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Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic 

polymer composites - for their hydrogen and methane storage capabilities) have been 

studied with applications in fuel cell technology. We have investigated a dual-use of these 

materials and carbon composites (CNT-HDPE) to include s pace radiation shielding 

mitigation. In this paper we present the results of a detailed study where we have analyzed 

64 materials. We used the Band fi t spectra for the combined 19-24 October 1989 solar 

proton events as the input source term radiation environment.  These computational 

analyses were performed with the NASA high energy particle trans port/dose code HZETRN.  

Through this analysis we have identified several of the materials that have excellent 

radiation shielding properties  and the details of this analysis will be discussed further in the 

paper.  

 Nomenclature 

Al = chemical symbol for aluminum 

cGy = absorbed dose unit: centiGray  

CH4 = chemical symbol for methane 

CNT = carbon nanotubes 

ESP = Energetic solar particle bow shock enhancement 

GLE = ground level event (or enhancement) 

GOES = Geostationary Operational Environmental Satellite  

H = chemical symbol for hydrogen 

HDPE = high density polyethylene 

HZETRN = NASA Langley Research Center-developed high energy particle transport/dose code 

Li = chemical symbol for lithium 

MH = metal hydride  

MOF = metal-organic framework 

NASA = National Aeronauticsand Space Administration 

SPE = solar proton event 

                                                                 
1
 Technical Fellow, 13100 Space Center Blvd./Mail Stop HB 3-20. 

2
 Aerospace Engineer, Systems Engineering and Test Branch, 2101 NASA Parkway, MC: EA351. 

3
 Principal Research Scientist, Process Science and Engineering, Private Bag 33 Clayton South MDC 3169. 

4
 Sr. Research Scientist, Materials Science and Engineering, Private Bag 33 Clayton South MDC 3169. 



 

International Conference on Environmental Systems  
 

 

2 

I. Introduction 

RECENTLY, scientists have utilized certain materials “loaded” with hydrogen, namely metal hydrides, to 

develop fuel cells having various applications, one being the automobile industry
1
. Since hydrogen, methane, and 

other types of hydrocarbons are excellent proton shielding mit igators, we have investigated using hydrogen-loaded 

metal hydrides along with metal-organic frameworks (MOFs), and nano-porous carbon composites  (CNT-HDPE) as 

potential rad iation mitigators. We have found that, indeed, some these materials can serve a dual use for hydrogen 
storage and proton radiation shielding. 

In this paper we present an exhaustive radiation shield ing analysis of the results when these selected materials 

are compared with two baseline materials: aluminum and high density polyethylene (HDPE).  

 

II. Selected Material Groups: Background 

 

The three material groups selected are metal hydrides, MOFs, and carbon composites. 

A. Metal Hydrides 

 

Metal hydrides (interstitial, non-interstitial, and solution)  most commonly exist within metals or alloys. They are 

traditionally termed 'compounds', even though they do not strictly conform to the definit ion of a compo und; more 

closely resembling common alloys such as steel. In such hydrides, hydrogen can exist as either atomic, or diatomic 

entities. Mechanical or thermal processing, such as bending, striking, or annealing may cause the hydrogen to 

precipitate out of solution, by degassing. Their bonding is generally considered metallic. Such bulk transition metals 

form interstitial binary hydrides when exposed to hydrogen. These systems are usually non-stoichiometric, with 

variable amounts of hydrogen atoms in the lattice. In materials engineering, the phenomenon of hydrogen 

embrittlement results from the formation of interstitial hydrides. Hydrides of this type forms according to either one 

of two main mechanisms. The first mechanis m involves the adsorption of dihydrogen, succeeded by the cleaving of 

the H-H bond, the delocalisation of the hydrogen's electrons, and finally, the diffusion of the  protons into the metal 

lattice. The other main mechanis m involves the electrolytic reduction of ionised hydrogen on the surface of the 

metal lattice, also followed by the diffusion of the protons into the lattice. The second mechanism is responsible for 

the observed temporary volume expansion of certain electrodes used in electrolytic experiments.   Interstitial,non-

interstitial, and solution metal hydrides were investigated in this study.  Those labeled “interstitial” contained new 

phases after hydrogen loading
2-7

.  The materials labeled “non-interstitial” have expanded lattices after hydrogen 

loading, but have not been transformed into new structures
2,4,8

.  Finally, those materials labeled “solution” describe 

materials that do not have transformed crystal structures post-hydrogen loading
2
.    There were 40 metal hydrides 

investigated and they are described in Table 1 and Table 2 below. 

