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ABSTRACT

Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation

budget products, which are used in the derivation of long-term data series for climate research. In this paper,

a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer

(MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds

and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene

identification scheme. The input of the algorithm uses spectral radiances from fiveMODIS bands and surface

skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces

a cryosphere rating from an aggregated test: a higher rating corresponds to amore certain identification of the

clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets

such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS

images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the

same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using

a single threshold applied to the rating, which makes this technique different from traditional branching

techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates

the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes,

whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

1. Introduction

Clouds and the Earth’s Radiant Energy System

(CERES) instruments are currently flying on board

the National Aeronautics and Space Administration’s

(NASA)Terra andAquaEarthObserving System (EOS)

spacecrafts (two instruments on each) and Suomi Na-

tional Polar-Orbiting Partnership (NPP) observatory.

CERES sensors measure radiances reflected and emitted

by the earth in three broadband ranges: shortwave (SW)—

0.3–5 mm, atmospheric window—8–12 mm, and total—

0.3–100 mm (Wielicki et al. 1996).

The CERES Cloud Working Group (CWG) de-

veloped a set of cloud detection and retrieval algorithms

with their results released as part of the CERES Single

Scanner Footprint (SSF) product (Caldwell et al. 2008;

Minnis et al. 2003, 2004, 2008, 2011). This product con-

tains a scene identification (including clear area percent

coverage, and snow and ice percent coverage), retrieved

cloud properties, CERES broadband radiances, and Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

radiances within the CERES field of view (FOV). In the

SSF, MODIS imager pixels (;1 km) are collocated

within the largerCERES footprint (;20 km) andweighted

by the energy distribution of the CERES instrument

(point spread function) over the full CERES FOV and

its clear-sky portion. Along with cloud properties, such

as optical depth, emissivity, cloud top and base, the SSF

includes some ancillary data, such as the viewed surface

emissivity and scene type. Atmospheric conditions,

fromwhich some cloud properties are determined, such

as temperature, pressure, and humidity profiles, are

based on the Goddard Earth Observing System re-

analyses, version 4 (GEOS-4) (Bloom et al. 2005), until
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the end of 2007, and GEOS-5 thereafter (Rienecker

et al. 2008).

Top-of-atmosphere (TOA) irradiances are derived

by application of scene-dependent angular distribution

models (ADMs) (Loeb et al. 2005) to measured TOA

radiances. ADMs are derived from CERES data ac-

quired in CERES rotating azimuth plane scan mode

to establish the bidirectional reflectance distribution

function on the scale of ;30-km broadband footprints.

The uncertainty of ADM-derived TOA shortwave ir-

radiance is about 5% (Loeb et al. 2005, 2007) and de-

creases when the irradiances derived from a wide range

of viewing geometries are averaged.

Calculation of irradiance through the atmosphere is

performed by CERES Surface and Atmosphere Radia-

tion Budget (SARB) working group (Charlock et al.

1997, 2006). This is accomplished by means of a fast ra-

diative transfer code originally developed by Fu and Liou

(1993) and subsequently modified by the SARB team

(Rose and Charlock 2002; Kato et al. 2005). The baseline

data product for the SARB subsystem is the clouds and

radiative swath (CRS). Along with CERES TOA irra-

diances and cloud analyses, CRS records include column

irradiances at four atmospheric levels and the surface.

These irradiances are a subset of the radiative transfer

calculations, which are executed at more vertical levels.

CERES CRS processing for clear-sky footprints in-

vokes a parameterized version of the Langley Fu–Liou

radiative transfermodel to derive the broadband surface

albedos consistent with CERES-observed TOA irradi-

ances. The model described in Rutan et al. (2009) is also

used in a preprocessor that generates a first-guess ‘‘his-

tory map’’ of surface albedo, globally, for each month to

be used in cloudy-sky model calculations. To create

these maps, the parameterization is run for each month

for 100% clear-sky CERES footprints collected into

a 1/68 equal angle grid over the globe. The values within

each grid box are then examined and weighted as

a function of solar zenith, viewing zenith, and aerosol

optical depth to arrive at an optimal surface albedo for

that grid box for that month. More weight is given to

more optimal viewing conditions, such as higher sun and

lower aerosol loading, where less optimal viewing con-

ditions receive less weight.

