
Service Oriented Robotic Architecture for
Space Robotics: Design, Testing, and Lessons

Learned

Lorenzo Flückiger
Carnegie Mellon University

NASA Ames Research Center, Mail Stop 269-3
Moffett Field, CA-94035, USA
Lorenzo.Fluckiger@nasa.gov

Hans Utz
Carnegie Mellon University

NASA Ames Research Center, Mail Stop 269-3
Moffett Field, CA-94035, USA

Hans.Utz@nasa.gov

Abstract

This paper presents the lessons learned from six years of experiments with
planetary rover prototypes running the Service Oriented Robotic Architecture
(SORA) developed by the Intelligent Robotics Group (IRG) at the NASA
Ames Research Center. SORA relies on proven software engineering methods
and technologies applied to space robotics. Based on a Service Oriented Ar-
chitecture and robust middleware, SORA encompasses on-board robot control
and a full suite of software tools necessary for remotely operated exploration
missions. SORA has been field tested in numerous scenarios of robotic lunar
and planetary exploration. The experiments conducted by IRG with SORA
exercise a large set of the constraints encountered in space applications: re-
mote robotic assets, flight relevant science instruments, distributed operations,
high network latencies and unreliable or intermittent communication links. In
this paper, we present the results of these field tests in regard to the developed
architecture, and discuss its benefits and limitations.

1 Introduction

Advanced software methodologies are necessary to cope efficiently with the complexity of
the software powering any modern robotics system. This need is even amplified for robots



designed for the exploration of uncharted environments since the tasks involved require a
high level of autonomy combined with a rich set of interactions with a control team. To
address this, the Intelligent Robotics Group (IRG) at the NASA Ames Research Center
developed a Service Oriented Robotic Architecture (SORA) to control its exploration robot
prototypes. SORA has enabled complex exploration scenarios in realistic environments to be
tested while allowing IRG’s research in human-robot exploration to smoothly evolve. This
paper reports on the lessons learned from more than six years of experiments with the SORA
software system.

1.1 Context

Figure 1: K10 Red planetary rover, running SORA during the 2007 Haughton Crater Field
Test (Devon Island, Canada). In the foreground, the rover is seen carrying autonomous
navigation sensors and science instruments. The base camp, where we simulated an astronaut
crew, is visible in the background.

Human-robot exploration of remote locations has been one of IRG’s key research topics
for more than a decade. This applied research involves field testing to study and validate
different system architectures and configurations. Most of these field tests take place in
remote locations that serve as Mars or Moon analogs, such as the one shown in Figure 1.
Some of the key requirements for the software system running on IRG’s robotic platforms
are:

• Enable integration of advanced robotic algorithms

• Support a wide range of robots and instruments

• Permit a variety of exploration scenarios to be rapidly tested

• Facilitate interoperability with a whole suite of mission tools

• Allow a small team to perform a variety of experiments supporting a wide range of
research priorities in space robotics



To address these challenging requirements, in 2005 IRG began developing the Service Ori-
ented Robotic Architecture (SORA), which is detailed in (Flückiger et al., 2008). SORA is a
software architecture that is built using proven software engineering development principles
and practices (Kroll and Royce, 2005) and leverages the advantages of Service Oriented Ar-
chitectures. The rest of the paper focuses on this aspect and does not address robot control
architectures, nor the components necessary to build a robot controller.

Research on software methods and systems for robotics has increased considerably over the
past decade. Application of software “best practices” to handle the complexity of robot sys-
tems has led naturally to the adoption of software architectures well established in computer
science. Three of those architectural paradigms are classified in (Amoretti and Reggiani,
2010): Distributed Object Architecture (DOA), Component Based Architecture (CBA) and
Service Oriented Architecture (SOA). This is, however, still a very young domain and despite
standardization efforts, such as the Robot Technology Component (RTC) (Object Manage-
ment Group, 2012c) or the Joint Architecture for Unmanned Systems (JAUS) (Rowe and
Wagner, 2008), the landscape of solutions is still extremely fragmented.

Table 1: Acronyms often used in the paper.

SOA Service Oriented Architecture
DDS Data Distribution Service
IDL Interface Definition Language
RMI Remote Method Invocation
QoS Quality of Services

1.2 Related work

Robot software frameworks are numerous, each focusing on specific aspects: simplicity, mem-
ory footprint, speed, programming language, distribution, robotic domain, etc.

In terms of robotic frameworks, JAUS currently supports the greatest number of robotic
systems. JAUS is a messaging architecture aimed at promoting interoperability between
unmanned vehicles (ground, air or water). The JAUS standard defines a communication
“wire” protocol and sets of messages between nodes, which are organized as a system of four
strict functional layers. JAUS provides interfaces to both manipulators and mobile bases for
basic control. However, JAUS lacks interfaces that support the rich data communications
required by autonomous robots (both for low-level raw sensor data and higher decisional
layer level interactions), especially robots used for remote science and exploration.

Some components approaches focus on constructing middleware specifically for robotics.
This approach is typified by projects such as OROCOS (Orocos, 2012), or the recent Robot
Operating System (ROS) (Willow Garage, 2012). OROCOS provides components targeted
to robot manipulators and put the emphasis on real-time controllers. ROS is being adopted
at very rapid pace in the robotics research community. ROS provides an excellent collection
of robotic algorithms and Operating System type functionality for communication between



distributed nodes. ROS is currently targeted primarily to indoor robots, does not support
degraded networks (low bandwidth, loss of signal, etc.), and does not scale well for complex
scenarios involving highly distributed communications. The Player project (Collett et al.,
2005) is also very popular in the academic community due to its ease of use, the number
of common sensors interfaced, and the numerous tools built around it (e.g. Stage and
Gazebo simulators). While Player was initially designed for mobile robotics, the YARP
project (Fitzpatrick et al., 2008) was started to support research on humanoid robots. In
addition to TCP transport, YARP also supports UDP, which is better suited for networks
with long delays. Finally, YARP has some level of interoperability with Player and ROS.
However, Player and YARP lack features in terms of network scalability and support for the
unstructured environments faced by planetary robotics.

Other approaches are focus on building component frameworks on top of existing middle-
ware. This is the case for ORCA (Makarenko et al., 2006) and Microsoft Robotic Studio
(MRS) (Jackson, 2007). ORCA project adopted the ICE (ZeroC, 2012) communication
framework. MRS relies on Microsoft the .NET framework. Similar to these approaches,
SORA relies on existing middleware: CORBA (Object Management Group, 2004) and the
Data Distribution Service (DDS) (Object Management Group, 2012a). However, unlike
ORCA, SORA’s middleware is compliant to standards1, which guarantees longer term sup-
port for the project. Despite the fact that MRS relies on the .NET standard, this proprietary
framework offers limited support for Unix based systems.

A third approach for robot software frameworks focus on being middleware independent.
This is the case for Genom (Mallet et al., 2010), which provides a complete framework
for the definition and generation of robotic “module” that constitute the functional layer
of a robot controller. Genom has been associated with a component based framework to
generate controllers, which are then validated by construction (Bensalem et al., 2010). In
addition, Genom has been coupled with planners to obtain robot controllers with a delib-
erative layer (Ceballos et al., 2011). As with SORA, Genom targets the space robotics
domain, but focuses on the robot controller, rather than supporting the full deployment of
autonomous systems (rover and ground control).

