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NAVIGATION DESIGN AND ANALYSIS FOR THE ORION
CISLUNAR EXPLORATION MISSIONS

Christopher D’Souza; Greg Holt] Robert Gay; and Renato Zanetti®

This paper details the design and analysis of the cislunar optical navigation system
being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents
the mathematics of the navigation filter. It also presents the sensitivity analysis
that has been performed to understand the performance of the proposed system,
with particular attention paid to entry flight path angle constraints and the AV
performance.

INTRODUCTION

Vehicles navigating to or from the Moon usually rely on ground tracking and ground updates to
perform the insertion and correction maneuvers. A natural advancement in technology is autonomy.
The Orion vehicle, designed to explore space beyond LEO, is required to return the crew safely
in the case of loss of communication with the ground. As such, it needs to be able to navigate
autonomously, independent of ground-based measurements, utilizing on-board sensors subject to
stringent mass/power/volume constraints. Since the vehicle will be carrying optical cameras, the
cislunar navigation system is designed to use images obtained from these cameras, in particular
star/planetary limb and planetary disk measurements. Whereas the navigation system of Orion in
and below LEO is well understood, the design of the cislunar navigation system unique presents
challenges.

Whereas the Orion sensor complement includes two star trackers, the star trackers being con-
sidered have a very limited field-of-view. As such, they don’t lend themselves to cislunar optical
navigation, which needs fields-of-view in excess of 20 degrees. Thus, optical cameras, which are
already planned for situational awareness, are harnessed into a cislunar navigation role. In this pa-
per the design of the cislunar optical navigation system being proposed for the Orion Earth-Moon
(EM) missions is presented. In particular, it will present the mathematics of the navigation filter and
the analysis that has been performed to understand the performance of the proposed system, with
particular attention paid to entry flight path angle constraints and the DV performance.

Previus studies focused on the lunar orbit determination problem [1,2]. Tuckness and Young
consider autonomous navigation for lunar transfers [3]. Their analysis focuses on azimuth and ele-
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vation measurements of the Earth, Moon, and Sun. Two star-elevation measurements relative to the
planet’s limb provide the same kind of information as azimuth and elevation of the apparent center
of the planet. However, star-elevation measurements are the preferred approach for two reasons.
First, multiple stars can be processed simultaneously, and the redundant information effectively fil-
ters out some noise. Second, the method used here does not depend on the attitude of the spacecraft,
or on the misalignments of the sensors, reducing the possible error sources.

This work builds on previous results presented in [4] but focuses on new analysis done to char-
acterize the process noise, i.e. unmodeled accelerations, and the preliminary results of the EM1
navigation system design.

This investigation specifically addresses the transfer from the Moon to the Earth. In an emergency
situation, during a loss of communication scenario, the primary objective is the safety of the crew.
This subsequently translates into a flight-path angle requirement at entry interface (EI) for a direct
entry. A direct entry, as opposed to a skip entry, reduces the risk of the capsule bouncing back into
space, and allows for a greater margin on the flight-path angle at EI.

The accuracy of the flight-path angle at EI is driven by several factors including the navigation,
targeting, and burn execution errors at the time of the last mid-course maneuver, and unaccounted
trajectory perturbations between the last mid-course maneuver and EI. Apollo missions tolerated a
maximum flight path angle error at EI of £+1 degree, with half of this error allocated to navigation.
A similar criterion is employed in this study.

Perturbations are a major source of errors in the cislunar navigation performance of Orion. In a
perfect world all the sources of perturbations would be modeled in the filter dynamics. However,
computational limitations preclude such extensive modeling. Therefore, the primary sources of
perturbations are characterized. In particular there are three categories of unmodeled acceleration:
propulsive sources, gravitational perturbations, and solar radiation pressure. Only propulsive errors
are included in this analysis; the gravitational and solar radiation pressure are not included — they
will be included in a future study. For EM1, the gravitational and solar radiation pressure errors are
several orders of magnitude below the thrusting sources. The propulsive sources considered are:
attitude deadbands, attitude slews, CO2 venting, and sublimator venting.

Linear covariance techniques are used to perform the analysis for the Orion Cislunar missions.
This comports well for the navigation system design since the cislunar navigation system on Orion
will be an Extended Kalman Filter. Many of the same states and dynamics used in the linear co-
variance analysis will be used in the on-board cislunar navigation system. A preliminary design of
the cislunar navigation system is presented. This is supported by linear covariance analyses which
provides navigation performance, trajectory dispersion performance and AV usage.

