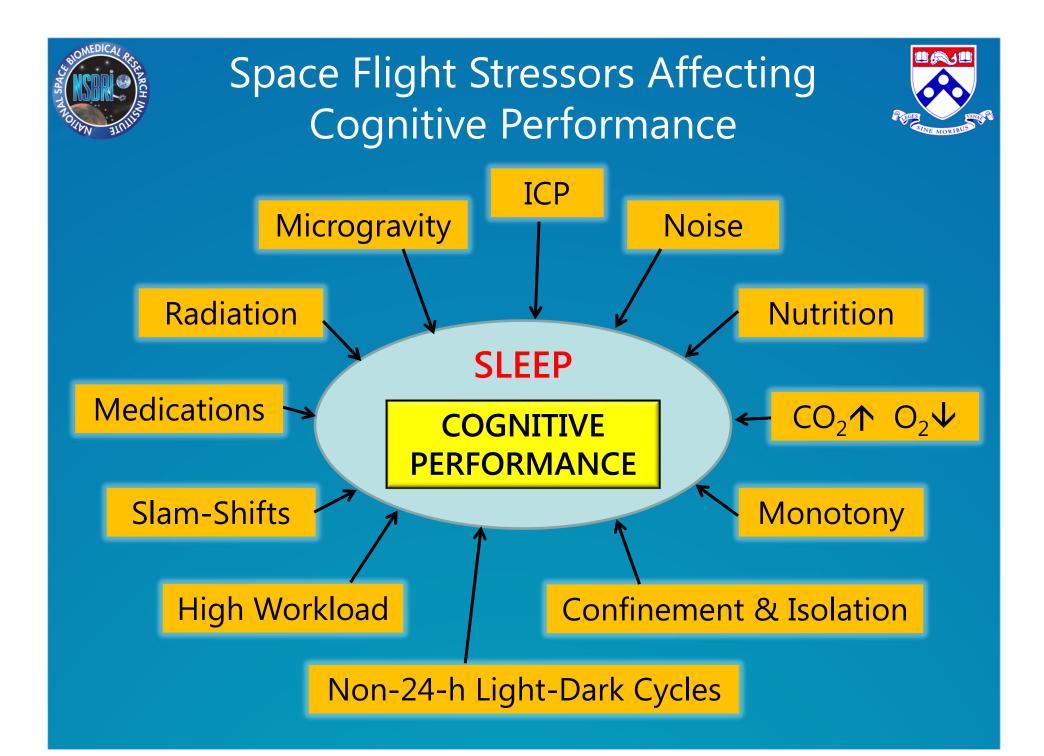


Individualized Real-Time Neurocognitive Assessment Toolkit for Space Flight **Cognition**

Joint CSA/ESA/JAXA/NASA Increments 41 and 42 Science Symposium

Mathias Basner, MD, PhD, MSc University of Pennsylvania Perelman School of Medicine



Cognitive performance is mentioned directly or indirectly in a <u>total of 37 gaps</u> in the NASA Human Research Roadmap!

- Sleep Gaps 1, 2, 4, 5, 6, 7, 8, 9, 10
- BMed Gaps 1, 2, 3, 4, 5, 6, 7, 8
- Team Gaps 1, 2, 3, 4, 5, 6, 7, 8
- SHFE-HCI Gaps 1, 2, 3
- SM Gaps 4, 6, 26
- EVA Gaps 6, 9
- SHFE-HAB Gap 3
- CNS Gap 5
- PH Gap 10
- Acute Gap 1

⋕ 4

Code Substitution - Learning Complex scanning and visual tracking

Running Memory Continuous Performance Working memory

Mathematical Processing Basic computational skills and working memory

Matching to Sample Spatial processing and visuo-spatial working memory

Code Substitution - Delayed Learning and delayed visual recognition memory

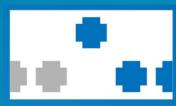
Cognition

- Consists of <u>10 brief cognitive tests</u> (1-3 min).
- Total test administration time: 17.8 min (range 12.7-25.6 min).
- Test principles <u>extensively validated</u> in healthy and patient populations.
- Specifically designed for high performing astronauts.
- Tests cover a wide array of cognitive domains.
- Brain regions recruited by each test established via fMRI.
- Cognition administration is <u>flexible</u>.