In terms of NASA frameworks, it is important to mention the Coupled Layer for Robotic
Autonomy or CLARAty (Nesnas et al., 2003). CLARAty is a software environment for
the infusion of robotic algorithms into future space missions. CLARAty defines a two-layer
control architecture, but does not provide a software architecture to assemble the various
algorithms. Instead CLARAty promotes the concept of generic interfaces to common robot
concepts. The interfaces are directly expressed as C++ classes and dependencies on third
party libraries are kept minimal by design. In comparison, SORA does not enforce classes
relationship, provides language neutral interfaces that can be mapped to various languages,
and relies heavily on middleware.

Finally, the Mars Science Laboratory (MSL) rover and its Mars Exploration Rovers (MER)
predecessors are examples of highly reliable flight software (Volpe, 2003; Reeves and Snyder,

1Both CORBA and DDS are defined by the Object Management Group.



2005; Biesiadecki and Maimone, 2006). MSL and MER flight software are closed systems,
essentially written in C and running space hardened computers2 powered with a hard real-
time Operating System. Current flight guidelines prevent use of modern language features
(like inheritance or templates) or higher level Operating System functionalities. The design
constraints for these systems are quite different than for SORA in terms of level of effort,
target system, communication pattern, etc.

To summarize, SORA has several common characteristics with Component and Service Based
Architectures in robotics, but also has several unique features:

• SORA supports a range of robotic scenarios (full autonomy to full teleoperation)

• SORA supports a variety of deployment configuration (local field test to multi-center
operations)

• SORA extends well beyond the robot controller and is used across the whole mission
tool suite

• SORA has been used extensively in high-fidelity robotic mission simulations

1.3 Experience with Exploration Robots

In (Flückiger et al., 2008) we have described how SORA supported a Lunar analog robotic
field test during Summer 2007 at Haughton Crater, Devon Island (Canada). This first full
deployment of SORA involved two K10 rovers performing systematic site surveys on a site
above the Arctic circle (Fong et al., 2008a). Since then, SORA has been used for analog
mission simulations in 2008 at Moses Lake (WA), 2009 at Black Point Lava Flow (AZ) (Deans
et al., 2009) and 2010 at Haughton Crater site (Fong et al., 2010), as well as in field tests
conducted at sites closer to the NASA Ames Research Center. Table 2 summarizes the
mission simulations and instruments that SORA supported during these field experiments.
The table highlights the flexibility and scalability required by SORA to address all these
scenarios with a small research team.

These field experiments included scenarios covering different possible phases of human-robot
exploration in space: site survey and resource prospecting before human arrival, robotic
reconnaissance while humans are present and robotic follow-up once humans have departed.
Each of these unique opportunities allowed IRG to test SORA in applied scenarios. These
scenarios involved full control and science teams, who depended on the robot mobility and
data gathering. Field experiments also test SORA service interactions (onboard the robot
and to ground control) in situations with non-homogeneous networks including satellite links
with variable Quality of Service (QoS) and high latency (0.5s physical to 50s simulated).

2Space hardened processors have capabilities approximately equivalent to “earth” processors 10 year
older.



Table 2: Summary of key field tests performed with SORA. Most IRG field tests share
common requirements in terms of robot platform and science instrument integration, variety
of operation modes and interoperability with other tools. In addition, each field test stressed
a particular aspect of the software architecture. The SORA capabilities most exercised by
each test are highlighted in italics in the third column of the table.

Location and
Year

Configu-
ration

Main Objective
SORA key effort

Primary science instruments

Haughton
Crater, Devon
Island,
Canada, 2007

2 x K10s +
small

ground
team

Systematic site survey
(Fong et al., 2008a)
New robot support and new
instruments integration

JPL CRUX Ground
Penetrating Radar, Optech
ILRIS-3D LIDAR and
Microscopic Imager

NASA Ames,
CA, 2007

K10 +
small

science
team

Resource prospecting
(Fong et al., 2008b)
Rapid prototype with flight
instrument

HYDRA Neutron
Spectrometer

Moses Lake
Sand Dunes,
WA, 2008

K10 +
ground
team

Systematic site survey and
Robotic Reconnaissance
(Fong et al., 2008b)
Heteregoneous robot fleet

GSSI SIR-3000 Ground
Penetrating Radar

Black Point
Lava Flow,
AZ, 2009

K10 +
control
team

Robotic Reconnaissance
(Deans et al., 2009)
New concept of operations

Optech ILRIS-3D LIDAR
and GigaPan camera system

Haughton
Crater, Devon
Island,
Canada, 2010

K10 +
control

team and
science
team

Robotic follow up (after
human mission)
(Fong et al., 2010)
Large scale science
experiment

Mala Ground Penetrating
Radar, Optech ILRIS-3D
LIDAR, X-Ray Fluorescence
Spectrometer and multiple
imagers

JSC
Rockyard,
TX, 2012

Centaur-2
+ drivers

and ground
team

Tele-operated lunar rover
navigation using LIDAR
(Pedersen et al., 2012)
SORA deployment on a
non-IRG robot

Velodyne HDL-32E

Basalt Hills,
CA, 2012

K-Rex +
support

team only

Mapping for navigation with
2 different approaches (Ames
and CMU)
Fast paced data collection
field test

Engineering Field Test:
Velodyne HDL-32E and
Stereo Cameras



1.4 SORA as Mission Backbone

Figure 2 illustrates a typical field test where SORA is used across the full system deployment:
within rovers, by the field team supporting the robots, by the control team executing remote
operations and by the science team using analysis and mission planning tools. Whenever
SORA services are colocated, or distributed across a network, their interactions are based
on unified interfaces and are transparently optimized by the supporting middleware.

In the following, Section 2 describes the high level concepts of SORA. Then, using specific
examples the paper highlights the benefits of the SORA in Section 3 and the shortcomings
of SORA in Section 4. Finally the paper concludes with future extensions to the current
research.

Figure 2: Typical deployment of SORA for a field test involving a Remote Site and Ground
Ops. Four nodes are shown: Exploration Rover, Field Team emulating astronauts, ground
Control Team and ground Science Team. Common unified interfaces are shared at each node.
Data distribution appears identical at all nodes despite the different physical networks. Note
that the Science team communicates intents using plans that are transferred to the Control
team who upload them to the robot.

2 SORA Concepts

First, it is important to emphasis that SORA is a software architecture supporting robotic
systems, and does not define a particular robot control architecture. The current control
architecture of IRG robots is constructed as a two tiered system with hardware and func-
tional components. Our robot controllers are using plan sequencer engines combined with
behavioral services. Thus, the control architecture can be considered as a hybrid control
architecture. However, the SORA approach does not directly reflect the structure of the
robot control architecture.

SORA applies state-of-the-art software architecture principles and practices to the space
robotic domain. SORA embraces the typical concepts of service oriented systems: encapsula-



tion, communication patterns based on stable interfaces, and reliance on robust middleware.
This builds a loosely coupled and highly cohesive system.

Figure 3 illustrates a simplified controller constructed with SORA. The details of the services
internal structure, and unified services communication modes are described in (Flückiger
et al., 2008). The key concepts of SORA are briefly highlighted in the following section,
starting with the common characteristics shared by SOAs and finishing with the SORA
specific robotic aspects.

Figure 3: A minimal robot controller, built with only a few services, is represented using
the Unified Modeling Language (UML) notation. Data distribution is unified across the full
deployment. Provided interfaces are transparently accessible within a robot or remotely.

