0.892 to 0.973 between the
current IR algorithm and the FMF, AI, and MOA, respectively. These
statistical results show that the IR algorithm successfully observes the
dust plume from several dust cases over East Asia.

For long-term validation of the IR algorithm, the agreement ranges
from 0.643 to 0.814, and from 0.724 to 0.750 compared with the FMF
with AOD N 1.0, and the MOA with AOD N 1.25 as a reference, respec-
tively. For the low AOD case, inconsistency between the IR algorithm
and the shortwave algorithms is estimated because of the weak sensi-
tivity of the IR algorithm and errors in the aerosol size parameter from
the shortwave algorithm. Compared with the AI, the agreement ranges
from 0.601 to 0.668 over the non-polluted land region, while it ranges
from 0.309 to 0.403 over East Asia. The difference in the agreement
can be attributed to the mixture of different anthropogenic aerosols
over East Asia. Furthermore, the false detection of the current result
is lower than that of the BTD(11–12) by taking the surface conditions
into consideration. Compared with the AERONET data, a high value of
the TDCI region is observed more frequently in the case of the low AE
observed by the AERONET at four stations over East Asia. It can be con-
cluded that the current IR algorithm is able to clearly define dust regions
over land and ocean. This study compares the results during daytime
scenes as the reference results are based on the UV and visible wave-
length range. Therefore, the validation with active sensors (i.e. CALIPSO)
during nighttime scenes is planned for future study.
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