The paper is organized as follows: Section 2 will contain a brief description of linear covariance
analysis. In Section 3, the navigation system will be described. Section 4 will contain a description
of the perturbations used in this analysis. Section 5 will contain results of this analysis. Finally,
some concluding comments will be made in Section 6.



LINEAR COVARIANCE ANALYSIS

This investigation is performed using linear covariance (LinCov) analysis techniques [5, 6]. The
state vector is given by [4]

X = {rT VT GT b;FrL U;Fn ’Y'rTn, qu bst bss,ea'rth bss,moon bh,earth bh,moon}T .
ey
The nominal trajectory is obtained by integrating the nominal dynamics model with an Encke-
Nystrom method [7]. Neither the rotation vector 8 nor its uncertainty are integrated in this analysis.
The nominal attitude is known at any time and it does not need to be calculated. The attitude
estimation error covariance is constant and is driven by the star tracker accuracy. The attitude
navigation dispersion covariance is constant and is given by the attitude control dead-band. The
attitude environment dispersion covariance is constant and obtained from the above two quantities
assumed uncorrelated. Before the star elevation is determined, the vehicle slews in preparation
for measurement acquisition. This attitude maneuver is performed by the onboard thrusters and is
assumed to be instantaneous. Due to thruster misalignment, this maneuver adds uncertainty to the
translational states. After the batch of measurements is available, the vehicle returns to its nominal
attitude. In linear covariance analysis, the difference between the true state and the nominal state is
defined as the environment dispersion
X = x—X. )

The difference between the estimated state and the nominal state is defined as the navigation disper-
sion
X% —-x 3)

Finally, the difference between the true state and the estimated state, is defined as the estimation
error, sometimes referred to as the onboard navigation error

etx—x 4)

Following the standard Kalman filter assumptions, the difference between the nominal and estimated
models is represented with zero-mean, white noise. The estimated state evolves as

x = (%), 5)

where f is a nonlinear function representing the system dynamics as modeled by the filter. The
evolution of the nominal state is modeled as

x =f(x) = f(x) + v, (0)

where f is a nonlinear function representing the state dynamics as modeled in designing the nominal
trajectory. The nominal dynamics f may be higher fidelity than the filter’s dynamics f. The vector
v represents the dynamics modeled in the nominal trajectory but neglected in the filter models.
In Kalman filtering, the difference between the true dynamics and the filter’s dynamics is called
process noise. While these unmodeled dynamics are not actually white noise, they are modeled as
such. The power spectral density of process noise is then tuned to achieve good performance. The
same procedure is used here. In order to capture the difference between the two dynamical models,
v is modeled as a zero-mean white process with spectral density Q The goal is to represent the
increased value of the navigation dispersion during propagation due to the difference between the
nominal and filter’s dynamical models.



The evolution of the navigation dispersion can be approximated to first-order as
ox = x — X = f(X 4 0%) — f(X) — v ~ F(X)d% — v. (7)
The evolution of the navigation dispersion covariance is governed by
P-FR)P+PFR)T +Q. )
Similarly, the true state is modeled to evolve as
x = f(x) + v. ©)
The evolution of the estimation error is given by
e=x—x~fX)+FX)(x—x)+v—f(X) - FX)(x—X) =FX)e+v. (10)

Vector v is modeled as zero mean white noise with spectral density Q. The onboard covariance P
evolves as

P =F(x)P +PF(x)+ Q. (an
Notice that the Jacobian F could be evaluated at the estimated state X instead of the nominal state
X, as in the extended Kalman filter.
Finally
x=x-x~FX)ox+v-v (12)

and P evolves as
P =F(x)P +PF(x) + Q. (13)

Notice that Q = Q + Q if v and v are assumed to be uncorrelated.

Since the environment and navigation dispersions are naturally correlated, it is intuitive to create
an augmented dispersion state, whose covariance is defined as I

A ox| |ox T P C
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The evolution of the augmented covariance is given by

1T = [F(X) 0353]H+H[F(X) O3X3r+

Osxs F(x) Oss F(X) (16)
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where it is assumed that v and v are uncorrelated. All error states are modeled as first order Markov
processes and are assumed to be uncorrelated to each other.