2.1 Essential SOA aspects of SORA

2.1.1 Services

SORA services encapsulate a set of interconnected classes to offer high level functionalities
to the system. Each service is self-contained and is dynamically loadable. In addition, a
service manages its own control-flow requirements (message loops, threads etc). A service
can be passive, just waiting for events, or active with one or multiple threads of execution.

2.1.2 Interfaces

Strongly typed, network transparent interfaces, specified with the Interface Definition Lan-
guage (IDL) (Object Management Group, 2012b), allow connecting to the services. Imple-
mentation of the interfaces in different languages allows heterogeneous systems to interact.



The same control interfaces are accessed using Remote Method Invocation (RMI) for inter-
actions between services on the robot as well as by applications running off-board.

2.1.3 Data Distribution

In addition to RMI, SORA uses a publish/subscribe scheme to distribute data across ser-
vices, within a single controller, and to the ground control systems. SORA initially used
the CORBA Notification Service (Object Management Group, 2004) to implement a pub-
lish/subscribe mechanism. This implementation has been since replaced by the DDS for bet-
ter scalability. DDS is an Object Management Group standard based on publish/subscribe
data messaging. All DDS messages are also described with IDL description files. Source
code to manage the corresponding data structures is then automatically generated for the
target language (C++ and Java in the case of SORA).

2.1.4 Middleware

SORA relies heavily on middleware, specifically the ACE/TAO implementation (ACE/TAO,
2012) of the CORBA standard. In addition to CORBA, SORA uses the MIddleware for
RObots (Miro) (Utz et al., 2002). Miro facilitates the use of CORBA in the robotics con-
text, without introducing an extra layer of indirection, but by providing a configuration of
the middleware tailored to the robotics domain. In addition to CORBA, which is used for
commanding, SORA relies on the RTI (RTI, 2012) DDS implementation for data distri-
bution. DDS provides several key capabilities that CORBA does not have, including QoS
management for data distribution across heterogeneous, unreliable networks.

2.2 Robotic domain aspects of SORA

2.2.1 Services Assembly

A robot controller is constructed from a set of services. These services are started according
to a configuration file crafted for a particular operational scenario. The same configuration
mechanism is used also for services not running on the robot, such as simulated components.

SORA uses the “Component Configurator” pattern (Schmidt et al., 2000) to combine the
services in a full system. A configuration file specifies which services should be started to
create a particular controller.

2.2.2 Standard messaging between NASA robots: RAPID

A key design goal of SORA was to generalize interfaces and data-structures for use on a
broad set of robotic platforms. In addition, from its inception, SORA was designed to use
a publish/subscribe model for the distribution of robot data, within the robot controller
itself, and to external consumers as well. Based on experience gained using SORA over



several years, a collaboration with other NASA centers led to the development of standard
messages for NASA robots. The resulting RAPID project (Torres et al., 2009) created
messages derived from the CORBA based messages of SORA, but with modifications and
extensions to satisfy the constraints for the robots from three NASA centers: NASA Ames
(K10s and K-REX rovers), Johnson Space Center (LER, Centaur-2 rovers) and the Jet
Propulsion Laboratory (Athlete 6-legged robot). RAPID consists of a set of IDL files plus
utilities classes. RAPID uses the DDS as middleware and makes ample use of the advanced
feature set of the data-centric publish/subscribe model of DDS.

RAPID is built upon a lean set of design concepts that are consistently applied throughout
the message set. A core design goal was to provide a rich data-representation applicable to a
wide variety of robotic assets, while keeping bandwidth usage low. This is achieved through
the separation of data-streams into three categories of messages: Configuration, State, and
Sample messages. Typically state or samples messages types are paired with a configuration
message type. The configuration messages carry information that helps the interpretation
of the state or sample message, and are sent only once unless some configuration parameter
changes.

RAPID Configuration messages. Configuration messages are used to describe the char-
acteristics of robotic subsystems. For instance the properties of laser range scanners, such
as the number of scan-lines, width of a scan-line, or the distance resolution differ signifi-
cantly by model. This information is published as a configuration message. This allows
software modules to publish the laser range data in a generalized, concise data-format with
sample type messages (see below). The configurations are published only once as reliable
and durable messages. These two QoS associated with the configuration messages mean
respectively: every subscriber is guaranteed delivery and a subscriber joining after the single
configuration message was sent will still be notified of this message. Due to their low pub-
lication frequency, configuration data types are allowed to be verbose and thus can have a
large footprint.

RAPID State messages. Many robotic subsystems switch between discrete states (active
vs inactive, operational vs failure, etc.) at irregular intervals. It is critical that these state
changes are always observable by other subsystems or operators. Therefore, messages repre-
senting subsystems states are modeled as state messages, which are reliable and durable

(same QoS than configuration messages). As state-changes can come in higher frequency
or in bursts, their footprint is kept minimal (unlike configuration messages). Furthermore,
the middleware is only required to keep a very limited history of those publications. This
enables skipping the delivery of some state updates to subscribers in the case of network
congestion or Loss of Signal (LOS). These situations are common for space communications
links.

RAPID Sample messages. Sensor data published at a fixed, high frequency produces
most of the data on exploration robots. This data encompasses raw sensor data, such as
pose sensors, image sensors, laser scanners, as well as derived data, such as pose estimates,



point-clouds or maps. Typically, such publications concern continuously changing properties
(location, proximity of obstacle, etc.) where the latest data invalidates the previous reading.
This category of data is modeled in RAPID as sample messages. Due to their potentially
high rate, these messages are designed to minimize their footprint. Also, their publications
are typically designed as best-effort delivery. This QoS means that messages are not
guarantied to be delivered and that there is no re-sending of previous publication to late
joining subscribers.

2.2.3 Supports communication across the mission

SORA application domain extends well beyond the scope of the robot controller. The unified
interfaces and communication patterns are designed to support mission scenarios from ground
control tools to rover internals as well as development and debugging tools.

Figure 4 shows two software tools that are extensively used during our field test: xGDS and
VERVE (Lee et al., 2012). xGDS is a Ground Data System to support scientific missions.
It allows scientists to collect, archive and analyze science data, as well as to create high level
plans. VERVE is a powerful interactive visualization tool providing real-time visualization
of most of the data the rovers are generating. The latest incarnation of VERVE also allows
sending critical commands to the robotic subsystems. Both tools interoperate with the rover
software on various robots using SORA.

Figure 4: SORA provides a common communication system for multiple robotic platform
and mission tools. The upper image shows three rovers supported by SORA: K10s, K-REX
and Centaur-2. The lower left image is a screenshot of the xGDS (Ground Data System),
and the lower right shows a screenshot of VERVE (interactive 3D visualization tool).



2.2.4 Validation with field tests

As shown in Table 2, SORA has been deployed in multiple field tests on various rovers.
In addition to the K10 series rovers, SORA has been tested on a smaller scale rover, K10-
mini (footprint of 40cmx30cm), as well as the much larger new IRG rover K-REX (footprint
2mx1.6m). Outside of IRG rovers, SORA also currently supports a navigation system based
on LIDAR (Pedersen et al., 2012). The range of situations encountered across these field
tests is summarized in Table 3.

The unified interfaces across the system, for both colocated and distributed scenarios, fa-
cilitates re-use and loose coupling. Similarly, the facility to easily create specific robot
controllers for particular scenarios by assembling different sets of services, permits the agile
deployment of SORA to field tests. Scalability is obtained by the service encapsulation, the
loose coupling between services, and the interchangeability of services providing identical
interfaces. Finally, insulation of each service and reliance on robust middleware promotes a
high level of reliability. These quality attributes for SORA are further detailed in the next
section, which also discusses the performance of the architecture.