Rutan et al. (2009) showed that the surface albedo

products derived from MODIS (Schaaf et al. 2002) and

CERES data over snow-free land are in good agreement

on the scale of the CERES footprint. Our comparison of

these two products over the cryosphere revealed, how-

ever, some discrepancies. Careful examination of these

discrepancies showed that most of them are related to

problems with scene identification. Thus, some correc-

tion to the clear-sky cryosphere identification is required

in order to improve the quality of the CERES surface

albedo product. Moreover, in polar regions, the number

of footprints that are entirely cloud free is limited be-

cause of significant cloud cover (more than 70%) in the

Arctic during summertime (e.g., Kato et al. 2006). To

increase the number of cloud-free events used to build

the surface albedo history map, we propose to use the

clear portion of the partly cloudy footprints in order to

increase the number of retrievals for the surface albedo.

To utilize partly cloudy footprints and to build an ac-

curate surface albedo history map for the cryosphere,

the cloud-free portion of a footprint has to be identified

properly, so as to avoid, for example, cloud contamina-

tion affecting the retrieved surface albedo.

Once the cloud-free portion of a CERES footprint

is identified, the meanMODIS radiance over the cloud-

free portion is converted to a broadband radiance

using a narrowband to broadband model. Conversion co-

efficients are derived from regressions between MODIS

and CERES radiances over 100% clear-sky FOVs and

then applied to MODIS radiances over clear portions

of cloudy FOVs. CERESADMs are then applied to the

resulting broadband radiances. This new approach uses

the advantages from both the CERES algorithm and

the MODIS high spatial resolution, thus enabling the

surface albedo retrievals over areas with persistent

cloudiness.

This paper describes an algorithm that helps the de-

cision as to whether a CERES FOV is over clear-sky

snow/ice or not. In the CERES data processing, this

algorithm is now used to confirm (or refute) the clear-

sky snow/ice identification of a FOV provided by the

standard CERES cloud detection algorithm. In partic-

ular, the algorithm evaluates the cloud-free portion of

a CERES footprint identified by the edition 2 CERES

(Ed2) cloud algorithm (Minnis et al. 2011) and de-

termines whether the footprint should be included in

building the surface albedo history map. Thus, two re-

quirements in developing such an algorithm are 1) the

algorithm has to provide an improvement to the CERES

cloud algorithm and 2) the algorithm should use only

inputs available in the CERES SSF product. Even

though the algorithm is used in the CERES data pro-

cessing as a compliment to the Ed2 cloud algorithm, the

approach used in our algorithm is independent of any

output of the CERES cloud algorithm. The approach

used by our algorithm highlights spectral signatures of

frozen water on the ground, and therefore it can be used

for snow/ice identification regardless of CERES data

processing.

The algorithm outlined in this paper differs from

existing clear-sky cryosphere detection algorithms

based on MODIS observations in two ways. First, it is
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not based on a cascading threshold approach and, sec-

ond, it does not rely on a standalone cloud mask. The

MODIS algorithm consists of two parts designed to

produce an instantaneous snowmap at 500-m resolution

(MOD10_L2) and a sea ice map at 1-km resolution

(MOD29). Both of those branches explicitly use the

MODIS cloud mask that, in turn, employs 14 out of 36

MODIS bands. Detailed discussion of theMODIS snow

and ice algorithms is given in Hall et al. (2001, 2002,

2004) and references therein. The CERES cryosphere

detection algorithm is an integral part of the cloud and

snow detection algorithm. Unlike MODIS cloud de-

tection, the CERES cloud detection and scene identifi-

cation algorithm was developed to utilize as few bands

as possible (Minnis et al. 2011). Currently, it employs

a set of cascading thresholds tests. The general philos-

ophy of the CERES algorithm is to detect clouds first

and then classify clear pixels. Subclassification of clear

pixels includes the snow/ice class (Trepte et al. 2002;

Minnis et al. 2008).

2. Statement of the problem

The CERES scene identification algorithm includes

snow and ice detection utilizing a set of cascading

thresholds tests to identify MODIS pixels as cloudy,

clear, and clear snow/ice contaminated. The algorithm

works well for the majority of CERES FOVs. However,

some problems remain that affect subsequent CERES

products such as the surface albedo used in CRS radia-

tive transfer calculations. There are three possible situ-

ations with erroneous cryosphere scene identification: 1)

the clear-sky snow/ice scene is recognized as cloudy (at

least partly cloudy), 2) the scene is recognized as clear-

sky cryosphere but snow or ice percent coverage is not

identified correctly, and 3) a cloudy scene is recognized

as clear snow/ice.

Figure 1 presents an example of an erroneously

identified scene. It shows part of a MODIS image ac-

quired over the Great Plains on 8 January 2004. The

color scheme of the figure allows for easy recognition of

frozen water: snow, ice, and ice clouds are bluish due to

relatively low reflectance in band 6 over these targets.