  

http://en.wikipedia.org/wiki/Metallic_bonding
http://en.wikipedia.org/wiki/Non-stoichiometric_compound
http://en.wikipedia.org/wiki/Hydrogen_embrittlement
http://en.wikipedia.org/wiki/Hydrogen_embrittlement
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Table 1:  List of interstitial metal hydrides investigated as part of this study. 

Formula Density (g/cm
3
) 

91% Li2.35Si and 9% H 0.84 

91% LiB and 9% H 0.67 

96% CaNi5 and 4% H 6.60 

96% LaNi4.7Al0.3 and 4% H 7.60 

96% LaNi4.8Sn0.2 and 4% H 8.40 

Al2Cu 5.83 

Al2CuH 5.39 

AlH3 2.50 

BaAlH5 3.30 

CaNi5 6.60 

CaNi5H6 5.01 

LaNi4.7Al0.3 8.00 

LaNi4.7Al0.3H6 6.08 

LaNi4.8Sn0.2 8.40 

LaNi4.8Sn0.2H6 6.38 

LaNi5  8.20 

LaNi5H6  6.22 

Li2.35Si 1.67 

LiB 1.65 

SrAl2H2  2.64 

Ti0.98 Zr0.02 V0.48 Fe0.09 Cr0.05 Mn1.5 7.20 

Ti0.98 Zr0.02 V0.48 Fe0.09 Cr0.05 Mn1.5 H3.3 5.80 

TiCr1.8 5.70 

TiCr1.8H3.5 4.50 

TiFe0.9Mn0.1 6.50 

TiFe0.9Mn0.1H2 5.20 
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Table 2:  List of non-interstitial and solution metal hydrides investigated as part of this study. 

Type Formula Density (g/cm
3
) 

N
o

n
-I

n
te

rs
ti

ti
a
l 

LiAlH4 0.92 

LiMg(AlH4)3 1.80 

Mg(AlH4)2 2.24 

NaAlH4 1.81 

VH 5.60 

VH2  2.30 

Y3Al2H6.5 4.10 

S
o

lu
ti

o
n
 

80% Li and 20% H 0.57 

85% Li and 15% H 0.56 

90% Li and 10% H 0.55 

91% Li and 9% H 0.82 

95% Li and 5% H 0.54 

Li 0.53 

V 6.00 

  

 

B. Metal-Organic Frameworks (MOFs) 

In a recent paper by Ryan J. Kuppler, et al (2009)
9
, the use of hydrogen and methane storage in MOFs is 

discussed. MOFs are composed of two major components: a metal ion or cluster of metal ions and an organic 

molecule called a linker. The organic units are typically mono-, di-, tri-, or tetravalent ligands
10

. The choice of metal 

and linker d ictates the structure and hence properties of the MOF. For example, the metal's coordination 

preference influences the size and shape of pores by dictating how many ligands can bind to the metal and in which 
orientation. 

There were two types of MOFs investigated for this study, those with hydrogen loading and those without 
hydrogen loading, for a total of ten materials .  The formulas and densities are shown in Table 3 below. 

  

http://en.wikipedia.org/wiki/Valence_(chemistry)
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Table 3: The MOFs investigated as part of this study. 

  Formula Density (g/cm
3
) 

N
o

n
-H

y
d

ro
g

e
n

 

L
o

a
d

e
d
 

Zn216 C3132 O702 H1242 0.247 

C432 H288 Be48 O144 0.423276  

Mg18 O54 H18 C72 0.905589  

Al4 O32 C56 H44 1.610 

C200 H128 0.314945 

H
y

d
ro

g
e
n

 l
o

a
d

ed
 

Zn216 C3132 O702 H14813.5 0.2996 

C432 H1120 Be48 O144 0.460 

Mg18 O54 H141 C72 0.953 

Al4 O32 C56 H96 1.680 

C200 H325 0.3522 

C. Nano-porous Carbon Composites (CNT-HDPE) 

 

Dimit ra Giasafaki, et al.
11

 have investigated using nano-porous carbon composites for hydrogen storage: 

 “Metal-carbon composites have shown considerable hydrogen storage potent ial at room temperature. In the 

present work the behaviour of two different Pd amalgam doped carbon substrates, namely a carbogenic foam and a 

mildly oxid ised ordered mesoporous carbon, are compared on the basis of their hydrogen sorption properties at 77 

and 298 K and low pressures, aiming to investigate the effect of surface on the storage capacity. In both cases, the 

introduction of alloy nanoparticles leads to an improvement of the hydrogen uptake with respect to pure carbons. 

This effect is significant for the carbogenic foam, however s mall for the ordered carbon.”  