Table 3: Range of key parameters during field tests using SORA

Parameter Minimal/Unfavorable configuration Full-blown/Optimal configuration

Configuration 1 robot + field team of 5 2 robots + field team of 6 + ground
team of 9 + science team of 12

Local wireless
network

10Mbps (degraded 802.11b) to no
comms (robot out of range for ex-
tended periods and navigating fully
autonomously)

50Mbps (Meshed Tropos network
with 802.11n)

Link to ground 1-2Mbps (artificially constrained or
satellite link) to no comms (link loss
or no ground team)

15Mbps (microwave link) with op-
tional 50s delay introduced

Number of
services on the
robot

Simple navigation: 12 [Hardware
(HW)=2, Software (SW)=6, IN (In-
frastructure)=4]

Autonomous navigation and science
instruments: 55 [HW=19, SW=22,
IN=14]

Distributed
services (not on
the robot)

1-2 (“mission manager” to start an
autonomous plan and monitor robot
health)

> 5 multiple control panels and
3D visualization plus data collection
system

Data collected on
the robot

80MB/h (no science and exclude
stereo images)

1GB/h (LIDAR data + stereo im-
ages included)

3 SORA Benefits

This section describes the benefits that SORA brings to the IRG robotics field tests. Sev-
eral advantages reported below are derived from SOA specific concepts like encapsulation,
communication pattern, and exposition of stable interfaces. In addition, the use of a com-



ponent configurator pattern and reliance on robust middleware increases the flexibility and
reliability of the system.

(a) HMP 2007 Controller (b) HMP 2010 Controller

Figure 5: Two successive versions of the K10 controller represented with UML (only few
services shown). The new PoseEstimatorSvc2 from Figure 5b subscribes to an additional
sensor stream (XsensSvc) compared to the PoseEstimatorSvc1 from Figure 5a. However
the Pose Estimator continue to expose the same interface, thus requiring no changes for the
NavigatorSvc.

3.1 Flexibility

3.1.1 Stable Interfaces

All SORA interfaces (allowing remote method invocation), and all data structures (partici-
pating in the publish/subscribe mechanism) are defined using IDL. Each IDL specification
is designed to be as generic as possible while allowing access to specific capabilities of the
subsystems. The current interfaces are built upon the expertise IRG gained with previ-
ous systems: CLARAty C++ interfaces, the Mission Simulation Facility HLA based inter-
faces (Flückiger et al., 2005a) and the ICE based interfaces developed for the Peer-to-Peer
Human-Robot Interaction experiment (Fong et al., 2005). In addition, the RAPID spec-
ification is a collaborative work between ARC, JSC and JPL, with the goal of offering a
standardization for common robot messages. These interfaces and data structures have cer-
tainly evolved from the initial SORA conception to today’s system. However, changes are
mostly extensions of existing interfaces or addition of new data structures to address a new
domain. For example RAPID defines a core message set (shared by NASA robots) to which
specific applications can add their own extensions. Keeping these interfaces stable and their
specification in a unique repository (shared by all the parties contributing to software for
robotic field tests) makes it possible to easily swap a service for an equivalent one and makes
it easier to maintain the tools around the robot controller.

An example of this evolution is shown in Figure 5. A new version of the PoseEstimator was
written for the 2010 HMP field test. The PoseEstimator computes the best estimate of the
rover position and orientation using a Kalman Filter to process various sensor inputs (not



all included in this figure). The second version of the PoseEstimator relies on an additional
sensor, and computes poses using a new algorithm. Thanks to the SORA architecture, the
previously existing sensor data is consumed the same way and the services dependent on the
PoseEstimator did not have to be modified at all.

3.1.2 Component Configurator Pattern

The component “Component Configurator” pattern (Schmidt et al., 2000) enables SORA to
change scenarios without changing any code. The same code base is used and re-used for
different scenarios simply by creating different configuration files.

Despite the fact that these controller configuration files are currently crafted manually, they
have been a tremendous tool to develop and test our robotic software. Configurations are
created for each individual scenario. Scenarios range from a minimal controller (containing
only the locomotion service) to a full blown field test controller (requiring a suite of science
instruments). In addition to facilitating development, the simplicity and rapidity of creating
a new controller configuration also allows optimizing controllers based on resource usage
or memory footprint. The flexibility and robustness of the SORA services assembled with
the component configurator pattern can be measured by the number of services (30 to 50)
running in concert on a robot, while sharing the resources harmoniously.

A robot controller assembled for a typical exploration scenario with autonomous navigation
and a few science instruments averages 45 services. These services can be grouped into three
categories:

1. Hardware: an average of 14 hardware services are in charge of communication with
physical sensors and actuators.

2. Software: an average of 19 software services are in charge of data processing and high
level algorithms for autonomy and control.

3. Infrastructure: an average of 12 services are performing infrastructure tasks ranging
from audible notifications to bandwidth management.

Combining these services to obtain a controller adapted to a particular scenario can be done
in minutes, which brings a great agility to our robotic platform.

3.1.3 Service configuration

To address the configuration of individual services (not the assembly of services), SORA
relies on the Parameter Framework provided by Miro. This overcomes a limitation of the
Component Configurator pattern implemented by ACE, which only provides command line
equivalent for configuration. The Miro Parameter Framework allows a bi-directional mapping
of parameters between an XML file and a service. For example, the Locomotor parameters



(mechanism dimension, speed and acceleration values, etc.) for a specific robot is loaded
from a description file and applied to the service with minimal coding. The Miro Parameter
Framework generates code and GUI editors for a particular set of parameter from a Schema
definition. The tool saves development time and reduces error sources in the configuration
process, such as syntax errors or typos in configuration files.

3.1.4 Topology of services

SORA’s distributed architecture is designed to support a range of scenarios that require
different network configurations. This is illustrated in Figure 6 for three different scenarios.
For example, SORA can support a single robot controller for an autonomous system with
minimal ground control interactions, as well as a fully distributed scenario with many sub-
scribers of large amounts of data. When tighter control of network traffic is required, DDS
allows partitioning of publishers and subscribers into different domains, and provides routing
to bridge domains. The publishers and subscribers on a particular domain are completely
isolated from publishers and subscribers on another domain. A router subscribes to a set of
messages and re-distributes them for subscribers on a separate domain. The router can be
configured to select which messages should be re-distributed and at which frequency.

SvcSvcSvc

Control and 
Monitoring

SvcSvcSvc

K10 Rover

Field Test Area

Domain 1

(a) Simple deployment
with local control only

Svc

Low Level 
Monitoring

SvcSvcSvc

K10 Rover

Field Test Area

SvcSvcSvc

xGDS
NASA Ames (ARC)

ARC DDS 
Router

VERVE

Svc

VERVE

Svc

Domain 1 Domain 0

(b) Deployed remote rover and ground control system on
separate sites

SvcSvcSvc

K10 Rover
SvcSvcSvc

Control UIs

International Space Station (ISS)

Roverscape Test Area

NASA Ames (ARC)

Johnson Space Center (JSC)

JSC DDS 
Router

ARC DDS 
Router

VERVE

Svc

VERVE

Svc

Astronaut 
GUI

Svc

Domain 1

Domain 2
Domain 0

(c) Surface Telerobotics configuration spanning over 3 DDS Domains

Figure 6: Variations of SORA network topologies.