Cognition Development Team

- Unit for Experimental Psychiatry at U of Penn (PI M. Basner)
 - Expertise on effects of sleep loss on cognitive performance
 - Numerous studies in space flight and analog environments
- Brain and Behavior Laboratory at U of Penn (Co-PI R. C. Gur)
 - Expertise in neuropsychological test development and validation
 - Expertise in adaptive testing
- Pulsar Informatics Inc. (Co-PI D. J. Mollicone)
 - Software development
 - Numerous studies in space flight and analog environments

Cognition Tests 1-5


Motor Praxis Sensory-motor ability (0.5 min)

Visual Object Learning Visual object learning and memory (1.7 min)

2-Back Attention and working memory (1.9 min)

Abstract Matching Abstraction (2.4 min)

Line Orientation Spatial orientation (2.1 min)

NeuroCog Tests 6-10

Emotion Recognition Emotion recognition (2.2 min)

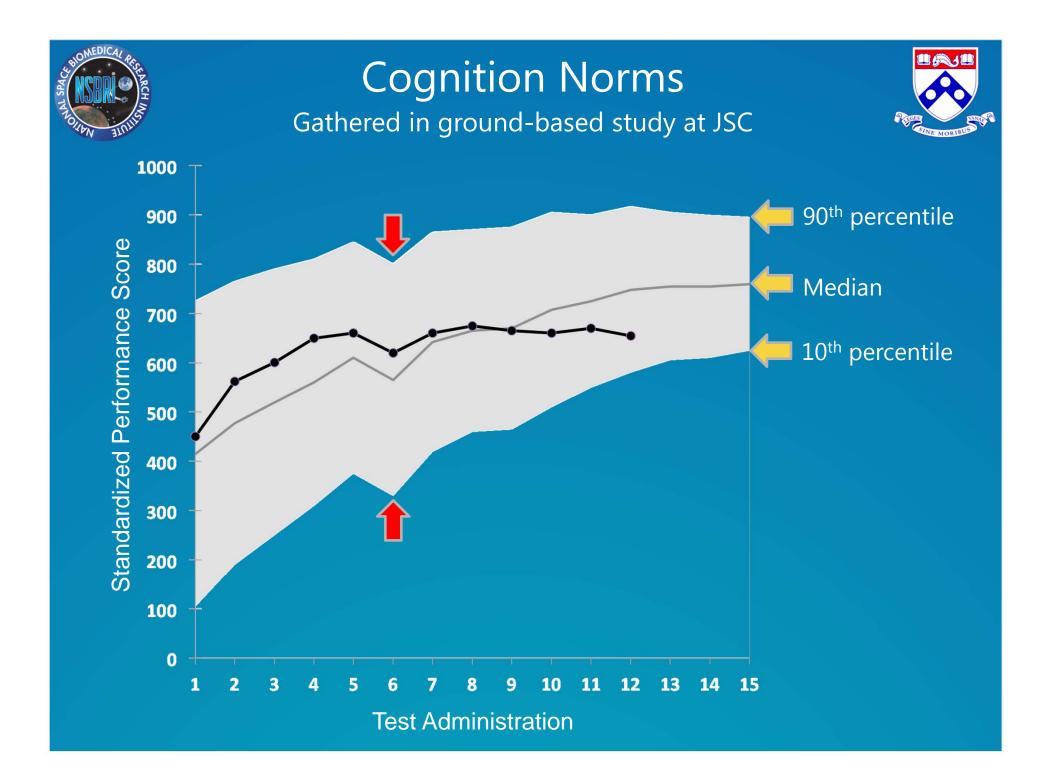
Matrix Reasoning Abstract reasoning (2.0 min)

