

Opening The Solar System: An Advanced Nuclear Spacecraft for Human Exploration

Robert Werka, MSFC Thomas Percy, SAIC

NETS 2014

2

Why This Study Is Different

- Low performance: Leave Earth on gas tank cluster, return in a lifeboat
- This approach to Exploration makes missions even to Mars extremely costly, complex and dangerous
- Aerospace America (3/12): "near-to-medium term prospects for 'advanced propulsion' to create a new era of space exploration are not very good".

Advanced Propulsion of Previous Studies Meant New Physics

- MSFC "HOPE Study" 2003
- GRC "Making 2001 Vehicle Study" 2005
- APL "Outer Planet HSF Study" 2010

Adv Prop: >30,000 sec & 1-10 mT Of Thrust = MPD, Fusion, etc.

3

Why This Study Is Different

- Low performance: Leave Earth on gas tank cluster, return in a lifeboat
- This approach to Exploration makes missions even to Mars extremely costly, complex and dangerous
- Aerospace America (3/12): "near-to-medium term prospects for 'advanced propulsion' to create a new era of space exploration are not very good".

Advanced Propulsion of Previous Studies Meant New Physics

- MSFC "HOPE Study" 2003
- GRC "Making 2001 Vehicle Study" 2005
- APL "Outer Planet HSF Study" 2010

Adv Prop: >30,000 sec & 1-10 mT Of Thrust = MPD, Fusion, etc.

A Blog: "Now, if I worked at NASA and was given the choice to work on yet another chemical launcher or a revolutionary planetary ship (propelled by fission fragment engines), I know what my choice would be."

Unnamed Website 2/3/10

Today's Propulsion Limits Human Space Exploration

- Low performance: Leave Earth on gas tank cluster, return in a lifeboat
- This approach to Exploration makes missions even to Mars extremely costly, complex and risky
- Aerospace America (3/12): "near-to-medium term prospects for 'advanced propulsion' to create a new era of space exploration are not very good".

Advanced Propulsion of Previous Studies Meant New Physics

- MSFC "HOPE Study" 2003
- GRC "Making 2001 Vehicle Study" 2005
- APL "Outer Planet HSF Study" 2010

Fission Fragment Rocket Engine (FFRE) Not Considered Before

- Needs NO NEW PHYSICS
- Adding Afterburner matches FFRE Performance to Mission Needs
- High Power Reactor Provides High Specific Impulse & Moderate Thrust

Using FFRE Technology of TODAY May Make Space Vehicle Of Science Fiction Into Space Vehicle Of Science Fact

Adv Prop: >30,000 sec & 1-10 mT Of Thrust = MPD, Fusion, etc.

Afterburner Fission Fragment Rocket Engine (AFFRE)

A Reusable Space Vessel

Advar

Scale Comparison With USS Enterprise (World's Largest Aircraft Carrier) Advaı

Thermal Control

Radiator System	Operating Temp (K)	Heat Rejection	Radiator Size	Radiator Mass
Low Temp. Loop	140 K	0.40 MW	9667 m²	71535 kg
Med. Temp. Loop	590 K	147.6 MW	11307 m ²	90455 kg
High Temp. Loop	1200 K	302.3 MW	1353 m²	13534 kg
Brayton Cycle Loop	400 K	1.28 MW	464 m²	3714 kg

- Thermal Challenge: Rejecting ~450 MW of Thermal Energy
 - 4 cooling loops for different subsystems
 - Double sided radiators reduce spacecraft length
 - Most massive subsystem
 - LEO assembly like ISS

- Use significant waste heat to produce power
 - 100 kW Brayton power generators based on GRC concept
 - Carrying 3 primary & 1 spare unit
- Supports any conceivable spacecraft power requirement including human needs for radiation protection, physical comfort and communication

Mars Mission Comparison

401

AFFRE Based On Today's Physical Principles No Future Science Required

AFFRE Can Change Space Travel Paradigm

- Much Faster Trip Times
- Same Vehicle Can Go Anywhere
- Same Vehicle Can Carry Anything
- Provides Astronaut Safety And Comfort

AFFRE Allows Creation Of A Space-Based, Reusable National Asset For Exploration