3.2 Scalability

3.2.1 Abstract Interfaces

Abstract service interfaces help considerably to reduce link time dependencies to other sub-
systems and libraries. For example, when we previously developed an application using
CLARAty, the C++ high-level interfaces drew in more than 40 conceptually unnecessary
library dependencies 3. The same application based on SORA’s abstract interfaces currently
relies on 6 libraries. These libraries contain code actively used by the client implementation.

Abstract interfaces allow services to be easily replaced with different implementations. This
enables replacing some (or all) services interfacing with physical components of the robot by
simulated components. This facilitates development and testing by not requiring an on-line
physical robot. The Locomotor service in Figure 3, for example, is responsible for translating
high level locomotion commands (translate, drive arc) to individual motor commands. These
low level commands are passed to the WheelGroup service that abstracts the actual robot
hardware. However, a simulated WheelGroupSim service, which simulates the robot wheels
motion, can simply be started in place of the original service to obtain a simulated rover
motion. Applications, such as the 3D visualization tool VERVE (Lee et al., 2012) which
is used to monitor the rover progress, do not need to be modified at all. Thus, by simply
selecting a different configuration file, we can transparently start a real rover controller or a
simulated rover controller.

Just as class polymorphism is a powerful concept with object-oriented languages, interface
polymorphism is equally beneficial. SORA uses extensive interface inheritance (supported by
CORBA) to abstract services and to increase the scalability of the system. The best example
in SORA are the interfaces to science instruments services. For each field test IRG rovers
have been equipped with different sets of science instruments to achieve particular science
goals. Each instrument has a particular set of characteristics that require specific methods.
However, in SORA, all instruments interfaces inherit from the same base Instrument inter-
face. This allows a range of services to control and access any instrument in a transparent
manner at a high level. This is highly useful for the Executive service, which executes plans
defined by the scientist. A plan contains instructions specifying when instruments need to
be activated/deactivated, or when to acquire a sample. The Executive is only aware of the
base type of Instrument and thus is able to command any instrument that inherits and
implements that base-interface.

3.2.2 Communication Patterns

SORA services are interconnected with a dual communication pattern: RMI and Data pub-
lish/subscribe. These two modes are complementary. RMI is especially convenient for com-
manding individual services and querying their state. The publish/subscribe mechanism is

3While it is possible to achieve a high-degree of decoupling with pure C++ interfaces, keeping the interface
definitions independent enforce the practice of separating interfaces and implementations



better suited for distributing data to multiple services.

Remote Method Invocation. Even though it is possible to implement a request/reply
pattern using a data distribution model, the stricter RMI approach enables greater static
checking and code generation. Thus RMI makes the implementation of transaction-oriented
interfaces, such as robot commanding, more efficient and less error prone. In addition to
the regular RMI concept, SORA uses the Asynchronous Method Invocation (AMI) (Schmidt
and Vinoski, 1999) pattern which augments services decoupling and simplifies services im-
plementation. For example, it can be impractical for the caller of a service to block its
thread of execution while waiting for completion of an operation. Using AMI, the call will
immediately return and the caller will be notified by a callback when the operation has com-
pleted. In SORA, the complexity of AMI, thread safety, and exception handling is handled
by middleware.

The ability to remotely inspect the running system is a side benefit of network transparent
high-level interfaces. This remote inspectability is important for scripting, unit testing, and
online-supervision of the system in operation. In case of a failure, individual components can
be analyzed as part of the running system, significantly reducing the time to locate the issue.
This interaction can even be used to work around some of the problems that autonomous
system encounter, by allowing human intervention.

Publish/Subscribe. Despite the advantages of RMI and AMI, data distribution is prefer-
able when multiple consumers are interested in the same type of data, or when data needs to
be transmitted periodically. A publish/subscribe mechanism decouples services by allowing
producers of data to be independent of the consumers. In addition, SORA relies on pub-
lish/subscribe to enable data logging. The logger application is a generic data consumer,
which can subscribe to any message type and serialize it to file, including a trace of the
request/reply pairs of commands.

Currently SORA relies on the rti-recorder from RTI to capture all the DDS traffic4. Events
recorded can then be replayed at a later time with the exact same messages (timing included).
Two major capabilities are enabled by this functionality: 1) analyze a particular situation
and 2) test a different version of an algorithm with previously collected data. For example,
the mapping system used in SORA was primarily developed offline and tested with pre-
recorded datasets.

3.2.3 Encapsulation

Encapsulation of robot capabilities into services with well defined interfaces effectively shields
the overall system from code modifications within services. As long as the IDLs (for the
service interfaces and the data distribution messages) remain the same, any change to the
internals of a service will not affect other services. This is illustrated in Figure 5 with the

4Previously SORA used the LogPlayer tool from Miro when the data distribution was implemented with
the CORBA Notification Service



evolution of the Navigator service. The navigator service allows the rover to reach a given
goal while avoiding obstacles by building a dynamic map of the environment. We can see from
the figure that the Navigator service has strong dependencies on the Locomotor service and
PoseEstimator service. In addition, the Navigator service is used by the Executive service.
In our work, the navigator has undergone major re-structuring over the years to improve
performance and flexibility. In particular the initial navigator relied heavily on navigation
classes from CLARAty (Nesnas et al., 2003). The current navigator, however, replaces
the previously sequential model with a newly developed, concurrent framework. In the
framework, sensor reading, map building and action selection are asynchronous and the robot
drives continuously. New terrain analysis and path evaluation algorithms were incorporated
into the navigation system. This extensive development effort has been transparent to the
many users of the Navigator service.

3.3 Reliability

3.3.1 Middleware

The architectural paradigms implemented in SORA would not have achieved such a reliable
and extensive set of features without highly capable middleware. As mentioned in Section 2,
SORA heavily relies on CORBA coupled with Miro, and on DDS for data distribution. These
dependencies impose some constraints due to the choice of a specific middleware (Section 4).
In particular, middleware is pervasive, so replacing any middleware for another one requires
substantial code changes. However, this commitment to a set of well-established libraries
enables rapid progress with a finite (and usually limited) amount of resources for research
and development. During the course of that work, ACE/TAO CORBA has gone through
several release cycles. SORA directly benefits from these new versions, which represent a
considerable amount of work from outside parties. At the same time, because CORBA is a
standard, new revisions of the implementation have only required minor changes to SORA’s
code. Similarly, DDS implementation improvements free SORA developers from maintaining
this large middleware themselves.

In addition, appropriate use of middleware isolates robot software developers from changes
in the lower layers. For example, as shown in Figure 2, the Remote Site and Ground Ops
are connected using an unreliable satellite link. To cope with lower and intermittent data
rates, robot telemetry was transferred using a specific method developed as part of Miro.
However, this extension of the data distribution method is completely transparent to the
services running either on the Remote Site or Ground Ops. The exact same applications can
run on each site, without any need to know what physical link connects the sites.

Finally, existing stable middleware considerably increases the reliability of the system. The
CORBA and DDS libraries used by SORA are also used by numerous other projects, includ-
ing many non-robotic applications. Thus these libraries are exposed to a large user base,
which continuously tests the software and identifies defects. This level of testing cannot be
achieved with a custom middleware layer developed by a single group. Relying on quality



middleware eliminates most of the potential defects 5 linked to the low level layers and allows
robotic researcher to focus on their algorithms.