AN OVERVIEW OF THE ORION CISLUNAR NAVIGATION FILTER

Since this filter operates once Orion is away from Earth (and outside of GPS range), the primary
forces governing the motion of the vehicle are the gravitational forces of the Earth, the Moon,
and the Sun. The trajectory is designed taking into account all three of these bodies. Whereas
the equations of motion are formulated with respect to a central body, this (central body) changes
depending on which sphere of influence the vehicle is subject to.

Optical measurements were processed every 60 seconds. The optical camera had a 18 degree
Field of View. The optical measurements consist of star-horizon measurements and apparent angular
radius measurements. These measurements take into account when the planet is both larger than and
smaller than the field of view.

There are three categories of unmodeled acceleration with which a vehicle in cislunar space
has to contend: propulsive sources, gravitational perturbations, and solar radiation pressure. Only
propulsive errors are included in this analysis; the gravitational and solar radiation pressure are
not included — they are several orders of magnitude below the propulsive sources. The propulsive
sources, therefore, can be further separated into thruster errors and ECLSS (Environmental Con-
trol and Life Support System). Thruster errors include attitude deadbanding and attitude slewing
maneuvers. ECLSS sources include Pressure Swing Adsorption (PSA) (C O venting), ammonia
sublimator venting, and waste water venting events. EM1 will have a ‘metabolic simulator’ which
will exercise the entire ECLSS system except for waste water vents; hence waste water venting per-
turbations are not included in this analysis. Table 1 contains a summary of the previously described
unmodeled acceleration as well as their relative strengths.

Table 1. Type and Strength of Unmodeled Acceleration

Type of Noise Assumptions Strength (m?/s3)
Attitude Deadbanding | Jet firing every 30 minutes 2313 x10~ 1
Attitude Slewing 50 attitude events 3.098 x10~?
Attitude Slewing 25 attitude events 1.601 x10~?
PSA Vents Every 6-10 minutes 4.095 x10~10
Ammonia Sublimator | In Lunar Vicinity (0.5 hour) | CM/SM: 1.310x107°
Ammonia Sublimator 0.5 hour prior to EI CM Only: 7.877x107°

RESULTS

The trajectory under consideration a 8 day trajectory departing on December 15, 2017. It is shown
in Figure 1.

For this analysis, we included three sets of navigation concepts of operations: 1 hour optical
passes, continuous optical passes, and ground tracking only passes. The second case (continuous
optical navigation) serves as a bounding case to demonstrate the best performance of the navigation
system were we able to get continuous measurements. Currently, it is not clear where and how the
optical camera will be mounted. If it is not mounted on a pan/tilt platform, there will need to be
attitude maneuvers to obtain optical imagery for navigation. For the first case, we assumed that



Cislunar EM1 Trjectory

Figure 1. EM-1 Trajectory

there would be one hour of optical passes to the closest body; due to thermal and other operational
constraints, we will not be able to point the cameras at the nearest body for more than an hour. This
is expected to be the most reasonable optical navigation concept of operations for this scenario. In
this case, we would commence tracking two hours prior to each maneuver and terminate the pass
one hour prior to each maneuver. The concept of operations for ground tracking is as follows: after
a period of tracking by ground stations, a navigation state (with associated covariance matrix) will
be uplinked to the spacecraft one hour prior to the maneuver. This state would be used to compete
and perform the maneuver. This computation of the maneuver could either be done on-board or on
the ground.

The optical camera was assumed to have a noise of 5 arc-seconds (10) and a bias of 3.33 arc-
seconds. In addition the stellar sub-point had a noise of 10 arc-seconds (10) and a bias of 5 arc-
seconds. Finally the horizon had a noise of 10 km (10) and a bias of 3 km.

We assumed that there were 7 Trajectory Correction Maneuvers performed. They were chosen
reflective of what was done during Apollo and will likely be adjusted, but they serve as reasonable
place-holders, taking into account factors such as crew sleep and time since the previous maneuver.
In order to ensure accurate delivery a maneuver was placed 6 hours prior to both Lunar Flyby and
Entry Interface (EI). The TCMs are detailed in Table 2.

The TCM performance for the three cases are presented in Table 3.

The Entry Flight Path Angle (FPA) delivery (at Entry Interface) for each of these cases is included
in Table 4.

