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Background

US and other countries continue to
pursue hypersonic vehicles for a variety
of applications
— Single or Two Stage to Orbit (SSTO or TSTO)
— Long-duration endo-atmospheric flight
(transport or weapon delivery)
Hypersonic flight is a very coupled
environment (“aero-thermo-servo-propo-
elasto”) which drives requirements for weakly
coupled or strongly coupled analysis

Mid CY2008 DFRC GNC personnel initiated
development of a non-linear, coupled, full
vehicle dynamics, 6-DOF simulation



Background (cont’d)

* Approx. 1 year later DFRC began
pursuing incorporation of
aerothermal, thermostructural into
vehicle simulation

— Enabled flight data reduction

— GNC personnel seized opportunity
to work on adaptive guidance
algorithms based on aerothermal or
thermostructural parameters

Sample Body Poin Surface Eergy Balance and Mass Loss(seady Fight)

» First approach: obtain source code = =] ",
from one of several codes currently = s
available that solve 1-D (in-depth)  _. T e
material response, not feasible nor <. n
desirable ;. i

« Second approach: “update” ., -
simplified aerothermal routines from . :
DFRC NASP vehicle simulation o

o
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Tool Requirements

Heritage simplified aerodynamic heating routines for NASP vehicle
simulation were insufficient

Free-stream Approximate Method: Computationally efficient method of
determining stagnation point or body point heating using engineering methods
(NASA TM-4222)

Verified and validated against real-gas shock solution program up to Mach 17
Limited to thin-skin (lumped-mass, 0-D) with explicit numerics, and no surface
thermochemistry (no ablation)

Simulation Requirements

Requirements driven by quantities of interest for supporting flight test, and
parameters of use to GNC R&D (in-depth temperature profiles and recession)
In-depth material response, including surface thermochemistry

» Multiple materials, including contact resistances, radiation or convection gaps, thermally

varying material properties

Thermal stress estimate given in-depth thermal response and
axial/bending/combined constraint in 1, 2, and 3 dimensions
Minimize computational time required to maintain real-time or near real-time run
capability
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Tool Development

Incorporate ablation and
thermochemistry into heritage

trajectory-based 0-D (thin Develop fully implicit in-depth
skin) aeroheating routines material response program
(APE)

A 4

Integrate APE into heritage
routines to obtain a trajectory-
based in-depth material
response program (TAPE)

Develop thermal stress
program (MANTISS)

A 4

Integrate MANTISS into TAPE

Verification and validation efforts utilized analytical and manufactured solutions, and comparisons with
similar programs.
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« Technical Approach: two main aspects to the problem

— Surface energy balance: accounting for effects from convection, ablation, radiation, stored or
conducted away from surface

— In-depth solution:
* 0-D: lumped parameter, temperature response dependent upon thickness and heat capacity
+ 1-D: conduction between multiple material layers

« Solution Methodology
— 0-D: implicit single equation solution

— 1-D: implicit finite-difference solution to system of equations coupling surface energy balance
and in-depth material response

JANNAF Thermochemistry & Scala Kinetics
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e Thermal stress

— Thermal stress is caused when expansion or contraction is inhibited by mechanical
constraint(s)

— Mechanical constraints can be classified as: free, axial, bending, or fully constrained

 Thermal stress away from ends for 1-D temperature distribution in a bar, fully
constrained:

1 C
011 () = —E(Da(D) (TG) = Trep 1)) + Ao LE (T)a(T) (T) = Trep () dy

3y (€
+B5 | EMa(D) (TO) = Trep () ydy + 0707 (7)
—-C
— A =0 unless unrestrained axially (A = 1)
— B =0 unless unrestrained in bending (B = 1)

E is the Modulus of Elasticity

L(T)_Lref
Lref
T_Tref

« Thermal stress away from ends for thick plate, 1-D temperature distribution, has
same form but each term is multiplied by 1_:; where v is Poisson’s ratio

a is the linear average coefficient of thermal expansion given by a =

« Thermal stress, fully restrained in 3 dimensions

E(M)a(T)(T — Tref) + 0pef

OTh =712y
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Sample Problem

NASA ARMD (Aeronautics Research Mission
Directorate) developed publicly distributable generic
hypersonic vehicle trajectory for coast-to-coast flight
(NY-LA)

* Problem Definition:

— Assume C-C panels (using publicly available properties*), 24-in
flow length along conical nose

— With and without ablation
— Scala slow and Scala fast kinetics models
— 0.5 and 1.0-in thicknesses

« Compare structural margins resulting from ablation,
kinetics models, thicknesses

*Fitzer, E, and L. M. Manocha, Carbon Reinforcements and Carbon/Carbon Composites, Springer, Berlin, 1998
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Sample Problem
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Sample Problem — Thermochemistry |

There are three ablation regimes, characterized as follows:

Kinetic Rate Limited Regime

Low temperatures

Ablation rate determined only by temperature and partial pressure of oxygen at
surface

Rate is independent of mass transfer coefficient and follows Arrhenius
relationship

Diffusion Limited Regime

Intermediate temperatures
Ablation rate determined by the rate of oxygen transported to the surface
Rate is proportional to mass transfer coefficient

Vaporization Regime

High temperatures
Ablation rate determined by the rate of carbon diffusing away from the surface
Rate is proportional to mass transfer coefficient

Surface approaches asymptotic temperature limit dependent on pressure at high
mass transfer rates
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Mass Loss Rate (Ib/ft2-s)
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At low temperatures, when reaction is not diffusion controlled, rate is only
dependent on temperature and the partial pressure of oxygen at the surface

Scala reported two bounding models for carbon kinetics, referred to as
“slow and “fast”

Scala Slow Kinetics
~ C+%0,-CO
- 1 = ky(po,)'/?e Ea/RT (absolute surface mass loss rate)
- k,= 44,730 Ib/ft2-s-atm?1/2
- E,=42,300 cal/mol-K

Scala Fast Kinetics
~ C+%0,-CO
- 1 = ko(po,)*/?e Ea/RT (absolute surface mass loss rate)
- k,=672,900,000 Ib/ft2-s-atm?/2
- E_ = 44,000 cal/mol-K
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Convective, Radiative, Conductive Fluxes (BTU/ft?-s)
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Thermocouple Time History
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Temperature (°R)
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Stress (ksi)
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Temperature (°R)
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Ablation Impact on Thermal Stress
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Temperature (°R)
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Slow vs Fast Scala Kinetics Recession
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Thermal Stress (ksi)
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Sample Problem Modification

« Scala Fast Kinetics produced a uniformly more conservative margin of
safety than Scala Slow Kinetics

« A modified trajectory that allows a deceleration curve with an inflection point
(rather than simple ramp) was analyzed
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Margin of Safety or Boolean (0 or 1)
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Summary

* An engineering tool was developed to solve the thermal
and stress response of a non-pyrolyzing, multi-material
stack to a trajectory given a 1-D heat flow assumption,
and 1, 2, and 3-D mechanical constraints (axial, bending,
combined)

« The tool was shown to be useful for ascertaining the
Impact of ablation on the thermal response and stress
state of the material

« The tool was shown to be useful for ascertaining the
Impact of various kinetics, or thermochemistry models on
the thermal response and stress state of the material
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