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/ackground

* NIB fuels uncfé%%evelopment
W-60v0l%UO, CER%ET
Fuel loss through sion
Inherently stable ] [ Tuel element cladding
Coat spherical UO//fuel kernels in 40 vol% W

|
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® Performance /deantages
- PreventH, propﬁllant at 2850 K from reducing
UO, fuel kernelﬁ
— Minimize erosion and fuel loss

331 and 7 channel fuel samples

i Manufactu Advantages
Excellent p wder distribution uniformity during
HIP can fl||/
Prevents segregation during HIP can fill
Higher gr%n packing density
Mlnlmlze ensnonal distortion during HIP




Problem & Objectives
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Vendor cost to coat dU®; in W excessive
7

WF, process

— Industry standard for W/deposition

— (Gaseous reagent

— Excessive F contamination in UO, substrate and W
coating

— Residual F exacerbatés fuel loss

W(Cl; process

No UO, chlorinatio/with WCl; or reaction products
W coatings do no 4 xcessively contaminate substrate
WClg preferable to WF, for coating UO, with W

More complex (s@lid-to-vapor reagent gas)

Not an industrially utilized process

Develop a Iab-%cale prototype that utilizes the
WCl, process § at enables cost effective
40vol% coati% of spherical dUO, powders
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SEM micrograph of uncoated UO,
sol-gel particles (700x)

SEM micrographs of spherical
W-coated ZrO, particles
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Coating Requirements
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|
Fully encapsulate UO /substrate
/|
/)

Thickness: 40 * 1 vo%, uniform spatial distribution

|

|
Density: pore-free,/% 18.7 g/cm?3 - 19.2 g/cm3
|

Purity: > 99.98% W, < 10 ppm impurities

|
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Process: must n% react with UO, substrate
|
|

Adhesion: mus%/not de-bond, spall, crack or blister up to 3000 K

|
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UO, fuel loss<1.9 wt% (<1 mg/cm?2) when heated to 3000 K in

1
flowing H, fof 2 hours




Ar,xsH,,930°C

®* WCI, process_
P e,
L her e /VCl. +3H, — W +6HCl+ Ar+xsH,

Temperature 950
in large columnar grai

H,/WClI; mole ratio: to 30:1

|

1
Pressure: < 10 mm Hg (0.193 psia)

® CVD System
— Fluidized bed re tor
— Raining feed, 2%9 batches
— 20 to 60 min //




Accomplishments._

- Fluidization of 0, ~ J
Coating ZrO, to 60% of target
thickness in 20 minute/f
Demonstrated viability/ f the
WCl, CVD process //
Coating spatial uniformity
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Spouted reactor design. Fluidization pre & post deposition process

Limitations
— Powder drop-oui difficult to
fluidize HfO, without high H,
flow rates & powder small
quantities
Complex design
Fragile and expensive glass- ® —

metal transition Zr0,, D,, = 42.649 ym, 20 min run,  ZrO,, D, , = 14.519 um, 20 min run,
&, t = 2.3593 um, (59.6% of goal) t=2.1184 um (157.2% of goal)

7

&, position rate = 7.078 um/hr Deposition rate = 6.3552 um/hr.
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Fluidization
//

s, //
® Calculate fluidizal /@g conditions L Theorolical  Actual Pariiclo
- Estimate Reynolds nu%lber and o . - o
terminal velocity of p%vders ina

fluidized state.

= (29.5% 4+ 0.375A4r)/2 — 295
® Empirical data
— Develop correlatighs based on 1, 9D3p¢(Pp — Pr)
empirical data uz
Verify correlati with observed

fluidization behavior 29D2(pp — py)
VT —

® Reactor estir/%ation
— Extrapolate galculated and empirical fluidization (sphereicity > 0.93)
results to estimate minimum Ar = Archimedes number

Re,,,= Reynolds number for minimum

g = gravity

fluidization flow rate D, = particle diameter

Reactor d%ign and particle specific p, = particle density
| p, = fluid density
= fluid viscosity
V= particle terminal velocity
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rted Reactor

Fluidization Prot:
- Qiypes
— Simplified & robust desn%
7
— Based on lessons learngd
— Co-centric fluid lines
— Built and tested
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F|UIdlzat|On l Inverted Reaétor

Inverted Reactor

— HfO, (30, 60, 100 g) Prototype (straight)  Prototype (tapered)
on

Room temperature ar
gl :
Fluidization vs. ﬂ/ rate Fluidization: Tapered, 103 g HfO,,
. / I i Ar, 30 L/m outer, 1 L/m inner, flush.
Inner/outer fluidization line ]

Co-centric tube positions

|
Straight vs. tap%ed reactor wall

Fluidized colurZ/n height behavior
Determined n%nimum and optimum

o | -
fluidization fI%N relxtes. ‘M -
é esign inverted CVD l B
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reactor = 2
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Powder loading and fluidization vs powder mass




Inverted

Reactor manifold

- Pyrex %%

— Co-centric reactant and fluidization lines
— Ball-socket gas connec%)ns

Reactor Wall

- Quartz

— Tapered

— Contains powder, eliminates powder
drop out collection fiopper

Reactor O-ring Joint
— Standard item
— Eliminates glasg-to-metal transitions

— Thicker walls =/obust
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Inverted ReaCtor
— UO, fluidizafion and coating trials in

727

Ar + WClg vapor
e

H,
e

H,+Ar+HCI vapor
E—

Inverted Reactor Design




Additional C\VD Upgrades

Controller

LRv2 Ar
o Reliel % R
LM70 psig) T (10 psig)

| RV4: Ar
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Gas line simplification, fitting/valve reduction
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Inverted Rea%

fc r System Layout
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Inverted
reactor
sublimer
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Kalrez 4079 O-rings

Data Acquisition and Cohttol
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Conclusions
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Demonstrated ﬁblllty of the WCl; CVD process
to coat ZrO, par ficles with W.

Inverted react%r designs are far more forgiving
and robust thjn spouted designs.

Corrosive n%ure of WCl; vapor limits reactor
i

material to /g/monel pyrex, quartz.

Transition/%rom surrogate to dUO, powder as

qwckly a;j/possible In order to address changes
s variables specific to dUO.,.




Recommendations for Future Work
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Optimize process variables
WCl, powder, I—V’”ﬁ?ﬁ%purity content

Reactor temperatur%//

Reactor heat/cool rates
H,/WCl; mole ratio/
Ffow rates as a fungtion of coating thickness

Deposition rate as% function of particle size

/
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Coating charagterization
Thickness |
Spatial uniformi
Impurity conte
Adhesion [/
Micro-hardne
Surface roughness
Grain structure (epitaxial content, grain orientation)
Grain orientation effect on coating properties (heat transfer/diffusion)
Grain boundary population impact on fuel retention

Potential H, heat treatments

— Pre-depaosition to clean substrate surface: effect on coating adhesion
— Post-deposition to remove impurities: effect on W grain growth
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