Whereas one can obtain some information regarding navigation and dispersion errors in terms
of position and velocity, it is most helpful and illuminating to map these (instantaneous) errors
to the entry flight path angle, because that is the quantity of ultimate relevance for being able to



Table 2. TCM Locations

TCM 1 TLI + 6 hours
TCM 2 TLI + 1 day
TCM 3 | Lunar Flyby - 22 hours
TCM 4 | Lunar Flyby - 6 hours
TCM 5 | Lunar Flyby + 18 hours
TCM 6 EI - 21 hours
TCM 7 EI - 6 hours

Table 3. 30 TCM AV Performance (m/s)

One Hour Optical | Continuous Optical | Ground Tracking

TCM 1 AV (m/s) 5.14 5.14 5.16
TCM 2 AV (m/s) 0.96 1.02 0.19
TCM 3 AV (m/s) 1.55 0.81 0.18
TCM 4 AV (m/s) 0.32 0.24 0.31
TCM 5 AV (m/s) 1.53 1.45 1.81
TCM 6 AV (m/s) 3.52 1.08 0.66
TCM 7 AV (m/s) 2.80 0.90 0.71

Total AV (m/s) 15.82 10.64 9.03

Table 4. 30 Delivery Entry Flight Path Angle

One Hour Optical | Continuous Optical | Ground Tracking

3 o Entry Flight Path Angle (deg) 0.252 0.093 0.046




successfully complete the mission. This was done by means of state transition matrices, which were
used to map the instantaneous navigation and dispersion errors to the time of entry interface and
then using the partials of flight-path angle with respect to the state to complete the process.
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Figure 2. Entry Flight Path Angle Navigation Error (One Hour Tracking)

Sensitivity Analysis

In order to determine the ‘sweet spot’ of the design, a number of parameters were varied. These
included: injection error accuracy, the length of optical passes, vehicle deadbanding noise, the
frequency of optical measurements, and the quality of optical measurements. Each of these will be
presented in turn. The metric of interest was selected to be the entry FPA dispersion. All the results
will be presented in terms of this metric. In what will follow, the ‘nominal’ case will be as follows:
a one hour optical pass prior to each maneuver with measurements taken every 60 seconds, with 50
attitude slews.

As expected, the first TCM corrects the majority of the injection error; hence the size of TCM 1
is directly proportional to the accuracy of the injection. Here the entire injection covariance matrix
was scaled to determine the sensitivity It is, not surprisingly, a linear relationship. These data are
presented in Table 5.

Apart from ammonia sublimator cooling, which operates for half an hour (during closest lunar
approach and prior to entry), the major source of vehicle noise is the number of attitude maneuvers
performed. In particular, besides increasing the size of the TCMs, this effect is of primary impor-
tance after TCM 7. Since it is not possible to know when these slews would be performed, this
effect was spread out equally across the entire mission. The effect of varying the number of attitude
maneuvers is seen in Table 6.



. Orion 3-¢ Trajectory Dispersions Mapped to El Flight Path Angle
10

1| =—3-sigrna Dispersion
el Maneuver Markers
_|==Lunar 501

3-¢Flight Path Angle Dispersions at El (deg)

0 20 40 60 80 100 120 140 160 180
Time (hrs)

Figure 3. Entry Flight Path Angle Trajectory Dispersion Error (One Hour Tracking)
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Figure 4. Entry Flight Path Angle Navigation Error (Continuous Optical Tracking)



, Orion 3-¢ Trajectory Dispersions Mapped to El Flight Path Angle

10
—23-sigma Dispersion
4 Maneuver Markers
m=|_ynar SOI
10° 1
% ]
9 ]
s
w 10
pe E
n
c 4
[+
B ]
o 1
& 10 E
o E
K] Ny
=) I | ]
E L} 1
=
= 0
510 E
£
2
o 4
bt
w
107
=g
10
0 20 40 60 80 100 120 140 160 180
Time (hrs)

Figure 5. Entry Flight Path Angle Trajectory Dispersion Error (Continuous Optical Tracking)
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Figure 6. Entry Flight Path Angle Navigation Error (Ground Tracking Only)
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Table 5. Sensitivity to Injection Error

