

SLS Mission Planners Guide (MPG) Overview

David Alan Smith

Advanced Development Office (XP70) 24 February 2014

www.nasa.gov

Objective

- Provide a summary overview of draft SLS Mission Planners Guide (MPG)

• Outline

- Section 1-2: Purpose and Scope
- Section 3: SLS Configuration Overview
- Section 4: SLS Mission Design
- Section 5: Environments
- Section 6: Launch Vehicle Interfaces
- Section 7: KSC Payload Launch Facilities

• Approach

- "Inner Loop" (SLS Program) uses its Design Analysis Cycle (DAC) to develop Exploration Mission 1 (EM-1) for first flight in 2017
- "Outer Loop" (SLS Evolvability) uses SLS DAC data to establish potential performance of SLS Block upgrades
- Outer Loop analysis based on Inner Loop data provides the basis for the current version of this MPG Overview

SLS Mission Planners Guide Section 1-2

1: PURPOSE 2: SCOPE

Mission Planners Guide

- Serves as a information resource between NASA, industry, and the scientific community for understanding potential range of SLS mission capture
- Promotes two-way dialogue between developers and users to most efficiently evolve SLS mission/payload capabilities
- Those requiring additional mission planning information contact Mr. Steve Creech, SLS Assistant Program Manager, Strategy and Partnerships (<u>steve.creech@nasa.gov</u>)

NASA

3.0	SLS OV	'ERVIEW	9
3	.1 SLS B	lock 1 (70t) Vehicle Configuration	10
	3.1.1	SLS Block 1 Core Stage	11
	3.1.2	SLS Block 1 Solid Rocket Boosters	12
	3.1.3	SLS Block 1 Interim Cryogenic Propulsion Stage	12
	3.1.4	SLS Block 1 Payload Fairings (5m diameter)	13
3	.2 SLS P	ost Block 1 (105t/130t) Vehicle Configurations	13
	3.2.1	SLS Post Block 1 Core Stage	14
	3.2.2	SLS Post Block 1 Advanced Boosters	14
	3.2.3	SLS Post Block 1 Upper Stage (8.4m diameter)	15
	3.2.4	Post Block 1 Payload Fairings (5m, 8.4m and 10m diameter)	16
3	.3 SLS B	lock Configuration Descriptions	17
	3.3.1	SLS Block Evolution Point of Departure Configurations	17
	3.3.2	SLS Block 1 Crew Vehicle PDR Baseline	19
3	.4 SLS D	Development Timeline	19

SLS Mission Planners Guide Section 3

SLS CONFIGURATION OVERVIEW

SLS Performance and Mission Capture Benefits

Larger Interplanetary Science Payloads

- 3 to 4 times the mass to destination over ELVs
- Single launch of larger payload reduces payload complexity

Enhanced Reliability and Safety

 Additional volume simplifies orbital operations (less orbital assembly for large spacecraft)

SLS Block 1 Configuration: 70t Crew Mission

• Focus of Exploration Mission-1 (EM-1) Flight in 2017

- Core Stage (tankage and engines derived from Shuttle)
- Uses existing Upper Stage (derived from Delta-IV)
- Uses 5 segment RSRMs (derived from Shuttle)
- Uses existing 5m diameter fairings (cargo)

Launch Abort System

Block 1 Payload Overview SLS DAC3 PoD Configuration

Injected Payload

Launch Abort System (LAS)

Tri-Sector Fairing Deployment

Crew Module

Same part as above/right Shown twice for clarity

Encapsulated Service Module Panels

Spacecraft Adapter (SA)

MPCV Stage Adapter

Same part as above/right Shown twice for clarity

Same part as below/left Shown twice for clarity

MPCV Stage Adapter (MSA)

Interim Cryogenic Propulsion Stage (ICPS)

Launch Vehicle Stage Adapter (LVSA)

SLS Block 1 (70t to LEO) Development

SLS Post Block 1 Configuration: 105/130t Cargo

• Ultimate evolutionary goal post SLS Block 1 EM-1 and EM-2 flights

- Minimal changes to Block 1 Core Stage
- New Upper Stage
- New Boosters
- Payload Fairing - Existing and new Fairings Co. **Cargo Payload Adapter Upper Stage** Advanced Boosters (2) Interstage Core Stage **RS-2** Engines SLS 2100X 130t DAC2 Cargo