3.3.2 Code generation and code re-use

From the interfaces and messages definition specified in the IDL, source code to manipu-
late the corresponding concepts is automatically generated. The code can be generated in
multiple target languages and contains all the data structures, client/server stubs and other
support classes. Relying on code generators not only simplifies the use of interfaces and mes-
sages, but also helps minimize the risk of defects. Rather than validating dozen of interfaces
and associated helper code, only the code generator itself needs to be validated.

Organizing the robot control software by services decouples the interactions between various
parts of the software, and thus simplifies re-use of existing code. Several services that we
developed for SORA have been re-used for most of the field experiments. This is especially
true for each hardware abstraction (Compass, GPS, IMU, Wheels) because the same sensors
can be used for different scenarios, and this is also the case of higher level algorithms (e.g.
the generic Locomotor or global Path Planning). In short, we have found that a SOA, which
allows service assembly by configuration file, drastically reduces the time needed to create a
new robot controller.

3.3.3 Deployment in multiple contexts

To date, SORA has already inter-connected 6 complex software systems: (1) the robot con-
troller for the IRG rovers, (2) the IRG 3D visualization tool VERVE, (3) the IRG ground data
system xGDS, (4) the Johnson Space Center (JSC) user interface PIGI (Burridge and Ham-
buchen, 2009), (5) the Smart-Spheres on the International Space Station (NASA, 2012), and
(6) the Resolve payload by Kennedy Space Center (KSC) (TwinOaks Computing, 2011a).
To support these various software systems, two different implementations of CORBA have
been used: ACE/TAO and JacORB (Brose, 1997). Similarly, two different implementations
of DDS have been employed: RTI and CoreDX (TwinOaks Computing, 2011b). These ap-
plications demonstrated good middleware vendor inter-operability. SORA infusion in such
complex systems has been greatly facilitated by the reliability of the underlying middleware.

3.4 Performance

SORA is a software architecture. Therefore its performance is measured on how well it
supports robot software development, not how well the robot control system performs.

In terms of data passing within the robot and outside, our most recent field test performed
with the K-REX rover in 2012 at Basalt Hills provides some meaningful numbers. During

5Few defects in the middleware are still un-earthed by SORA because our scenarios are pushing the
communication boundaries beyond mainstream applications. This is typically due to the specificities of the
space robotic domain, like extreme time delays.



this test, K-REX performed 5 traverses totaling about 11km of driving on rough terrain on
multiple levels of a rock quarry. The rover controller collected data from the full vehicle
odometry at 25Hz, two Inertial Navigation Systems (INS) (20Hz), stereo cameras at full
resolution (two times 1.4 Megapixels at 2 Hz), and a 32 beam laser range finder (about
700,000 points per second). In addition, the rover controller created mapping products in
real-time. In addition to data transfer within the controller, most of the data was pushed to
a remote control station. Timing of the various components on the rover revealed that the
overhead of message passing is minimal compared to autonomy algorithms (mapping and
localization).

Static type definition of data structures allows for precompiled serialization, which can be
optimized for given criteria. In addition, DDS and CORBA allow for shared memory data
transport, which allows optimized message passing when the services are collocated. Al-
though shared memory transport introduces a small overhead compared to directly passing
messages with pointers, we consider this cost negligible compared to the benefits of relying
on a safe, stable, and scalable middleware.

Finally SORA exploits QoS management provided by DDS. With DDS, multiple QoS can be
combined in the same system by appropriate configuration. This is leveraged by the different
type of RAPID messages (Section 2.2.2), allowing an optimal allocation of the bandwidth.
To further improve the tuning of the bandwidth, DDS offers routing services. Routing allows
redistribution of data of selected topics at specific frame rates on different domains. This
capability isolates network traffic and allows control of bandwidth usage on the various parts
of the network. For example, Figure 6c illustrates the network configuration for the 2013
Surface Telerobotics experiment (Bualat et al., 2012) where astronauts on the International
Space Station will control a K10 rover at Ames. In this complex scenario involving two
NASA centers and a space asset, three DDS domains are configured with routers tuned to
guarantee that bandwidth allocations will be honored.

More advanced DDS QoS features have also been leveraged for NASA field tests. For exam-
ple, we demonstrated the full operational capabilities of a robotic scouting task in presence
of lengthy (50 second) delay between the robot and the ground control. Again, achieving
this level of performance would not have been possible without highly capable middleware.

3.5 Software Agility

Starting in 2007, the IRG conducted three significant field experiments with the K10 rovers
over an 18 month period. Each experiment had a very different mission scenario with different
instrument payloads. In addition, a major hardware revision, including motors, motor con-
trollers and kinematic parameters, was performed before each of the experiments. Finally,
significant capability improvements were incorporated, including a continuous navigation
system, which replaced the previous “stop-and-go” navigation. Our architecture allowed all
of these transitions to be handled without rupture in our rover usage.

We have found that the adoption of the SORA architecture has greatly boosted developer



productivity. In the 6 months preceding the Haughton Crater 2007 field test, the four
person team working on the rover software was able to drastically improve the locomotion
and navigation system, integrate new science instruments (GPR, LIDAR), develop ground
control tools, and implement a complete mission scenario. The service architecture not only
benefited the core rover team, but all parties providing software for the same field test, by
providing them with a robust platform for software integration. Since then, one or two field
tests have taken place annually, supported only by a 2 person rover software team.

The latest field test that we performed at Basalt Hills (CA) in late 2012 demonstrated addi-
tional advantages of using RAPID and SORA. This field test was conducted in collaboration
with the CMU Robotics Institute who demonstrated their mesh Reliable Autonomous Sur-
face Mobility (RASM) (Wettergreen and Wagner, 2012) mapping system on the K-REX
rover. For this test, the inputs and outputs of the RASM software were adapted to use the
RAPID messaging system. The adaptation was performed by a student, who had no prior
exposure to SORA and DDS, in less than 6 weeks. This period included the creation of
RAPID interfaces to the RASM system, tuning of the algorithms for the K-REX robot, and
one week of field testing.

4 SORA Shortcomings

The long-term use, continuous development, and intensive field testing of SORA has provided
us with significant insight into SORA’s design, implementation, and software technologies.
In this section we discuss some of the limitations that we have identified: re-use of data
structures, synchronization of services, and middleware acceptance by external parties.

4.1 Rigidity of Data Structures

The publish/subscribe model of data-distribution is central to much of SORA. Unfortu-
nately this model violates some of the abstraction concepts of object-oriented design. The
data-structures used for distributing information through the system become the public in-
terface to write applications against. This is a necessary caveat in a data-centric distributed
applications such as robotics, but can affect maintainability and code re-use.

In addition, the data-distribution systems used by SORA do not efficiently support type-
polymorphism. A data-bus supporting single-inheritance in the disseminated data-structures
would allow generic data-consumers to subscribe to a generalized concept (e.g. position),
while ignoring the sensor specific information (e.g. additional GPS data fields). However,
the CORBA Notification service, as well as DDS, only allow retrieval of the message content
as generated by a message publisher.

In consequence, SORA data producers, such as a pose sensor, are less interchangeable than if
type-polymorphism was available. In a similar way, code re-use is limited when writing data
consumers since they cannot share a common high-level data type. Finally, this limitation



also affects the maintainability of data collected during field tests. The logged data is used
extensively after the field tests for analysis and development purpose. So any extension of
previously defined data-types requires additional effort to convert the logged data to match
the new definitions.