Water clouds are white and possibly slightly reddish with

this color scheme; clear land can be of many colors, such

as brown, red, orange, and green, depending on the type

of vegetation; water bodies are usually very dark, almost

black. The light gray circle encloses a region of interest

(ROI) cocentered with a CERES FOV acquired at 17 h,

37 min, 6.368 s UTC. The ROI has a diameter of 29 1-km

MODIS pixels and includes 632 pixels. We will consider

the ROI as a model of the FOV. The FOV was identified

as 100% cloud free and 100% snow covered. One can see

from Fig. 1 that the clear-sky identification is correct, but

that the snow percent coverage is overestimated as this

FOV is only partly snow covered. We shall return to this

FOV after the introduction of the cryosphere rating in

section 5.

Complete reprocessing with implementation of a new

scene identification and cloud detection algorithm is

required in order to fix problems of the first kind. Errors

of scene identification of the second and third kinds can

be filtered out by applying additional criteria after scene

identification by the CERES cloud algorithm. Such a

check should confirm results of the standard CERES

scene identification over the cryosphere. Taking into ac-

count the large amount of data to be processed (CERES

SSF files contain ;105 FOVs per hour), the algorithm

should be solely based on information from standard SSF

records. Another requirement for the algorithm is that it

cannot assume that the CERES cloud detection and

scene identification is correct. Our special area of interest

is the enhancement of CERES shortwave products, in-

cluding surface albedo over the cryosphere. For this

reason we consider only daytime snow and ice identi-

fication. We also limit this algorithm to data from the

MODIS Terra sensor.

FIG. 1. A part of MODIS image MOD021km.A2004008.1735

acquired on 8 Jan 2004 over the Great Plains. Color scheme: re-

flectances in MODIS bands 6, 2, and 1 represent red, green and

blue, respectively. Light gray circle is cocentered with CERES

FOV acquired on the same day at 17 h, 37 min, 6.368 s UTC. The

diameter of the circle is 29 MODIS 1-km pixels, that is about the

size of the FOV.
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The standard SSF record contains MODIS TOA ra-

diance values, one averaged over the whole CERES

FOV and another over its clear-sky portion. Thesemean

radiances were weighted by the CERES point spread

function. Every daytime FOV record contains averaged

radiances in the MODIS bands 1, 2, 6, 20, and 31 cen-

tered at 0.645, 0.858, 1.640, 3.792, and 11.03 mm, re-

spectively. These records also contain the surface skin

temperature from meteorological reanalysis models.

3. Description of the clear cryosphere detection
algorithm

In this section we introduce an enhancement to the

detection of snow and ice within CERES FOVs and

refer to it as ‘‘cryosphere rating technique.’’ The main

idea of the rating approach is to combine several indices

into an aggregate quantity in such a way that each con-

stituent of the rating either increases the rating for

cryosphere pixels or decreases it for other targets. This

approach requires one threshold to be established

rather than a set of thresholds in traditional branching

techniques.

Both snow and ice have a very distinctive spectral

reflectance feature—a strong local minimum occurring

at ;1.6 mm (see, e.g., Warren 1982, 1984). This mini-

mum enables clear-sky snow and ice detection employ-

ing the normalized difference snow index (NDSI). The

current version of the CERES SSF product does not

include MODIS radiance in band 4 (0.555 mm). It is

therefore necessary to modify the definition of NDSI

given in Hall et al. (1995, 2002). Fortunately, reflective

properties of snow and ice are very close in MODIS

bands 1 and 4; therefore, we use reflectance in MODIS

band 1 rather than band 4 in our definition of NDSI:

NDSIc5
r12 r6
r11 r6

. (1)

NDSI allows for identification of most clear-sky snow

and ice targets. However, there are two other types of

targets returning high values of NDSI. First, cold (ice)

clouds and, second, open waters. Ice clouds usually

return high NDSI for the same reason as snow and ice.

One can expect that thin partly transparent ice clouds

over snow and ice are the most difficult targets to be

distinguished from clear-sky snow/ice.

Outside the area of specular reflection and glint, water

bodies are very dark targets. TOA reflectance over

clear-sky water is then dominated by the atmospheric

contribution, not the surface. Thus, TOA reflectance

over water bodies falls off with wavelength l as a com-

bination of l24 due to molecular scattering and l2a due

to scattering from aerosol particles, where a is the

aerosol Ångström exponent. This causes the reflectance

in MODIS band 6 to be significantly less than that in

band 1, yielding very high NDSI.

The normalized difference vegetation index (NDVI;

Tucker 1979)

NDVI5
r22 r1
r21 r1

(2)

has high negative values over water because r2 , r1 for

the same reason. This enables simple discrimination be-

tween water and the cryosphere: NDVIcryo.NDVIwater.

