Background - NTP fuels under development - W-60vol%UO₂ CERMET Fuel loss through erosion - Inherently stable W fuel element cladding - Coat spherical UO, fuel kernels in 40 vol% W 331 and 7 channel fuel samples - Performance Advantages - Prevent H₂ propellant at 2850 K from reducing UO2 fuel kernels - Minimize erosion and fuel loss - Manufacture Advantages - Excellent powder distribution uniformity during HIP can fill - Prevents segregation during HIP can fill - Higher green packing density - Minimize dimensional distortion during HIP # Problem & Objectives - Vendor cost to coat dUO, in W excessive - WF₆ process - Industry standard for W deposition - Gaseous reagent - Excessive F contamination in UO₂ substrate and W coating - Residual F exacerbates fuel loss - WCl₆ process - No UO₂ chlorination with WCl₆ or reaction products - W coatings do not excessively contaminate substrate - WCl₆ preferable to WF₆ for coating UO₂ with W - More complex (solid-to-vapor reagent gas) - Not an industrially utilized process - Develop a lab-scale prototype that utilizes the WCl₆ process that enables cost effective 40vol% coating of spherical dUO₂ powders SEM micrograph of uncoated UO₂ sol-gel particles (700x) SEM micrographs of spherical W-coated ZrO₂ particles # Coating Requirements - Fully encapsulate UO₂ substrate - Thickness: 40 ± 1 vol⁹/₂, uniform spatial distribution - Density: pore-free, 18.7 g/cm³ 19.2 g/cm³ - Purity: > 99.98% W, ≤ 10 ppm impurities - Process: must not react with UO₂ substrate - Adhesion: must not de-bond, spall, crack or blister up to 3000 K - UO₂ fuel loss: <1.9 wt% (<1 mg/cm²) when heated to 3000 K in flowing H₂ for 2 hours # Apparatus ### WCl₆ process - Temperature: 950°C (higher results in large columnar grains - H₂/WCl₆ mole ratio: 10:1 to 30:1 - Pressure: < 10 mm Hg (0.193 psia) ### CVD System - Fluidized bed reactor - Raining feed, 25 g batches - 20 to 60 min **CVD System** # Spouted Reactor ### Accomplishments - Fluidization of ZrO₂ - Coating ZrO₂ to 60% of target thickness in 20 minutes - Demonstrated viability of the WCl₆ CVD process - Coating spatial uniformity (thickness measured through cross section examination) - Path: ZrO₂, HfO₂, UO₂ #### Limitations - Powder drop-out: difficult to fluidize HfO₂ without high H₂ flow rates & powder small quantities - Complex design - Fragile and expensive glassmetal transition Spouted reactor design. Fluidization pre & post deposition process ZrO₂, $D_{p,u}$ = 42.649 µm, 20 min run, t = 2.3593 µm, (59.6% of goal) Deposition rate = 7.078 µm/hr ZrO₂, $D_{p, u}$ = 14.519 µm, 20 min run, t = 2.1184 µm (157.2% of goal) Deposition rate = 6.3552 µm/hr. ## Fluidization #### Calculate fluidization conditions Estimate Reynolds number and terminal velocity of powders in a fluidized state. ### Empirical data - Develop correlations based on empirical data - Verify correlations with observed fluidization behavior #### Reactor estimation - Extrapolate calculated and empirical results to estimate minimum fluidization flow rate - Reactor design and particle specific | Powder | Theoretical
Density
(g/cm³) | Actual
Density
(%TD) | Particle
Size (µm) | |------------------|-----------------------------------|----------------------------|-----------------------| | ZrO_2 | 5.68 | 50 | 53 - 106 | | HfO ₂ | 9.68 | 99 | 100 – 200 | | UO ₂ | 10.97 | 99 | 50 – 150 | $$Re_{mf} = (29.5^2 + 0.375Ar)^{1/2} - 29.5$$ $$Ar = \frac{gD_p^3 \rho_f (\rho_p - \rho_f)}{\mu_f^2}$$ $$V_T = \frac{2gD_p^2(\rho_p - \rho_f)}{18\mu_f}$$ - Re_{mf} = Reynolds number for minimum fluidization (sphereicity > 0.93) - Ar = Archimedes number - -g = gravity - D_n = particle diameter - ρ_p^r = particle density - $\rho_f^{'}$ = fluid density - μ_f = fluid viscosity - V_T = particle terminal velocity # Inverted Reactor ### Fluidization Prototype - Simplified & robust design - Based on lessons learned - Co-centric fluid lines - Built and tested #### Fluidization - HfO₂ (30, 60, 100, 200 g) - Room temperature argon - Fluidization vs. flow rate - Inner/outer fluidization line - Straight vs. tapered reactor wall - Fluidized column height behavior - Determined minimum and optimum fluidization flow rates - Data used to design inverted CVD reactor Fluidization: Tapered, 103 g HfO₂, Ar, 30 L/m outer, 1 L/m inner, flush. Co-centric tube positions Powder loading and fluidization vs powder mass # **Inverted Reactor Geometry** #### Reactor manifold - Pyrex - Co-centric reactant and fluidization lines - Ball-socket gas connections #### Reactor Wall - Quartz - Tapered - Contains powder, eliminates powder drop out collection hopper ### Reactor O-ring Joint - Standard item - Eliminates glass-to-metal transitions - Thicker walls = robust #### Inverted Reactor UO₂ fluidization and coating trials in March # Additional CVD Upgrades Inverted reactor sublimer **Inverted Reactor System Layout** Gas line simplification, fitting/valve reduction Data Acquisition and Control System Reactor handling glove box. Kalrez 4079 O-rings ## Conclusions - Demonstrated viability of the WCl₆ CVD process to coat ZrO₂ particles with W. - Inverted reactor designs are far more forgiving and robust than spouted designs. - Corrosive nature of WCl₆ vapor limits reactor material to Inconel, pyrex, quartz. - Transition from surrogate to dUO₂ powder as quickly as possible in order to address changes in process variables specific to dUO₂. ## Recommendations for Future Work ## Optimize process variables - WCl₆ powder, H₂, Ar impurity content Reactor temperature - Reactor heat/cool rates - H₂/WCl₆ mole ratio Flow rates as a function of coating thickness - Deposition rate as a function of particle size ## Coating characterization - Thickness - Spatial uniformity - Impurity content - Adhesion - Micro-hardness - Surface roughness - Grain structure (epitaxial content, grain orientation) - Grain orientation effect on coating properties (heat transfer/diffusion) - Grain boundary population impact on fuel retention ### Potential H₂ heat treatments - Pre-deposition to clean substrate surface: effect on coating adhesion Post-deposition to remove impurities: effect on W grain growth # Acknowledgements - Funding was provided by the "Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage" project. - The authors would like to thank Roger Harper, Eric Stewart, Mike Houts, Jim Martin of NASA MSFC, and Gene Nelson of AG Scientific Glass. - The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.