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Parameters within net Power Increase
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€ Choose p R=107 at 15 keV.

€ Let R =1 mm, thickness of uranium liner is 5 mm, length of target is 2 cm
@ Density of DT target is 0.1 kg/m3

€ Total energy in DT target is only ~5 kJ, 1% of Charger 1 stored energy



Our Approach: Solve Maxwell's Equations Coupled to
Multifluid (lons, Electrons, Neutrals) Equations of Motion
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Maxwell’s Equations

» Solve with Smooth Particle Electromagnetic Variant of Finite-Difference
Time Domain (FDTD) method

o FDTD well documented, highly accurate grid-based method for analyzing the
time evolution of electric and magnetic fields, utilized in PIC codes

 Can interpolate charged fluid particles to grid to model conductivity or charge
and current density

Multifluid Equations of Motions

 Solve with Smooth Particle Hydrodynamics (SPH)
 Gridless Lagrangian technique

» Vacuum/plasma boundary well defined

 Leverage same engine as Maxwell Equation Solver

Both methods yield to ‘vectorized’ coding, making

multiprocessor (parallel) computing easy
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€ Numerical method for approximating probability densities over a
domain of particles.

€ Developed initially to model stars by Monaghan, et al, in 1977.

@ Currently used mostly in hydrodynamic modeling and CG effects in
film and video games.




How does SPH work?

TH T
LMMIK\) SYMLLE
e/

Integral interpolant:
A(r) = fA(r’)W(‘r — 7', h)dr’

A — quantity measured (density,
temperature, etc.)

W — differentiable kernel function
dr’ — volume differential

h — smoothing length.

Summation over mass elements:

Ap
As(r) = z my,—W(r — 1y, h)
> Pb

Similar to density probability
calculations.

How quantities are accurately calculated
with a small particle domain.
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Run SPFMax
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run_sph_solver
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Equations of motion (completed)
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e Test thermal expansion of

R s
E: Dirfction of mogion : gas nozzle with various
Initial gas L i L Initial conditions
from z-pinch e A : ol .. * Nozzle geometry
o1 . +Gas
B e Temperature
£ W » Density
i 02 i 02 * Radius
02 o, ek A x(m) Length

« Composition

Nozzle wall e Lays ground work and
expectations for magnetic
nozzle



Preliminary results
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Preliminary results
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Crewed Mars Mission Concept AN\
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Deuterium-Tritium Tank
2.4 m dia} {4 ples)

SP-100 Reactor ISRl
Lithium 6 Tank (4.8 m long x Transhab
2.6 m dia. {4 plcs)
Stacked Capacitor Module (2}
(10 mlong x 3.6 m x7.2 m)
(8 ples) \
Two-Sided
Crew/Avionics
Radiators
Surface
176 m2 total
p= Lrea}m L Lander Habitat
- Two-Sided Med. Temp. Radiators
: {608 m2 total area)
Z-Pinch
Nozzle
Two-Sided High Temp. Radiators

{1910 m2 total area)
Lithium Hydride

4 Pod RCS 700 Ibf MR_80B 3 Hydrazine
Radiation Shield ﬁ";E“S] E'}"’;‘:}":E il Thrusters, RCS Tank (.86 m dia.) and RCS
(.25 m thick) : : : Helium Pressurant Tank (.64 m dia.)

{@ples - 4 Aft and 4 Forward)
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Mission Concepts

Equivalent DV (km/s)| 275 93.2] 361 572
— * Engine
:'IE'?;;hsfc:rb'li'traj o L ° Isp = 19,400 sec
— Transfer Trajectory e T=38 kN
* 10 Hz pulse freq.
* Vehicle
/ * My, =552 mT
[—— * M, =150 mT
rvanster ra ori | * 30% MGA
~{—Transfer Trajectory || po|sgrove, T. et al. Design of Z-Pinch and Dense

Plasma Focus Powered Vehicles, 2010 AIAA

Figure 3 Mars 90 Day Transfer Trajectories Aerospace Sciences Meeting



Mating SPFMaX and MCNP

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

€ SPFMax gives
* Ability to model 3d effects
e Can propagate magnetic fields in vacuum
e Easily editable

4 MCNP
e Track neutron life, fission reactions
* Flexible geometries

€ Second half of NIAC is to run codes concurrently
e synchronize neutron population vs. time
* Optimize energy output
- As function of geometry
- As function of composition
— Mix of UF6, D-T
— Lithium liner thicknesses
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Single turn Magnetic Nozzle @/ T“HEUN.VZRES.TY\OF
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e Gasdynamic nozzle
performance to be compared
with magnetic nozzle to assess
loss mechanisms in magnetic
nozzles, e.g.

* Field/plasma instabilities

e Plasma detachment

Direction of
current
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Charger-1

@ A test facility for high power and
thermonuclear fusion propulsion
concepts, astrophysics modeling,
radiation physics

€ Located in the UAH Aerophysics
Lab at Redstone

@ The highest instantaneous pulsed
power facility in academia — 572
kJ (1 TW at 100 ns)




Experimental Roadpath
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€ Methodology
* Incremental improvements in experimental capability
e Benchmark model with experimental data
e Can also run any experiments below with lower power systems
* Looking for comments and suggestions here!

Solid U,34
CC ) e | - - — D-T slush
Li wire Deuterated D-D slush
Polyethylene S Solid U5
A A A ﬂ D-Li solid
Implosion Neutron Plasma

flux stability
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Long Range Plans
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€ Charger I
e Construct breadboard PuFF system capable of 10-20 Hz operation
- Upgrade to flight weight hardware — NASA
- Optimize pulse for maximum power output — DOE
- Astrodynamics, radiation protection, other research goals - Various
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