We will see later that this inequality is met over the ROIs

discussed below. We do not need to establish a threshold

for NDVI separating the cryosphere and open waters

within the aggregate rating approach.

The second challenging type of target is the cold ice

cloud. Even though the proposed algorithm is used to

compliment the CERES cloud and snow/ice recognition

algorithm (Minnis et al. 2011), it does not rely on the

cloud mask provided by CERES algorithm, and there-

fore we need a reliable tool to discriminate ice clouds

from the clear-sky snow/ice. Brightness temperatures

retrieved fromMODIS radiances in bands 20 and 31 and

the surface skin temperature, which are stored in the

SSF record, can also be used for cloud discrimination.

Ackerman et al. (1998) pointed out that the differences

between brightness temperatures at 11 mm, T31, and

3.9 mm (bands 21/22), T22, often reveal low-level water

clouds during daylight hours. We use brightness tem-

perature in band 20, T20, as a replacement for T22. It

is more convenient to use a dimensionless ratio of

brightness temperatures

BTR5T31/T20 (3)

rather than T31 2 T20 in our rating approach.

We will see later that BTR may not be sensitive to

cold clouds when these clouds are significantly colder

than surface. For this reason, our algorithm will also use

the temperature ratio

TR5T31/Ts , (4)

where Ts is surface skin temperature; Ts comes into the

SSF record frommeteorological reanalysis with a spatial

resolution much lower than that of MODIS. Hence, it

may not account for temperature variations in some

situations, such as small snow-covered mountain ridges,

small inland water bodies, and ocean shorelines. How-

ever the TR is a very useful tool for discrimination of
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cold clouds that cannot be filtered out with any other

available means.

The main idea of our algorithm is to produce an

overall cryosphere rating (cryorating) CR that corre-

sponds to the degree of snow/ice contamination. The

CR is calculated as a sum of the scores generated by

the individual tests:

CR5NDSIc1NDVI1 (TR2 1)1 (BTR2 1). (5)

Units are subtracted from TR and BTR to keep the

absolute value of the rating below 1.

The idea of an aggregated rating for cloud masking

was proposed by Khlopenkov and Trishchenko (2007).

They discuss in more detail the advantages of a rating

approach over a branching method. One advantage is

that the resulting rating can be thresholded at a certain

level, giving the end user the freedom to choose the

desired degree of confidence in the snow/ice contami-

nation. Another, more important advantage is that

merging all major cryosphere tests in one equation

virtually removes the possibility for one unreliable test

to corrupt a whole tree of cascading branches. Thus, a

combined rating dramatically increases the overall re-

liability of the snow/ice identification.

4. Validation

a. Midlatitude and polar regions

Several MODIS images acquired over North America

in 2004 were selected and analyzed to reveal statistical

properties of parameters constituting the cryorating

over clearly identified targets. The following types of tar-

gets were considered: clear snow, clear ice, thin (trans-

lucent) cloud over ice/snow, water cloud, ice cloud, clear

open water, and clear land.

Figures 2 and 3 show two parts of MODIS granule

A2004151.2000 with contoured ROIs. The color scheme

is the same as in Fig. 1 and gives initial scene recognition

showing warm (water) clouds in white (sometimes red-

dish), cold (ice) clouds in light cyan, snow and ice in cyan,

water in black, barely vegetated land in orange to red, and

FIG. 2. A part of MODIS image MOD021km.A2004151.2000

acquired on 30 May 2004 over Canadian North, Banks Island,

NWT, Canada. The same color scheme as in Fig. 1. Lambert con-

formal conic projection with standard parallels at 498 and 778N and

central meridian at 958W. Orange contour line—coastlines, Deep

blue line encloses ROI 13 from Table 1, pink line—ROI 15, violet

line—ROI 14, and maroon line—ROI 12.

FIG. 3. Another part of the same MODIS image as in Fig. 2.

Great Slave Lake, NWT, and northern parts of Alberta and Sas-

katchewan, Canada. Red line encloses ROI 11 from Table 1 and

blue line—ROI 16.
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vegetated land in green. Figures 4 and 5 show MODIS

granulesA2004129.1725 andA2004152.1550, respectively.

Statistics for the CR and its constituents—the normalized

difference snow and vegetation indices, NDSI and NDVI;

TR; and BTR [see Eqs. (1)–(5)]—over the regions of in-

terest contoured in Figs. 2–5 are given in Table 1. The data

from the table are visualized in Figs. 6a–e.

