

Setting the Standard for Automation™

Chemical Microsensor Development for Aerospace Applications

Jennifer C. Xu, Gary W. Hunter, Dorothy Lukco, Liangyu Chen, and Azlin M. Biaggi-Labiosa

Standards Certification Education & Training Publishing Conferences & Exhibits

Jennifer C. Xu

University of Illinois at Urbana-Champaign, 1998, Ph.D. Case Western Research University, 1998-2000, Post Doctoral Sensor Development Co., Inc. 1999-2002, Material Scientist NASA Glenn Research Center: 2002-present, Electronics Engineer

Chemical Sensor Development at NASA GRC

Microsensors and platforms

- * H₂, CH₄, C₂H₄, C₃H₆, CO₂, CO, O₂, NOx, N₂H₄, HCl, HCN, and HF
- * Schottky diodes, resistors, and electrochemical cells
- Approaches
 - * Smart sensor system: sensor arrays, signal processing and conditioning components, power and telemetry
 - * "Lick and Stick" for full-field view of environment
 - * Nanotechnology and batch microfabrication
 - * Small size, low weight, cost, and power consumption

• Applications

- * Propulsion system, fuel depot leak detection
- * Low false alarm fire detection.
- * Harsh environment engine emissions monitoring
- * Human health monitoring and potential astronaut health evaluation
- Sensor to be presented
 - * CO₂ sensors: Electrochemical cells: amperometric and metal oxide nanomaterial modified, potentiometric sensors and resistors
 - * H_2/C_xH_y Schottky diode sensors: Diodes and diodes with contact pads
 - * O₂ sensors: High temp and room temp
 - * NO sensor: metal oxide resistor based
 - * Metal oxide nanomaterials

NASA GRC Sensors and Electronics Branch cleanroom

NASA GRC

Addition of Tin Oxide Nanocrystallines Improves Solid Electrolyte Carbon Dioxide Sensor Performance

K. Obata et al. / Sensors and Actuators B 76 (2001) 639-643

In2O3

Air + CO2

Au paste

Au wire

Na3PO

 SnO2 Nanocrystallines

 Na2CO3/BaCO3

 NASICON
 Pt(+)

 NASICON
 Pt(-)

 Al2O3

Tin oxide nanocrystalline layer added

Potentiometric CO₂ Microsensors Developed

1%, 2%, 3%, 4% CO2 gases in air at 500°C, air for baseline

$$2\text{Li}^{+} + \text{CO}_{2} + \frac{1}{2}\text{O}_{2} + 2e - = \text{Li}_{2}\text{CO}_{3}$$
 Working
 $2\text{Li}^{+} + \text{TiO}_{2} + \frac{1}{2}\text{O}_{2} + 2e - = \text{Li}_{2}\text{TiO}_{3}$ Reference

Development of Diode Sensors with Contact Pads

А

1.

for

metal/PdO_x/SiC

Fig.

diode

detection.

single

based

 H_2/C_xH_v

Fig. 2. a) Schottky diode with contact pad fabrication process. b). Image of a Pd/PdO_x/SiC diode with a Au/Ti contact pad. The dark area surrounding the sensor-pad is SiO_2

Fig. 5. Sensor with interconnect contact pad response to 0.5% H2 at 500°C, 1V

Fig. 3. Current version of diode with contact pad

Fig 4. a). Sensor with interconnect contact pad responses to 50 ppm, 100 ppm, 150 ppm, and 200 ppm H2 gases; b). Sensor responses to 50 ppm, 25 ppm, and 20 ppm H2 gases, at 300°C, 1V.

Developed Room Temperature Potentiometric Oxygen Sensors

Totally different structure: one of its kind

Time / sec

Development of Nitric Oxide and Oxygen Sensors

Pt interdigitated electrodes fabricated on a 2-inch alumina wafer

Electrode structure and schematic of gas testing setup

High Temperature YSZ Oxygen Sensor Testing Results

Sputtered ITO Microsensor Response to Nitric Oxide Gas 1.86E-02 1.84E-02 450°C, 1V 60 ppm NO 450°C,1V 10 ppm NO 4 ppm NO 40 ppm NO 20 ppm NO 1.84E-02 397 ppb NO 1.82E-02 1.59 ppm NO 159 ppb NO 2.38 ppm NO 794 ppb NO 1.82E-02 1.80E-02 urrent (A) 1.80E-02 N₂/Air 1.78E-02 (60:40) (1. Adsorption) Current (A) 1.78E-02 1.76E-02 1.76E-02 (2. Chemical reaction) ū 1.74E-02 1.74E-02 1.72E-02 1.72E-02 1.70E-02 1.70E-02 N₂/Air (60:40) N₂/Air (60:40) 1.68E-02 1.68E-02 0 10 20 40 50 60 70 80 90 30 10 30 40 0 20 50 60 70 80 Time (min) Time (min)

- * Low concentration (ppb to low ppm): adsorption
- * High concentration (ppm): adsorption and NO oxidation reaction:

Metal Oxide Nanomaterials for Reducing Gas Sensing

12

- A variety of chemical microsensors development for aerospace applications
- Different sensor structures and sensing mechanisms were used in the sensor designs
- Carbon dioxide sensors, oxygen sensors, Schottky diode sensors, nitric oxide sensors, and nanomaterials discussed
- Small size, batch fabrication, low cost and power consumption, and harsh environment applications
- Applications: fire detection, engine emission and health monitoring, and environmental monitoring. In ambient and harsh environments

Mike Artale, Jose Gonzalez, Peter Lampard, Drago Androjna, Christopher Hampton, Beth Osborn, and Michelle Mrdenovich Lawrence Matus and Mary Zeller NASA Sensors and Electronics Branch members

NASA Aviation Safety Program/IVHM Project NASA ETDP/Space Fire Prevention Task