 

For this study, we again looked at two  groupings for the CNT-HDPEs.  They are those with hydrogen loading 

and those without hydrogen loading.  The formulas and densities for the 14 materials  are shown in Tab le 4.  

 
Table 4: The CNT-HDPEs investigated as part of this study. 

 

  Formula Density (g/cm
3
) 

N
o

n
-H

y
d

ro
g

e
n

 L
o

a
d

e
d
 (C2H4)97.7 C2.30 0.95 

(C2H4)93.27 C6.73   0.96 

(C2H4)89.06 C10.94 0.97 

(C2H4)79.41 C20.59 1.00 

(C2H4)63.16 C36.84 1.04 

(C2H4)50 C50                        1.10 

(C2H4)39.13 C60.87  1.16 

H
y

d
ro

g
e
n

 l
o

a
d

ed
 

(C2H4)97.7 (CH3)2.3 0.95018 

(C2H4)93.27 (CH3)6.73 0.96054 

(C2H4)89.06 (CH3)10.94 0.9709 

(C2H4)79.41 (CH3)20.59 1.0018 

(C2H4)63.16 (CH3)36.84 1.0436 

(C2H4)50 (CH3)50 1.1054 

(C2H4)39.13 (CH3)60.87 1.1672 

 

http://rd.springer.com/search?facet-author=%22Dimitra+Giasafaki%22
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As was described above, most of the materials research for these types of materials has focused on hydrogen 

storage. In this paper, we have taken these previous studies one step further and investigated a  dual-use for these 

materials as both hydrogen storage and as possible proton radiation mit igators. 

 

III. Radiation Source Term 

 

We used the solar proton integral and differential spectra for the series of solar particle events that occurred 

during the 19-24 October 1989 t ime period as shown in Figure 1 based on the Band fitting method
12.13

. These proton 

spectra represent three Ground Level Events (GLE) p lus one bow shock enhancement (ESP) as indicated in Figure 

2. 

 

 
 

Figure 1:  Integral and differential energy spectra for the SPEs occurring 19-24 October 1989.  
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Figure 2:  GOES satellite measurements of the four SPEs during the period of 19-24 October 1989. The Ground Level 

Enhancements (GLE) and Energetic Solar Particle (ESP) are indicated on the plot. The ESP occurs when there is a bow 

shock enhancement of solar protons. I1: > 1 MeV; I2: > 5 MeV; I3: > 10 MeV; I4: > 30 MeV; I5: > 50 MeV; I6: > 60 MeV; 

I7: > 100 MeV
14

. 
 

IV. Computational Results and Analyses 

 

All the materials in the study were analyzed using HZETRN
15

, a one-dimensional formulation of the Boltzmann 

transport equation with a straight ahead approximation developed at NASA Langley Research Center. The 

environment chosen for the analysis was the October 1989 series of solar particle events (SPE), which were 

particularly hard events. The dose in HZETRN includes contributions from neutrons, ligh t ions (Z=1,2), and heavy 

ions.  Most of the material doses were computed with the HZETRN 2005 version, since this formulat ion of the code 

does not put restrictions on the energy grid for the SPE differential spectrum. In the HZETRN 2005 case, the 

October 1989 Band fit ranged from 10 to 4992 MeV, and in the HZETRN 2010 version case the energy grid ranged 

from 0.01 to 2500 MeV, limit ing the hard spectrum at the higher energies. The only materials that were investigated 

with the HZETRN 2010 version of the code were Ti0.98Zr0.02V0.48Fe0.09Cr0.05Mn1.5 and 

Ti0.98Zr0.02V0.48Fe0.09Cr0.05Mn1.5H3.3. This is because the HZETRN 2005 version is limited to five species in the 

material definit ions, whereas the HZETRN 2010 version has no limit . Several sample cases were run between the 

2005 and 2010 versions of the code and the differences were negligib le.  
 

The resulting doses were compared against doses for the two standard radiation shielding materials: aluminum 

(Al) and high density polyethylene (HDPE). The following (Table 5) gives a summary of the material performances 

for the 64 materials investigated. As can be seen in the table, there were only nine materials that outperformed 

HDPE and most of the materials were between the performance of A l and HDPE.  

  

GLE 
ESP 

GLEs 
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        Table 5. Summary of the Material Compared with Al and HDPE 

 

 MOFs CNTs MHs  Total 

Dose < HDPE 1 7 1 9 

HDPE < Dose < Al 9 7 14 30 

Al < Dose 0 0 25 25 

 

 
 MOFs  

 

The majority of the MOFs (90%) performed better than aluminum, but not better than HDPE. There was only 

one material (10%) that was a better mitigator than HDPE (as shown in Figure 3).  