ROIs 5, 13, and 14 represent clear-sky snow; ROIs 6,

7, 11, and 12 represent ice; ROI 15 represents thin

(partly transparent) cloud over ice; ROIs 1, 2, 4, and 16

represent cold (ice) clouds; ROI 3 represents cloud;

ROIs 8 and 17 represent open water bodies; and ROIs 9

and 10 represent land. ROIs were selected by visual

inspection of MODIS images. Because of the complexity

of the scenes, visual selection gives only an initial point

for analysis.

We see from Table 1 that the mean values of CR over

snow and ice ROIs are greater than those over other

targets. However, maximum values of the rating can be

high over the noncryosphere, especially cold cloud

ROIs. To ensure that the cryosphere rating can be used

to distinguish clear-sky snow and ice from any other

target, we consider the difference between mean values

of CR, hCRi, and its standard deviation, STDCR:

mc25 hCRi2 23 STDCR (6)

FIG. 4. MODIS image MOD021km.A2004129.1725. The same color scheme and projection as in Fig. 2. Black line encloses ROI 1, red

line—ROI 2, blue line—ROI 3, orange line—ROI 4, yellow line—ROI 5, pink line—ROI 6, violet line—ROI 7, sea-green line—ROI 8,

cyan line—ROI 9, and white line—ROI 10.
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for snow and ice ROIs and the sum of these parameters

over all other ROIs:

mc1 5 hCRi1 23 STDCR . (7)

Our goal is to set the cryorating threshold value such that it

separates the cryosphere from the noncryosphere; that is, a

value of CR that is greater thanmc1 for the noncryosphere

and less thanmc2 for the cryosphere. If the cryoratingwere

a normally distributed variable, then the existence of such

a value would mean that the cryosphere and noncryo-

sphere 95% confidence intervals do not overlap.

Figure 6e shows the cryorating score along with the

standard deviation as error bars. ROI 5 returns the

minimum value of mc2 5 0.566 among snow/ice ROIs,

ROI 14 returns a slightly greater value,mc2 5 0.586, and

all other cryosphere ROIs (indicated as open circles)

returnmc2 . 0.69. The maximum value ofmc1 over non-

cryosphere ROIs is 0.524 (ROI 1), the second largest

value of 0.511 is returned by ROI 4, and other noncryo-

sphere ROIs return significantly lower values of mc1.

Both leading values of mc1 come from cold clouds that

are the most challenging targets for snow/ice detection.

They are, however, less than the minimum values ofmc2

from cryosphere ROIs, as shown in Fig. 6e. Analysis of

distributions of CR within ROIs showed that the cryo-

rating is not a normal variable, so the inequality mc2 .
mc1 does not guarantee that the 95% confidence intervals

do not overlap. We can use ROIs 1, 4, 5, and 14 as in-

dicators of the most challenging ROIs and then examine

the actual distributions of CR over these ROIs in detail to

make sure that cryorating reliably separates clear-sky

cryosphere from ice clouds; 95% of the pixels in ROI 1

and 4 have a CR value less than 0.457 and 0.479, re-

spectively, and 95% of the pixels in ROI 5 and 14 have

a CR value greater than 0.587 and 0.570, respectively.

Thus, the cryorating separates clear-sky snow and ice

from any other scene with at least 95% confidence.

We see from Figs. 6a–d that none of the indices con-

stituting the cryorating can separate the clear cryosphere

from other targets. Application of fixed thresholds leads

to a great chance of erroneous scene identification. As-

sume that we use a set thresholds indicating cryosphere,

likeNDSI. 0.4, NDVI.20.15, BTR. 0.92, and TR.
0.95. Then only ROIs 3, 8, 9, 10, and 17 do not pass the

first two checks completely. The third check removes

ROI 15. Only the last check discards ROIs 1, 2, 4, and 16.

As a result, this series of checks gives ROIs 5, 6, 7, and

11–14 as cryosphere. Figures 6a–c, however, show that

there does not exist a set of thresholds for NDSI NDVI,

and BTR reliably separating cold clouds and snow, while

analysis of these quantities over ROIs 1, 2, and 5 shows

that a sum of them is a somewhat reliable measure of

presence of clear snow. However, cold clouds and snow

can be distinguished by taking TR into consideration

despite the disadvantage discussed above. These re-

sults and Fig. 6e clearly indicate that the cryorating

enables reliable detection of cryosphere scenes with

a single test.

b. Temperature inversions

All cloud ROIs considered above have a mean TR

below 1. Temperature inversions may impose a chal-

lenge to the proposed approach of distinguishing snow

and ice from clouds because the cloud-top temperature

is greater than the surface temperature, making TR. 1

and thus increasing the overall rating over such clouds.