SLS Evolvability Point of Departure Concepts

4.0 SLS M	ISSION DESIGN AND PERFORMANCE
4.1 Miss	ion Trajectories and Performance Options20
4.1.1	Nominal Ascent Profiles
4.1.2	Earth Orbit Mission Case24
4.1.3	Lunar Vicinity Mission Case
4.1.4	Earth Escape Mission Case
4.2 SLS	Mission Performance to Destination27
4.2.1	Performance Margin and Reserve Approach27
4.2.2	SLS Earth-Orbit Performance
4.2.3	SLS Lunar Vicinity Performance
4.2.4	SLS Earth Escape Performance

SLS Mission Planners Guide Section 4

4.1: MISSION TRAJECTORIES 4.2: MISSION PERFORMANCE

NASA's Capabilities Driven Framework

SLS Evolvability Mission Cases

Revision: 2-21-14

• SLS launch to spacecraft separation

- Block 1 ICPS is strictly an in-space stage, and can perform 3 engine starts
- Block 1B US is ascent as well as in-space burns, and can perform ≥3 engine starts
- Ascent communications and tracking use standard KSC range services
- Command and telemetry through TDRS S-band
- Core Stage must burn out with a ballistic trajectory and avoid landmasses on impact
- Fairing separation jettisoned when the free molecular heating rate drops below 0.1 BTU/ft2 sec

Ascent Profiles

Key Mission Performance Definitions

• SLS Mission Performance Groundrule

- Performance data has appropriate margins built in for mass growth allowance, flight performance reserve, and program managers reserve
- <u>LEO or LEO Net Payload</u> is defined as encompassing the spacecraft or cargo element mass delivered on-orbit
 - Does not include an upper stage or adapter mass
- <u>Payload System Mass</u> is defined as encompassing the mass of both the spacecraft/cargo and any associated vehicle adapter(s) required
 - SLS Performance is given in terms of Net Payload System Mass

Earth Escape Performance

5.0	ENVIR	ONMENTS	34
5	.1 Pre-La	aunch Environments	34
	5.1.1	Thermal Environments	34
	5.1.2	Radiation and Electromagnets	35
	5.1.3	SLS Contamination and Cleanliness	35
5.2 Launch and Flight Environments		h and Flight Environments	36
	5.2.1	Spacecraft Design Loads	36
	5.2.2	Acoustics	36
	5.2.3	Shock	37
	5.2.4	Thermal	37
	5.2.5	Static Pressure (Fairing Venting)	38
	5.2.6	SLS Contamination Control	38
	5.2.7	Radiation and EMC	39
	5.2.8	Vibrations	39

SLS Mission Planners Guide Section 5

ENVIRONMENTS

• Current payload acceleration estimates:

			Max	Max G,	Max G,
	Lift off	Transonic	Q*Alpha	Boost	Core
Axial Acceleration, g	2.75	2.00	2.50	3.25	3.50
Lateral Acceleration, g	0.75	0.75	0.50	0.30	0.25

 Vehicle dynamic coupled loads analysis can be performed to generate more specific environments once payload and adapter concepts are more mature

Shock Environment

• Sources of shock environment at the payload/launch vehicle interface

- Booster separation
- Core stage/upper stage separation
- Fairing separation
- Payload/adapter separation
- Similar to ELVs, shock levels due to booster and core stage/upper stage separation are highly attenuated through the vehicle structure before reaching the payload/vehicle interface
- Shock levels due to fairing and payload/adapter separation are characteristically the primary drivers due to proximity with payload/adapter levels being the higher
- SLS cargo vehicles as a goal will utilize existing ELV fairings and payload adapters
- Shock levels for ELV fairing and payload/adapter separation events are readily available in ELV Payload Planners Guides

Payload Ascent Thermal Environment

- Payloads will be protected from aerodynamic heating through the application of external TPS and attenuation of heating by the fairing walls and internal acoustic protection system
- Current estimates of aerodynamic heating are consistent with those of other ELV
- Internal heat flux will be no greater than 0.1 BTU/ft²-sec typical of current ELV
- Payload fairing is not jettisoned until the *external* heat flux drops below 0.1 BTU/ft2-sec

Payload Ascent Venting Environment

- SLS fairings can be vented during the ascent phase by proper implementation of vent doors to insure an acceptable depressurization rate of the payload compartment
- Specific venting scheme designs will depend on the mission trajectory and payload depressurization rate requirement