 

 
 

 

Figure 3: Results from the MOF materials that are compared with Al (red) and HDPE (black). The material that 

performed better than HDPE is the one highlighted in blue in the legend of the top graph (A).  
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CNTs 

 

The CNTs were equally split between those materials that were better mit igators than HDPE (50%) and those 

that performed between that of Al and HDPE (50%). Those that were better than HDPE tended to be the CNTs that 

were the hydrogenated version of the material (Figure 4). 
 
 

 
 

Figure 4: Results from the CNT materials that are compared with Al (red) and HDPE (black). The materials that 
performed better than HDPE are in the top graph (A) and those that performed better than Al but not HDPE are in the 

bottom graph (B). 
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Metal Hydrides 

 

There were several lithium hydrides (Figure 5) investigated, as well as other metal hydrides (Figure 6). Of the 

metal hydrides, there was only one (2.5%) lithium hydride material that outperformed HDPE (Figure 5). About 35% 

of the metal hydrides investigated were better mit igators than Aluminum but did not perform better than HDPE 

(Figure 5 and Figure 6). Approximately 62.5% of the metal hydrides did not perform better than aluminum and are 

not shown in the figures below. 

 

 
 

Figure 5: Results from the Lithium and Lithium metal hydride materials that are compared with Al (red) and HDPE 

(black). The material that performed better than HDPE is the one highlighted in blue in the legend. 
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Figure 6: Results from the Metal hydride materials that are compared with Al (red) and HDPE (black). All of these 

materials performed better than Al. 
 

In addition, we grouped the metal hydrides by three categories: interstitials, non -interstitials, and solution.  The 

results via this grouping are the following. 

 

Number of interstitials: 26 

Better than Al, but not as good as HDPE: 19% 

Worst than Al: 81% 

 

Number of non-interstitials: 7 

Better than Al, but not as good as HDPE: 57%  

Worst than Al: 43% 

 

Number of solutions: 7 

Better than HDPE: 14% 

Better than Al, but not as good as HDPE: 71%  

Worst than Al: 14% 
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V. Summary and Conclusions 

 
In this study, the radiation mitigation potential of 64 materials was investigated and was compared against two 

standard radiation shielding materials for spaceflight. Of the 64 materials, nine showed improved performance over 

high density polyethylene, the current “gold standard” of radiation shielding for spaceflight. Of the remaining 

materials, 30 performed better than aluminum and 25 materials were the worst radiation mitigators of the materials 

investigated. 

 

Given that 50% of the CNTs outperformed HDPE, future studies should focus on hydrogenated CNTs for 

radiation shielding development. Another potential grouping of materials for  future studies would be the MOFs, 

which had 10% of the materials showing better mit igation properties than HDPE. It is n ot recommended to further 

pursue metal hydrides, since they had the worst performance, with only 2.5% of the materials having better radiation 

mitigation properties than HDPE.  However, if there is further interest in new metal hydrides, those that are non-

interstitial o r solution types would be of more interest to study than the interstitials.  

 

We also plan to investigate using methane, CH4, in  place of hydrogen. Figure 7 shows the absorbed dose  

comparison for HDPE, Al, liquid methane, and liquid hydrogen using the input source term, 19-24 October 1989 

differential spectrum. In analyzing the figure below, methane and hydrogen are better mit igators than HDPE, with 

hydrogen being the best mit igator.  While hydrogen repeatedly is the best material for proton shielding in these types 

of studies, there are problems with using hydrogen in practice.  For the purposes of hydrogen -loaded materials, one 

problem is that hydrogen is not very stable in changing environmental conditions.  If the temperature of the 

environment changes, the hydrogen can leak out of the material.  Given that these materials are being considered for 

spaceflight, large swings in the environmental conditions are typical and the use of a hydrogen -loaded material 

might not be practical.  In addition, hydrogen has large safety implicat ions with respect to fires and explosions.  If a 

hydrogen-doped material were to leach hydrogen as a result of an environmental swing, this could pose some 

serious safety issues for spacecraft.  Thus, given that methane is a comparable radiat ion shield to hydrogen, our 

future work will focus on investigating methane-doped versions of these materials to determine whether similar 

radiation mitigation potential can be found without the concerns posed by hydrogen for space flight. 

 

 

 
 

Figure 7:  Absorbed dose  comparison for aluminum, HDPE, methane, and hydrogen. Input source term: 19-24 Oct 

1989 differential spectrum (Band fit). 
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