The temperature difference across inversions can be

up to 14.38C with surface temperature 237.48C (Bradley

et al. 1992), yielding TR 5 1.061. However, this high

temperature difference takes place during polar night.

More realistic estimates of the TR under daytime in-

version conditions can be made using data from Fair-

banks,Alaska (Bourne et al. 2010), in February.Assuming

FIG. 5. MODIS image MOD021km.A2004152.1550. The same

color scheme as in previous figures. Red line is a contour of CR 5
0.55. Maroon line—MODIS instantaneous fractional snow cover

(encloses all snowy pixels regardless of their snow percent cover-

age). Orange line—MODIS instantaneous sea ice extent. White

line encloses ROI 17 from Table 1.
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TABLE 1. Statistics of the cryorating and its constituents over the selected ROIs.

MODIS granule, ROI number, brief description,

number of pixels within ROI Parameter Mean value Std dev Min value Max value

A2004129.1725 CR 0.336 0.094 0.041 0.546

ROI 1 NDSI 0.529 0.066 0.304 0.663

Cold cloud NDVI 0.046 0.007 0.027 0.062

62 421 pixels TR 0.860 0.017 0.813 0.916

BTR 0.901 0.023 0.815 0.955

A2004129.1725 CR 0.319 0.061 0.015 0.449

ROI 2 NDSI 0.477 0.046 0.227 0.572

Thin cold cloud NDVI 0.051 0.007 0.036 0.087

23 092 pixels TR 0.874 0.018 0.824 0.915

BTR 0.917 0.017 0.848 0.948

A2004129.1725 CR 20.016 0.058 20.211 0.158

ROI 3 NDSI 0.058 0.057 20.263 0.225

Cloud NDVI 0.050 0.015 0.009 0.409

70 476 pixels TR 0.965 0.012 0.893 0.986

BTR 0.911 0.013 0.829 0.960

A2004129.1725 CR 0.381 0.065 0.144 0.613

ROI 4 NDSI 0.561 0.038 0.417 0.711

Cold cloud NDVI 0.032 0.005 0.011 0.049

33 110 pixels TR 0.887 0.014 0.844 0.942

BTR 0.900 0.018 0.822 0.948

A2004129.1725 CR 0.734 0.084 20.072 0.818

ROI 5 NDSI 0.729 0.079 0.085 0.842

Snow, Hudson Bay shore NDVI 0.041 0.021 20.022 0.160

79 682 pixels TR 0.993 0.009 0.928 1.014

BTR 0.971 0.014 0.825 0.980

A2004129.1725 CR 0.781 0.045 0.393 0.826

ROI 6 NDSI 0.830 0.034 0.562 0.904

Sea ice, Hudson Bay NDVI 20.020 0.013 20.072 0.006

5138 pixels TR 1.001 0.002 0.984 1.008

BTR 0.971 0.012 0.876 0.979

A2004129.1725 CR 0.788 0.049 0.478 0.847

ROI 7 NDSI 0.892 0.071 0.464 0.958

Ice, Lake Winnipeg NDVI 20.052 0.028 20.140 0.058

6475 pixels TR 0.969 0.003 0.962 0.979

BTR 0.980 0.002 0.962 0.984

A2004129.1725 CR 0.271 0.053 20.127 0.608

ROI 8 NDSI 0.897 0.061 20.039 0.944

Open water NDVI 20.564 0.067 20.628 20.039

Lake Winnipeg and Lake Manitoba TR 0.949 0.004 0.941 0.977

1403 pixels BTR 0.989 0.002 0.961 0.991

A2004129.1725 CR 20.129 0.029 20.239 0.086

ROI 9 NDSI 20.435 0.020 20.502 20.339

Land NDVI 0.310 0.032 0.201 0.568

North Dakota and South Dakota TR 1.029 0.013 0.994 1.055

34 255 pixels BTR 0.966 0.002 0.957 0.973

A2004129.1725 CR 0.068 0.058 20.240 0.177

ROI 10 NDSI 20.513 0.034 20.564 20.209

Land NDVI 0.614 0.077 0.280 0.757

Iowa, Illinois, Missouri TR 0.996 0.005 0.978 1.017

28 147 pixels BTR 0.971 0.005 0.945 0.980

A2004151.2000 CR 0.828 0.018 0.690 0.858

ROI 11 NDSI 0.890 0.014 0.741 0.923

Ice NDVI 20.004 0.006 20.065 0.009

Great Slave Lake TR 0.961 0.003 0.941 0.970

7785 pixels BTR 0.981 0.004 0.950 0.986
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a temperature difference of 98C and the surface temper-

ature of2198C [see Figs. 3a and 3b inBourne et al. (2010)]

yields TR5 1.035. Assuming also that TR5 1 for clouds,

we conclude that an inversion may increase mc1 for ice

clouds up to 0.558. However, it seems unlikely to observe

ice clouds under the cap of inversions.