4.2 Middleware Acceptance

The acceptance of specific middleware, especially of CORBA is often an issue. The major
issues reported usually are footprint and complexity.

Both those arguments are only partially true. Middleware packages usually have similar
footprint as other frameworks and libraries that are regularly used in the development of
large-scale systems (GUI toolkits, data-bases, JIT-compiler etc). However, it is difficult to
over-come established misconceptions regarding the complexity and performance of certain
middleware (e.g. CORBA). In our experience, middleware can be managed by a small
number of domain experts, without requiring all developers to cope with complexity.

One key factor is that most middleware packages (especially open-source packages like
ACE/TAO) are not trivial to install and to integrate into the build-process. ACE/TAO
now provides packages for most Linux distributions, but an installer for Windows is still
missing. Also, auto-generated code can have poor readability, which makes it difficult for
the non-domain expert to understand.

4.3 Synchronization of Services

In a loosely coupled architecture, tight synchronization of services is generally not envisioned.
This is generally true for most of our services. Triggering a service activity on an event
emitted by another service is straightforward, but other synchronization primitives do not
exist in SORA.

This becomes more of an issue with simulation, when single-stepping and faster-than-real-
time execution are needed. Synchronization of systems timing is usually provided by network
services. But a uniform, synchronized time-step is difficult to provide efficiently in a large-
scale distributed system and generally not provided by any middleware, or object model
infrastructure. Currently, service synchronization is not a SORA requirement. But if more
time critical simulators are introduced in the SORA system, we might consider developing
synchronization mechanisms similar to those provided by the High Level Architecture, which
we have used for previous projects (Flückiger et al., 2005b).

5 Future Work

Future work on the SORA core software includes refining some of the SOA concepts, contin-
uing to standardize the RAPID robotic interfaces with other NASA centers and integrating



new algorithms. In addition, to infuse SORA technologies and concepts into space missions,
we would like to quantify the benefits of SORA for its application domain. This would
require the identification and application of metrics to measure the system. Some metrics
could include the man power required to maintain and evolve the system, the percentage
of the code base that is changed for each new mission, or the meantime between failures
(recoverable or terminal) for each experiment. Other metrics could include defect rates or
complexity analysis. In particular, we plan to perform static analysis of SORA by collabo-
rating with another group at NASA Ames (Venet and Lowry, 2010). Exposing the system
to a broader community would also help gather quantitative and qualitative measurements.
In this spirit, SORA source code has been already cleared for release under the NASA Open
Source Agreement licensing, and thus is available to a larger community for evaluation and
contributions.

As we have discussed, SORA has been extensively tested during terrestrial field experiments,
and we would like to find a path to inject this software system into flight missions. A
step in this direction has been already taken with two new projects (Fong et al., 2012)
involving operations with the International Space Station (ISS). Table 4 summarizes the
goals of the Smart SPHERES and Surface Telerobotics projects. Both of these projects are
using SORA concepts and RAPID messaging as the communication backbone. Utilizing
our software for operation with the ISS introduces a number of requirements in terms of
operational constraints, astronaut training, software certification and communication with
space assets. The deployment of SORA and RAPID on ISS will help further mature the
software architecture.

Table 4: Ongoing projects supported by SORA and RAPID.

Smart SPHERES Surface Telerobotics

The volleyball sized free-flyers
SPHERES have been aboard the
ISS since 2006. They now are equipped
with Android based smart phones
running a high level controller. As-
tronauts aboard ISS will define tasks
for the Smart SPHERES using a
VERVE based interface. Tasks can
include environmental survey, inven-
tory checking or imagery collecting. In
return, SPHERES will produce RAPID
telemetry and sensor data available
both to the astronauts and on the
ground.

A K10 rover located at NASA Ames
will be tele-operated from the ISS to
simulate a Lunar surface robotic op-
eration from L2 Earth-Moon Lagrange
point. This type of activity would re-
duce communication requirements and
maximize robot utilization, thus lower
mission cost. The mission is to de-
ploy a film based radio-telescope an-
tenna on the ground. The astro-
naut will command and supervise high
level tasks performed by K10 running
SORA. Telemetry between ground and
ISS will be using RAPID.

6 Conclusion

In this paper, we have described the design concepts underlying the Service Oriented Robotic
Architecture (SORA), the benefits brought by this approach and the difficulties encountered.



SORA has been deployed to multiple high-fidelity mission simulations of remote rovers con-
trolled from ground operations. These experiments have demonstrated the advantages of
SORA in terms of flexibility, scalability and reliability. At the same time, these experiments
have helped identify the limitations of our approach.

The lessons learned during the past 6 years of evolving SORA can be summarized in three
points. First, the existence of SORA is the recognition that the software performance of a
robotic system is not only due to its control architecture, but that the software architecture
also plays a key role. From its inception, SORA has been built with sound software prac-
tices, using a modern software architecture and leveraging proven middleware. Second, the
standardization of messaging for robots, taking into account the space domain constraints,
is key to the usability and sustainability of the robotic assets. RAPID, a lean, yet power-
ful messaging system opens collaborations between research groups, and facilitates infusion
into flight systems. Finally, the advantages of SORA extend beyond the domain of robot
control. SORA serves as the backbone supporting IRG’s field testing by connecting various
robotic mission tools with a powerful distributed system infrastructure. The SORA design
and implementation has enabled a full ecosystem of robotic capabilities, and will continue
to support their further evolution in the future.

Acknowledgments

This work was supported by the NASA Exploration Technology Development Program,
the NASA Enabling Technology Development and Demonstration Program, and the NASA
Game Changing Development Program. The authors would like to thanks all the individuals
who contributed to the SORA system: Mark Allan, Xavier Bouyssounouse, Matthew Deans,
Laurence Edwards, Susan Lee, Mike Lundy, Eric Park, Liam Pedersen, and Vinh To, as well
as the numerous interns who spent time on this project. In particular, we are thankful to
Terry Fong, IRG lead, who has always been so supportive of this effort.

References

ACE/TAO (2012). ACE, TAO, and CIAO sucess stories. http://www.cs.wustl.edu/

~schmidt/TAO-users.html.

Amoretti, M. and Reggiani, M. (2010). Architectural paradigms for robotics applications.
Advanced Engineering Informatics, 24(1):4 – 13. Informatics for cognitive robots.

Bensalem, S., de Silva, L., Gallien, M., Ingrand, F., and Yan, R. (2010). ”rock solid”
software: a verifiable and correct-by-construction controller for rover and spacecraft
functional levels. In International Symposium on Artificial Intelligence, Robotics and
Automation for Space, Sapporo, Japan.

Biesiadecki, J. J. and Maimone, M. W. (2006). The mars exploration rover surface mobility
flight software driving ambition. In Aerospace Conference, 2006 IEEE.



Brose, G. (1997). JacORB: Implementation and design of a Java ORB. In DAIS’97, IFIP
WG, International Working Conference on Distributed Applications and Interoperable
Systems.

Bualat, M., Deans, M., Fong, T., Provencher, C., Schreckenghost, D., and Smith, E. (2012).
ISS crew control of surface telerobots. In Proceedings of IAF/AIAA Global Space Ex-
ploration Conference.

Burridge, R. R. and Hambuchen, K. A. (2009). Using prediction to enhance remote robot
supervision across time delay. In Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pages 5628–5634. IEEE.