Nominal | Half Injection Error | Twice Injection Error

TCM 1 AV (m/s, 30) 5.14 2.54 10.31
TCM 2 AV (m/s, 30) 0.96 0.94 1.01
TCM 3 AV (m/s, 30) 1.55 1.53 1.56
TCM 4 AV (m/s, 30) 0.32 0.32 0.32
TCM 5 AV (m/s, 30) 1.53 1.52 1.55
TCM 6 AV (m/s, 30) 3.52 3.52 3.52
TCM 7 AV (m/s, 30) 2.80 2.80 2.80
Total AV (m/s, 30) 15.82 13.17 21.07
Entry FPA (deg, 30) 0.252 0.252 0.252
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Table 6. Sensitivity to Attitude Maneuvers

Number of Attitude Slews | Attitude Maneuver Noise (m? / s?) | 3¢ Entry FPA Dispersion (deg)
12 7.425 x1010 0.199
24 1.490 x10~° 0.219
36 2.231 x107? 0.236
50 3.098 x10~? 0.252

We are interested in understanding the sensitivity to the measurement frequency. Hence Table 7
show the result of varying the measurement frequency from 60 seconds (the nominal ) to 1 second.

Table 7. Sensitivity to Measurement Frequency

Frequency of Optical Measurements | 30 Entry FPA Dispersion (deg)
Every 60 sec 0.252
Every 30 sec 0.212
Every 20 sec 0.193
Every 10 sec 0.165
Every 1 sec 0.097

Next, we need to understand the effect of the measurement accuracy of the optical camera so we
varied the angular accuracy as presented in Table 8.

We also wanted to determine the sensitivity of the design to the type (and duration) of the mea-
surement source. This is presented in Table 9.

The final two factors of interest involved what happened when early TCMs and/or late TCMs
were missed. Table 10 contains the entry FPA as a function of late TCMs being skipped. As can be
seen, the accuracy degrades significantly as TCMs 6 and 7 are missed. Obviously, anything after 4
degrees would be outside the linear region and should be ignored.

Finally, Table ?? contains the information if early TCMs are missed. Included in here is informa-
tion on the size of the remaining TCMs.

CONCLUDING COMMENTS

This paper has detailed the navigation error and trajectory dispersion sensitivity analysis for the
EM-1 Free Return mission. It has determined that with one hour of tracking, the navigation perfor-
mance is sufficient to meet the entry flight angle delivery error of 0.27 degrees (3 o).
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Table 8. Sensitivity to Measurement Accuracy

Quality of Optical Measurements | 30 Entry FPA Dispersion (deg)

1 arc-second 0.237
2.5 arc-seconds 0.241
5 arc-seconds 0.252
10 arc-seconds 0.286
20 arc-seconds 0.377
30 arc-seconds 0.472
60 arc-seconds 0.759

Table 9. Sensitivity to Type (and duration) of Measurement Source

Navigation Source # of Attitude Maneuvers | 30 Entry FPA Dispersion (deg)
Ground Tracking Only 24 0.047
Ground Tracking w/10 min Op Pass 50 0.047
Continuous Optical 24 0.097
12 hour Optical Passes 50 0.103
8 hour Optical Passes 50 0.109
6 hour Optical Passes 50 0.121
5 hour Optical Passes 50 0.137
4 hour Optical Passes 50 0.186
2 hour Optical Passes 50 0.210
2 hour Optical Passes 50 0.252
40 minute Optical Passes 50 0.381
30 minute Optical Passes 50 0.305
20 minute Optical Passes 50 0.343
10 minute Optical Passes 50 0.436
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Table 10. Sensitivity to Late TCMs being Missed

TCMs Performed | 30 Entry FPA Dispersion (deg)
[1234567] 0.252

[1234506] 0.284

[12345] 4.110

[1234] 5.332

[123] 8.324

[12] 127.590

[1] 209.236

Table 11. Sensitivity to Early TCMs being Missed

TCMSs Performed

3o Entry FPA Dispersion (deg)

Maneuver AV (30)

[1234567]
(234567
34567]
[4567]
567
[67]

[7]

0.252
0.252
0.252
0.252
0.252
0.279
0.317

15.8 (5.1,1.0,1.6, 0.3 1.5. 3.5, 2.8)
19.1 (9.1,1.6,0.3, 1.8, 3.5, 2.8)
31.1(19.8,0.3,4.6,3.5,2.9)
64.2 (51.0, 6.7, 3.5, 3.0)
443.3 (355.7,17.5, 70.1)
3117.1 (1772.4, 1344.8)
9710.4
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