Several MODIS images acquired in winter 2004 over

Alaska and the Yukon Territory were examined to find

inversion clouds with high NDSI but such conditions

were not found. A temperature inversion cloudROIwas

selected inMODIS granule A2004046.2010 (15 February

2004) as a typical example to demonstrate the behavior of

the cryosphere rating parameters. The ROI is in the

Yukon Territory and the Northwest Territories (NWT),

Canada, centered at approximately 65.58N, 132.68W
and includes 4336 pixels. The ROI returns the following

values of parameters, constituting CR [mean value

(standard deviation)]: TR—1.027 (0.003), BTR—0.913

(0.007), NDSI—0.362 (0.041), NDVI—0.052 (0.012), and

CR—0.354 (0.037) with the maximum value of 0.547.

Thus, clouds formed in temperature inversions can be

discriminated from snow and ice using the cryorating

approach.

c. Thresholding cryorating

To decide whether a pixel is a clear-sky snow/ice

scene, we need to establish a threshold for the CR,

where pixels returning CR values over the threshold are

considered clear-sky cryosphere. Taking into consider-

ation that the purpose of the algorithm is the selection of

CERES FOVs to update the surface albedo history map

over the cryosphere, after examination of numerous

MODIS images, a threshold of CRc 5 0.55 was estab-

lished. Figure 5 shows red contour line CR5 0.55 on top

of a MODIS image along with MODIS fractional snow

extent (MOD10_L2) and sea ice extent (MOD29). Snow

and ice extent obtained with the cryorating approach

coincides very well with these MODIS products. There

are only two remarkable differences between the

MODIS products and the cryorating approach. First is

the edge of snow extent over land (e.g., south to Hudson

Bay) where MOD10_L2 returns low fraction (below

TABLE 1. (Continued)

MODIS granule, ROI number, brief description,

number of pixels within ROI Parameter Mean value Std dev Min value Max value

A2004151.2000 CR 0.788 0.030 0.726 0.847

ROI 12 NDSI 0.830 0.022 0.784 0.897

Sea ice NDVI 20.003 0.005 20.044 0.009

Beaufort Sea TR 0.985 0.006 0.975 0.994

4520 pixels BTR 0.976 0.004 0.968 0.982

A2004151.2000 CR 0.797 0.040 0.428 0.848

ROI 13 NDSI 0.842 0.033 0.549 0.887

Snow NDVI 20.002 0.004 20.016 0.015

Banks Island TR 0.981 0.003 0.964 0.994

31 492 pixels BTR 0.977 0.009 0.892 0.984

A2004151.2000 CR 0.768 0.091 0.209 0.875

ROI 14 NDSI 0.861 0.083 0.320 0.953

Snow NDVI 20.048 0.010 20.078 0.001

NWT TR 0.990 0.011 0.955 1.018

12 641 pixels BTR 0.966 0.019 0.887 0.985

A2004151.2000 CR 0.253 0.052 0.024 0.523

ROI 15 NDSI 0.282 0.055 0.035 0.559

Thin cloud over ice, NDVI 0.010 0.006 20.035 0.031

Beaufort Sea TR 0.961 0.004 0.937 0.970

73 693 pixels BTR 0.891 0.006 0.863 0.919

A2004151.2000 CR 0.253 0.089 0.008 0.528

ROI 16 NDSI 0.486 0.048 0.332 0.643

Ice cloud NDVI 0.050 0.004 0.029 0.068

32 265 pixels TR 0.835 0.025 0.785 0.913

BTR 0.881 0.027 0.805 0.954

2004152.1550 CR 0.218 0.035 20.071 0.409

ROI 17 NDSI 0.543 0.061 0.052 0.794

Open water, NDVI 20.301 0.030 20.422 20.067

Labrador sea TR 0.993 0.002 0.986 0.998

34 121 pixels BTR 0.983 0.002 0.958 0.990
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30%) of snow. However, the presence of snow in some

of these locations is questionable. Second, it shows

a slightly wider sea ice extent over James Bay. The area

looks clear where CR. 0.55, but MOD29 returns cloud

instead of sea ice flag.