Ceballos, A., Bensalem, S., Cesta, A., De Silva, L., Fratini, S., Ingrand, F., Ocon, J.,
Orlandini, A., Py, F., Rajan, K., et al. (2011). A goal-oriented autonomous controller
for space exploration. ASTRA.

Collett, T. H., MacDonald, B. A., and Gerkey, B. P. (2005). Player 2.0: Toward a practi-
cal robot programming framework. In Proceedings of the Australasian Conference on
Robotics and Automation (ACRA 2005).

Deans, M. C., Fong, T., Allan, M., Bouyssounouse, X., Bualat, M., Flückiger, L., Kobayashi,
L., Lee, S., Lees, D., Park, E., Pacis, E., Pedersen, L., Schreckenghost, D., Smith, T.,
To, V., and Utz, H. (2009). Robotic scouting for human exploration. In AIAA Space
2009, Pasadena, California.

Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived robot genes. Robotics
and Autonomous systems, 56(1):29–45.

Flückiger, L., Neukom, C., Pisanich, G., Buchanan, E., Wagner, M., and Plice, L. (2005a).
Experiments with autonomous software for planetary robots: A simulation success
story. In ’i-SAIRAS 2005’-The 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, volume 603, page 68.

Flückiger, L., Neukom, C., Pisanich, G., Buchanan, E., Wagner, M., and Plice, L. (2005b).
Experiments with autonomous software for planetary robots: A simulation success story.
In i-SAIRAS 2005 -The 8th International Symposium on Artificial Intelligence, Robotics
and Automation in Space.

Flückiger, L., To, V., and Utz, H. (2008). Service-oriented robotic architecture supporting a
lunar analog test. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space (iSAIRAS).

Fong, T., Allan, M., Bouyssounouse, X., Bualat, M. G., Croteau, J., Deans, M. C., Flückiger,
L., Lee, S. Y., Lees, D., Keely, L., To, V., and Utz, H. (2008a). Robotic site survey at
Haughton crater. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space (iSAIRAS).



Fong, T., Berka, R., Bualat, M., Diftler, M., Micire, M., Mittman, D., SunSpiral, V., and
Provencher, C. (2012). The Human Exploration Telerobotics project. In Global Space
Exploration Conference, Washington, DC.

Fong, T., Bualat, M., Deans, M., Allan, M., Bouyssounouse, X., Broxton, M., Edwards, L.,
Elphic, R., Flückiger, L., Frank, J., et al. (2008b). Field testing of utility robots for
lunar surface operations. In AIAA Space.

Fong, T. W., Bualat, M., Deans, M., Adams, B., Allan, M., Altobelli, M., Bouyssounouse,
X., Cohen, T., Fluckiger, L., Garber, J., Palmer, E., Heggy, E., Helper, M., Hodges,
K., Hurtado, J., Jurgens, F., Kennedy, T., Kobayashi, L., Landis, R., Lee, P., Lee,
S. Y., Lees, D., Lum, J., Lundy, M., Shin, T., Milam, T., Pacis, E., Park, E., Pedersen,
L., Schreckenghost, D., Smith, T., To, V., Utz, H., Wheeler, D., and Young, K. (2010).
Robotic follow-up for human exploration. In Space 2010, pages AIAA–2010–8605. AIAA.

Fong, T. W., Nourbakhsh, I., Kunz, C., Flückiger, L., Ambrose, R., Simmons, R., Schultz,
A., and Scholtz, J. (2005). The peer-to-peer Human-Robot interaction project. In AIAA
Space 2005, Long Beach, California.

Jackson, J. (2007). Microsoft robotics studio: A technical introduction. Robotics Automation
Magazine, IEEE, 14(4):82 –87.

Kroll, P. and Royce, W. (2005). Key principles for business-driven development. Rational
Edge.

Lee, S. Y., Lees, D., Cohen, T., Allan, M., Deans, M., Morse, T., Park, E., and Smith,
T. (2012). Reusable science tools for analog exploration missions: xGDS web tools,
VERVE, and Gigapan voyage. Acta Astronautica.

Makarenko, A., Brooks, A., and Kaupp, T. (2006). Orca: Components for robotics. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06).

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F. (2010). Genom3: Building
middleware-independent robotic components. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 4627 –4632.

NASA (2012). Smart SPHERES fly high aboard the International Space Station. http:

//www.nasa.gov/mission_pages/tdm/telerobotics/spheres.html.

Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., and Kim, W. S. (2003).
CLARAty: An architecture for reusable robotic software. In Proceedings SPIE Aerosense
Conference, Orlando, Florida.

Object Management Group (2004). CORBA/IIOP specification. Technical report, OMG,
Framingham, MA.

Object Management Group (2012a). Data distribution service (DDS). http://www.omg.

org/spec/DDS.



Object Management Group (2012b). OMG IDL. http://www.omg.org/gettingstarted/

omg_idl.htm.

Object Management Group (2012c). Robotic Technology Component (RTC). http://www.
omg.org/spec/RTC.

Orocos (2012). OROCOS: Open Robot Control Software. http://www.orocos.org/.

Pedersen, L., Utz, H., Allan, M., Flückiger, L., Lee, S., and To, V. (2012). Tele-operated lunar
rover navigation using LIDAR. In International Symposium on Artificial Intelligence,
Robotics, and Automation in Space (iSAIRAS).

Reeves, G. E. and Snyder, J. F. (2005). An overview of the mars exploration rovers’ flight
software. In Systems, Man and Cybernetics, 2005 IEEE International Conference on.

Rowe, S. and Wagner, C. R. (2008). An introduction to the joint architecture for unmanned
systems (JAUS). Ann Arbor.

RTI (2012). RTI DDS. http://www.rti.com/products/dds/.

Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects. Wiley & Sons.

Schmidt, D. C. and Vinoski, S. (1999). Programming asynchronous method invocations with
CORBA messaging. C++ Report, 11(2).

Torres, R., Allan, M., Hirsh, R., and Wallick, M. (2009). RAPID: Collaboration results from
three NASA centers in commanding/monitoring lunar assets. In Aerospace conference,
2009 IEEE, pages 1 –11.

TwinOaks Computing (2011a). CoreDX DDS Middleware used on-board NASA Lunar Rover.
http://www.twinoakscomputing.com/node/346.

TwinOaks Computing (2011b). What can DDS do for you? http://www.

twinoakscomputing.com/wp/CoreDX_DDS_Why_Use_DDS.pdf.

Utz, H., Sablatnög, S., Enderle, S., and Kraetzschmar, G. K. (2002). Miro – middleware
for mobile robot applications. IEEE Transactions on Robotics and Automation, Special
Issue on Object-Oriented Distributed Control Architectures, 18(4):493–497.

Venet, A. J. and Lowry, M. R. (2010). Static analysis for software assurance: soundness,
scalability and adaptiveness. In Proceedings of the FSE/SDP workshop on Future of
software engineering research.

Volpe, R. (2003). Rover functional autonomy development for the mars mobile science
laboratory. In Proc. 2003 IEEE Aerospace Conf.

Wettergreen, D. and Wagner, M. (2012). Developing a framework for reliable autonomous
surface mobility. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space (iSAIRAS).



Willow Garage (2012). Robot Operating System (RoS). http://www.willowgarage.com/

pages/software/ros-platform.

ZeroC (2012). Ice manual. http://doc.zeroc.com/display/Ice/Ice+Manual.


