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♦ Adaptive Augmenting Control (AAC) has been 
developed for exploration class manned launch 
vehicles during the Constellation program [2] 

♦ The AAC concept has been developed for NASA’s 
Space Launch System family of launch vehicles 
and implemented as a baseline part of its full-scale 
flight control software  

♦ SLS implementation of AAC has been dispersion 
tested in multiple simulation environments, flight 
tested using Dryden’s specially outfitted F/A-18 
test bed [3], and is fast approaching a CDR level of 
maturity 

♦ Presentation will describe  
• Basics of adaptive formulation 
• Changes to Original AAC for SLS   
• Application to SLS Control system  
• Simulation Results  

–  Stressing Cases  
–  Monte Carlo Analysis  

Introduction 
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♦ Extends performance and robustness of baseline gain-scheduled (“fixed gain”) 
control system for the conditionally stable launch vehicle  

♦ Augmentation uses sensed data to adjust the total loop gain on-line  

Adaptive Augmenting Control Concept 
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♦  AAC summary-level design objectives: 

1.  “Do no harm”; return to baseline 
control design when not needed 

2.  Respond to error within ability of 
vehicle to track commands to 
increase performance 

3.  Respond to undesirable parasitic 
dynamics (i.e., control-structure 
interaction) to regain stability 



♦ Original adaptive gain law [2] features three components corresponding to the 
three objectives 

♦ Total Gain resulting from adaptation applied to PID control signal  
• AAC reference model provides error signal to gain up control 
• AAC spectral damper provides power to gain down control  

Original Adaptive Augmenting Control Law 
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♦ SLS implementation carries three terms matching the original three objectives 
but with updates to the formulation 

♦ Right hand nonlinear dependencies on adaptation gain have been removed  
• Provides for a more linear response of gain adaptation to inputs  

♦ Employed parameterized saturation functions to allow tunability of adaptation 
response to inputs  

• Can yield a more rapid adaptation response than in the original formulation 
• SLS parameterized to effect a rapid, linear, response within 90% of allowable gain range 

♦ Adaptive law has been recast directly in terms of total gain  
• Simplification of expression and flight code  

SLS Adaptive Augmenting Control Law Updates 
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♦ Baseline controller issues single angular acceleration command to the control 
allocator (OCA) per axis (pitch axis “q” shown) 

♦ Total gain is adjusted by adaptive law and applied to PID & DCA terms 

♦ Application to DCA aids in two ways 
• Objective 2: increases disturbance rejection performance, maintains PID/DCA gain ratios 
• Objective 3: allows adaptation decrease for parasitic dynamics in DCA loop  

♦ PTI is excluded from total gain  
• Open loop table-lookup input for the purpose of flight test system identification 

♦ Angular acceleration command is the point at which SISO open loop (OL) 
response is constructed 

• Total gain adjustments shifts the forward gain of the entire OL transfer function  

Application to SLS Baseline Control Law 
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♦ Baseline Control System 
• PID – (proportional, derivative, integral) 

–  Quaternion and rate commands 
• Bending Filters – attenuates, phases parasitic dynamics (flex, slosh, actuator lag) 
• DCA (Disturbance Compensation Algorithm) 

–  Rate and acceleration inputs  
• OCA (Optimal Control Allocator) – linear allocator based on weighted least-squares  

♦ Adaptive Augmenting Control 
• Reference model 
• Spectral damper process (filters, rectification) 
• Adaptive Law  

SLS FCS with Adaptive Augmenting Control 
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♦  2nd order transfer function with input delay models nominal/baseline control 
response to guidance inputs 

• Performs acceptably well compared to higher order systems  
♦ Each of the roll, pitch, and yaw control axes are sufficiently decoupled and 

parameterized independently 
• Natural frequency, damping, and delay per axis 
• Parameters scheduled as a function of flight condition 

♦ Parallel roll, pitch, yaw rate transfer functions integrated in series with an outer 
loop quaternion mechanization 

• Guidance inputs 
–  Inertial to Body Quaternion Command,   
–  Roll, Pitch, Yaw Rate Commands,  

• Output 
–  Inertial to Body Quaternion Response, 
–  Roll, Pitch, Yaw Body Rate Response,   

Multi-Axis Reference Model Mechanization 
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♦ Reference model response compares well to actual system system  
• Rate response for each axis shown on different scale 
• Roll shows largest commands during first half of boost phase trajectory  
• Pitch shows initial tower avoidance maneuver and day-of-launch wind adjustments  
• Yaw axis shows smallest command (cross-axis coupling during maneuvers) 

♦ Reference model response is compared to actual vehicle response to generate 
error signals indicating the extent to which rigid body control response has 
deviated from nominal/desired 

♦ Rate errors and attitude errors are blended together for each axis to produce a 
single signal in each axis to effect an adaptation gain increase in the 
corresponding axis 