Going back to Fig. 1 and the erroneously identified

CERESFOV,we can now evaluateCR forMODIS pixels

within the ROI circled in Fig. 1. The CR varies from

20.065 to 0.701 over this ROI with the mean value of

0.383 and a STD of 0.141; 86.7% of the pixels in this ROI

have aCR less than 0.55. CR calculated fromvalues stored

in the SSF product for this FOV is 0.389. Thus, this FOV,

using the new CR, would be excluded from use as a clear-

sky footprint and not be used in determining a surface

albedo for the SARB surface albedo history map.

d. Spurious snow detection

The authors of the MODIS snow detection algorithm

pointed out (Hall et al. 2002) that NDSI-based snow

recognition may return spurious snow identification

over regions known not to have snow, such as dark

forests in equatorial zones. Several MODIS images over

Africa and South America have been analyzed to check

if the cryorating is high enough to produce false snow

recognition. It was found that the problem exists over

five types of targets: very bright cold clouds, very dark

inland waters, wild fire plumes over water (especially off

the South America coast), salt flats (e.g., Salar de Uyuni,

Bolivia) and some minor parts of wadis in deserts (e.g.,

Wadi Howar, at ;15.708N, 23.108E). All these types of

FIG. 6. Cryorating and its components for the regions

listed in Table 1 as a function of region number. Error

bars indicate two standard deviations. Filled squares are

noncryospehre regions, and empty squares are cryo-

sphere regions. (a) NDSI, (b) NDVI, (c) BTR, (d) TR,

and (e) CR. Dashed horizontal line indicates the

threshold value (0.55) separating the cryosphere from

the noncryosphere.
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targets return a high cryorating only at sparse pixels that

do not form continuous areas. Taking into account that

this algorithm is to be used for MODIS radiances av-

eraged over CERES FOVs, sparse occurrence of false

snow over MODIS images reduces the risk of the error

of commission. However, this algorithm can be used

independently as an alternative snow and ice mapping

tool for MODIS after minor modifications. These

modifications may differ from the pure aggregate rating

approach by establishing a mixed rating and branching

scheme. For example, most false snow identification

over dark waters can be removed with the condition

r6cs . 0.01, while bright cold clouds are eliminated with

the condition r6cs , 0.2. All other challenging targets can

be discriminated with condition T31 , 277K as proposed

by Hall et al. (2001).

5. Conclusions

A new scene identification algorithm is proposed for

clear-sky snow and ice identification. The algorithm is

designed to be used in the processing of CERES data as

an additional (with respect to the CERES production

chain) filter, ensuring daytime scene identification. The

algorithm does not use any cloud mask as an input, only

the spectral radiances in fiveMODIS bands stored in the

CERES SSF product. The only additional input data

used in the proposed algorithm are the surface skin

temperature from the GEOS-4(GEOS-5) reanalysis

that is also a part of the CERES SSF record. The algo-

rithm was tuned to work most efficiently over mid-

latitude and polar regions.

The algorithm can be used as an independent snow

and ice masking tool for MODIS [or other sensors

providing similar spectral information, e.g., Visible In-

frared Imaging Radiometer Suite (VIIRS)] with sug-

gested minor modifications such as limits on reflectance

at 1.6 mm and brightness temperature at 11 mm.

A distinctive feature of the algorithm is the aggre-

gated cryosphere rating that combines four variables

designed to highlight snow and ice more than targets of

any other type. The cryorating is a measure of confi-

dence of snow/ice contamination of a pixel. It is shown

that the cryorating provides all the necessary in-

formation for identification of clear-sky snow and ice.

The variables constituting the cryosphere rating are the

normalized difference snow index, the normalized dif-

ference vegetation index, the ratio of brightness tem-

peratures at 11 and 3.7 mm, and the ratio of brightness

temperature at 11 mm and surface skin temperature.

Themajor difference fromother cryosphere recognition

algorithms is that the combined rating algorithm is not

based on a branching methodology. The advantage is that

the aggregated rating approach requires setting a single

threshold compared to finding several empirical thresh-

olds for each individual test.A single error in a sequence of

tests with empirical thresholds can spoil or even invert the

final decision. The statistical error of the aggregated rating

is much smaller than the sum of errors of each test that it

combines. Thus, the aggregated rating is much more reli-

able than a cascading sequence of tests. Also, the aggre-

gated rating allows for a simple adjustment to the final

threshold, depending on how strict the end user’s opera-

tional requirements are on the scene recognition.

Snow and sea ice extent obtained with the rating al-

gorithm was compared against instantaneous MODIS

snow and sea ice products. It was shown that the snow

extent coincides very well except for the pixels with

relatively low fraction of snow and cloud edges. The sea

ice extent also shows a good agreement with theMODIS

sea ice extent, except for the areas covered by very thin

transparent clouds. Overall, the presented analysis has

demonstrated the high potential of our algorithm in

recognition of the snow/ice scenes, which can be a ben-

eficial supplement to the standard CERES algorithm.
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