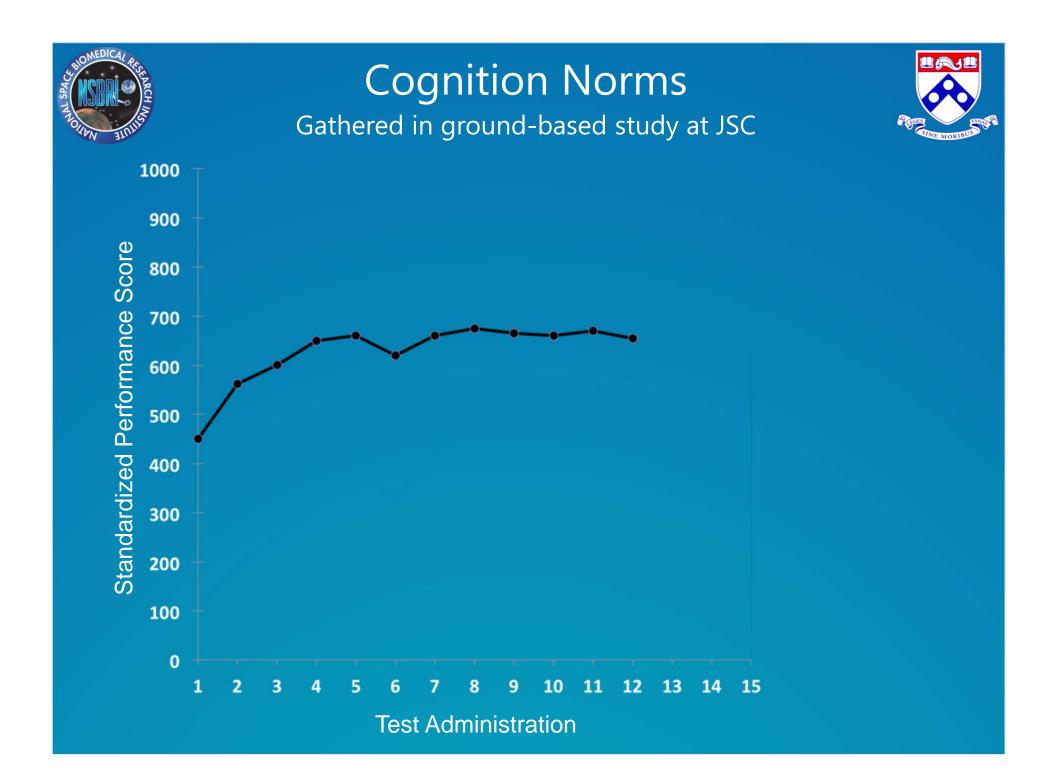
Digit Symbol Substitution Complex scanning and visual tracking (1.6 min)

Balloon Analog Risk Task Risk decision making (2.3 min)

Psychomotor Vigilance Test Vigilant attention (3.2 min)

Validation Studies


- Laboratory studies on the effects of acute total and chronic partial <u>sleep deprivation</u> on cognition (ongoing).
 Study on the effects of different levels of <u>hypercapnia</u> on cognition (planned).
 Study on the effects of <u>anesthesia</u> and <u>medications</u> (promethazine, sleep meds) on cognition
 - (ongoing/planned).
- Use of Cognition in <u>space analog environments</u> (HERA, HI-SEAS, Antarctica) (ongoing/planned).



Goals of this study

- Test <u>feasibility</u> of Cognition administration on the ISS.
 - → Software will be installed on one HRF-PC (Columbus).
- Receive <u>astronaut feedback</u> on Cognition software for future improvements.
- Start looking at effects of:
 - \rightarrow Early exposure to microgravity
 - \rightarrow Environmental space flight stressors
 - \rightarrow Time in mission
 - \rightarrow Re-exposure to gravity
- <u>Ultimate goal</u>: Provide NASA and the international space research community with a brief, valid, comprehensive, and sensitive cognitive test battery

Measurement Approach

- Sample size: N=6 astronauts
- Measurement schedule:
 - \rightarrow 1 familiarization session
 - \rightarrow 3 baseline sessions (L-90, L-60, L-10)
 - \rightarrow 11 in flight sessions (at 2-4 week intervals)
 - \rightarrow 3 post flight sessions (L+10, L+60, L+90)
- Cognition is part of NASA's 12 month mission and the TWINS project.
 - \rightarrow One Year Mission Crewmembers count towards the N=6

Earth Benefits/Spin-off Applications

Cognition is of considerable interest to a wide range of contexts on Earth in which there is a need to determine the extent to which someone is cognitively compromised → Especially for high-performing populations
 One major goal is to make Cognition available to a broader research community within and outside of NASA.
 An iPad version already exists and is used by a

number of researchers around the world.

Acknowledgments

Supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC 9-58

• <u>NSBRI</u>

Graham Scott, Dorit Donoviel

NASA PsychOps Walt Sipes, Gary Bevin

NASA BHP

Jason Schneiderman, Lauren Leveton, Laura Bollweg, Sandra Whitmire, Diana Arias, Kristine Ohnesorge

NASA ISS-MP

Laura Sarmiento, Kelly Norwood, Geminesse Dorsey, Margaret Klee

NIH, ONR, McDonnell Foundation