Payload Ascent Contamination Environment

- Typical sources of ascent contamination include: molecular outgassing, NVR redistribution, particle redistribution, fairing separation, booster separation, core stage separation, and upper stage reaction control system
- Except for booster & core stage separation contamination sources, environments will be consistent with current industry available fairing provisions, cleanliness procedures and deposition requirements
- Since the payload is fully encapsulate by the fairing far forward of the sources, booster and core stage separation system potential debris contamination products will not pose a threat to the spacecraft

Payload Other Ascent Environments

- Other ascent environments under evaluation to be made available in the future:
 - Radiation and EMC --- TBD
 - Vibrations --- TBD

6.0 LAUNCH VEHICLE INTERFACES 39 6.1 Payload Fairings 39 6.1.1 5m Fairing on SLS Block 1 40
6.1 Payload Fairings
6.1.1 5m Fairing on SLS Block 140
6.1.2 5m Diameter Fairing on SLS Block 1B/2B41
6.1.3 8.4m Diameter Fairing on SLS Block 1B/2B41
6.1.4 10m Diameter Fairing on SLS Block 1B/2B42
6.2 Mechanical Interface/Payload Adapters42
6.3 Mass and Center of Gravity
6.4 Electrical Interfaces
6.5 Ground Equipment Interfaces43
6.5.1 Spacecraft Console
6.5.2 Power
6.5.3 Liquids and Gases
6.5.4 Propellant and Gas Sampling44
6.5.5 Work Platforms

SLS Mission Planners Guide Section 6

LAUNCH VEHICLE INTERFACES

SLS Offers Numerous Fairing Options

- SLS accommodates 5m, 8.m and 10m Diameter Fairings depending on mission need
 - POD Configurations shown as reference

Revised 2-21-14

POD 8.4m and 10m Diameter Fairings

29

7.0 KSC PAYLOAD LAUNCH FACILITIES	5
7.1 Space Station Processing Facility45	5
7.2 Payload Hazardous Servicing Facility	9
7.3 Payload Launch Complex 3953	3
7.3.1 Vehicle Assembly Building	3
7.3.2 Mobile Launcher	5
7.3.3 Crawler-Transporter	7
7.3.4 Pad B	7
7.3.5 Launch Control Center	9
7.4 Payload Processing and Encapsulation	D

SLS Mission Planners Guide Section 7

KSC PAYLOAD LAUNCH FACILITIES

EM-1 SLS Block 1 Crew Operational Flow

EM-1 SLS Block 1 Payload Operational Flow

KSC/GSDO Facility Overview

Space Station Processing Facility (SSPF)

- High Bay, Intermediate Bay, Air Lock
- Level4/5 Clean Work Area
- Door Dimensions (H x W): 49.5' x 42'
- Cranes: (2) 30 t / (2) 5 t / (1) 15 t
- Hook Height: 50' / 25' / 50'
- Ammonia Servicing, Compressed Air, GHe, GN2

Mobile Launcher (ML)

- Service Interfaces for SLS Vehicle
 (Umbilicals, Access Arms)
- Compressed Air
- Environmental Control System

Payload Hazardous Servicing Facility (PHSF)

- High Bay, Air Lock
- Level4/5 Clean Work Area
- Door Dimensions (H x W): 75' x 35'
- Cranes: (1) 50 t / (1) 15 t
- Hook Height: 74.5' / 72.5'
- Compressed Air, GHe, GN2
- Hypergolic Vent System
- PHE Breathing Air

Vehicle Assembly Building (VAB)

- (4) High Bays, (4) Low Bay Areas, Transfer Aisle
- Cranes: (2) 250 t / (2) 325 t / (1) 175 t
- Hook Height: 462.5' / 462.5' / 160.25'
- Compressed Air, GHe, GN2
- 360° Access to OML of Launch Vehicle

- Launch Control Center (LCC)
- "Brain" of LC-39
- Controls Operations Interfaces with Launch Vehicle and Spacecraft

Crawler Transporter (CT) Transports ML with Integrated Vehicle

Environmental Control System

- Clean Pad Approach
- Compressed Air, GHe, GN2, GO2, LH2, LO2
- Environmental Control System

SLS Mission Planners Guide

SUMMARY AND NEXT STEPS

- SLS Program (Inner Loop) continues to develop the 2017 vehicle
- SLS Evolvability (Outer Loop) continues to assess SLS Program results and incorporate those into Block upgrade performance studies
- A formal SLS Mission Planners Guide will be available after the next synch between Inner and Outer Loop is completed
- This overview also provides insight to better understand needed mission enabling technology investments for SLS Block upgrades
 - Users are invited to continue the discussion involving potential SLS utilization and related performance improvements that can increase SLS mission capture