Reference Model Response and Error Signals 
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♦ Spectral damper, consistent with the original formulation, provides an estimate 
of the power of undesirable frequency content in the feedback path 

♦  Input signal is constructed from the angular acceleration control command 
• Taken prior to application of total loop gain (avoids direct gain-induced transients) 

• Includes DCA to capture undesirable dynamics in its feedback paths 
• Subtracts a angular acceleration compensation term based upon the reference model 

dynamics to account for guidance-induced control commands  

♦ Resultant signal is then band-passed, squared, and low-passed to provide a 
smooth positive signal used to effect an adaptation gain decrease 

Spectral Damper, Updates to Original Formulation 
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♦ Filter parameters selected to 
highlight frequency spectrum 
associated with dynamics which can 
be suppressed by a gain decrease 

• propellant slosh 
• structural flexibility 
• actuator dynamics 



Limits Imposed on Adaptive Law 
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♦ Saturation Functions Applied to Squared Error and Spectral Inputs 
• Smooth saturation at ends of total gain range with tunable shape 

♦ Explicit hard limits are additionally imposed on total gain 
• 0.5 and 2.0 are current SLS total gain limits 
• correspond to -/+ 6 dB nominal gain margin design criteria  

♦ Adaptive rate limits imposed on squared error and spectral inputs 
• Parameterized by the time for the term to effect a full scale gain change  
• Safeguards to preclude numerical problems due to large or spurious inputs 

♦ Squared error and spectral signal are forced to be positive  
• Spectral signal can be negative for low pass filters with complex poles  



♦ SLS AAC has been enabled for the boost phase of flight although plans exist to 
explore its extension through core stage flight  

♦ The SLS FCS including AAC has been implemented in four main simulation 
tools: 

♦ MAVERIC (Marshall Aerospace VEhicle Representation In C) 
• MSFC developed 6-DOF time-domain simulation 
• Main ascent performance, guidance, navigation and control analysis tool  

♦ CLVTOPS (Crew Launch Vehicle Tree tOPology ) 
• Multi-body simulation built upon legacy TREETOPS tool 
• Employed for dispersed vehicle liftoff and staging separation clearance analysis 

♦ SAVANT (Stability Aerospace Vehicle ANalysis Tool)  
• Simulink-based Verification and Validation Tool for SLS  

♦ STARS (Space Transportation Analysis and Research Simulation) 
• NASA Langley developed, main simulation for Ares I-X  
• Simulink-based Verification and Validation Tool for SLS  

♦ Results using MAVERIC tool are shown in the following slides 
• Stressing case demonstrating objectives 1 and 2  
• Stressing case demonstrating objectives 1 and 3 
• PDR Monte Carlo Analysis results  

Simulation Results 
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♦ Example case: increased aerodynamic instability, severe winds, and a single-
engine dual actuator hardover occurring during maximum dynamic pressure  

Stressing Case for Objective 2 
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♦ Extreme scenario with 
AAC off results in a 
violation of the rigid body 
load indicator (dynamic-
pressure * total angle of 
attack) limit 

• Plot terminates  
♦ AAC gains up the system 

at the onset of the 
disturbances 

• Greatly improves attitude 
tracking 

• Load indicator stays well 
below limit 

• Control effort only 
temporarily saturates 

♦ AAC gain returns to 
nominal unity value after 
disturbances subside 
(objective 1) 



♦ Example case: primary structural mode undergoes simulated instability during 
region of flight where gain of mode is higher than necessary attenuation 
provided by control filters 

Stressing Case for Objective 3 
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♦ Extreme scenario with 
AAC off results in 
divergent behavior in the 
actuator rates 

♦ AAC gains down the 
system at the onset of the 
instability 

• Suppresses modal 
response to a limit cycle 
of non-destructive 
magnitude  

♦ AAC gain returns to 
nominal unity value after 
instability ceases to 
persist (objective 1) 

Unstable  
mode 



♦  Example Monte Carlo simulation from liftoff to booster separation (2000 runs) 
♦  Dispersions include but not limited to mass properties, structural dynamics, sensor noise, 

aerodynamics, winds, thrust misalignment 

Monte Carlo Simulation Results 
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♦  Total gain in pitch shows 
minimal adaptation 

•  Small deviation towards end of 
flight due to booster tailoff timing 
variations 

♦  Yaw shows adaptation in 
booster tail-off region  

• Corresponding to highly 
dispersed booster thrust 
imbalance  

♦  Roll shows the most 
adaptation  

• Large guidance commands, 
excursions due to high winds, 
booster tailoff, and 
conservative booster slag 
model 

♦  Overall, minimal effect on        
load indicators and control 
usage despite vehicle and 
environment design 
dispersions (objective 1) 



Questions? 
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