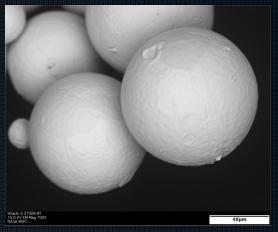


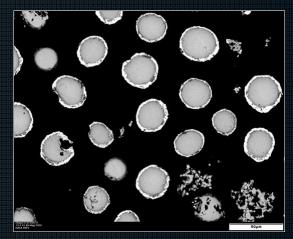
Background

- NTP fuels under development
 - W-60vol%UO₂ CERMET
 Fuel loss through erosion

 - Inherently stable W fuel element cladding
 - Coat spherical UO, fuel kernels in 40 vol% W



331 and 7 channel fuel samples


- Performance Advantages
 - Prevent H₂ propellant at 2850 K from reducing UO2 fuel kernels
 - Minimize erosion and fuel loss
- Manufacture Advantages
 - Excellent powder distribution uniformity during HIP can fill
 - Prevents segregation during HIP can fill
 - Higher green packing density
 - Minimize dimensional distortion during HIP

Problem & Objectives

- Vendor cost to coat dUO, in W excessive
- WF₆ process
 - Industry standard for W deposition
 - Gaseous reagent
 - Excessive F contamination in UO₂ substrate and W coating
 - Residual F exacerbates fuel loss
- WCl₆ process
 - No UO₂ chlorination with WCl₆ or reaction products
 - W coatings do not excessively contaminate substrate
 - WCl₆ preferable to WF₆ for coating UO₂ with W
 - More complex (solid-to-vapor reagent gas)
 - Not an industrially utilized process
- Develop a lab-scale prototype that utilizes the WCl₆ process that enables cost effective 40vol% coating of spherical dUO₂ powders

SEM micrograph of uncoated UO₂ sol-gel particles (700x)

SEM micrographs of spherical W-coated ZrO₂ particles

Coating Requirements

- Fully encapsulate UO₂ substrate
- Thickness: 40 ± 1 vol⁹/₂, uniform spatial distribution
- Density: pore-free, 18.7 g/cm³ 19.2 g/cm³
- Purity: > 99.98% W, ≤ 10 ppm impurities
- Process: must not react with UO₂ substrate
- Adhesion: must not de-bond, spall, crack or blister up to 3000 K
- UO₂ fuel loss: <1.9 wt% (<1 mg/cm²) when heated to 3000 K in flowing H₂ for 2 hours

Apparatus

WCl₆ process

- Temperature: 950°C (higher results in large columnar grains
- H₂/WCl₆ mole ratio: 10:1 to 30:1
- Pressure: < 10 mm Hg (0.193 psia)

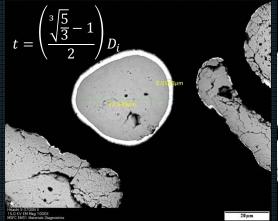
CVD System

- Fluidized bed reactor
- Raining feed, 25 g batches
- 20 to 60 min

CVD System

Spouted Reactor

Accomplishments


- Fluidization of ZrO₂
- Coating ZrO₂ to 60% of target thickness in 20 minutes
- Demonstrated viability of the WCl₆ CVD process
- Coating spatial uniformity (thickness measured through cross section examination)
- Path: ZrO₂, HfO₂, UO₂

Limitations

- Powder drop-out: difficult to fluidize HfO₂ without high H₂ flow rates & powder small quantities
- Complex design
- Fragile and expensive glassmetal transition

Spouted reactor design. Fluidization pre & post deposition process

ZrO₂, $D_{p,u}$ = 42.649 µm, 20 min run, t = 2.3593 µm, (59.6% of goal) Deposition rate = 7.078 µm/hr

ZrO₂, $D_{p, u}$ = 14.519 µm, 20 min run, t = 2.1184 µm (157.2% of goal) Deposition rate = 6.3552 µm/hr.

Fluidization

Calculate fluidization conditions

 Estimate Reynolds number and terminal velocity of powders in a fluidized state.

Empirical data

- Develop correlations based on empirical data
- Verify correlations with observed fluidization behavior

Reactor estimation

- Extrapolate calculated and empirical results to estimate minimum fluidization flow rate
- Reactor design and particle specific

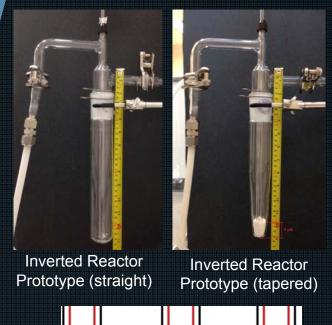
Powder	Theoretical Density (g/cm³)	Actual Density (%TD)	Particle Size (µm)
ZrO_2	5.68	50	53 - 106
HfO ₂	9.68	99	100 – 200
UO ₂	10.97	99	50 – 150

$$Re_{mf} = (29.5^2 + 0.375Ar)^{1/2} - 29.5$$

$$Ar = \frac{gD_p^3 \rho_f (\rho_p - \rho_f)}{\mu_f^2}$$

$$V_T = \frac{2gD_p^2(\rho_p - \rho_f)}{18\mu_f}$$

- Re_{mf} = Reynolds number for minimum fluidization (sphereicity > 0.93)
- Ar = Archimedes number
- -g = gravity
- D_n = particle diameter
- ρ_p^r = particle density
- $\rho_f^{'}$ = fluid density
- μ_f = fluid viscosity
- V_T = particle terminal velocity


Inverted Reactor

Fluidization Prototype

- Simplified & robust design
- Based on lessons learned
- Co-centric fluid lines
- Built and tested

Fluidization

- HfO₂ (30, 60, 100, 200 g)
- Room temperature argon
- Fluidization vs. flow rate
- Inner/outer fluidization line
- Straight vs. tapered reactor wall
- Fluidized column height behavior
- Determined minimum and optimum fluidization flow rates
- Data used to design inverted CVD reactor

Fluidization: Tapered, 103 g HfO₂,

Ar, 30 L/m outer, 1 L/m inner, flush.

Co-centric tube positions

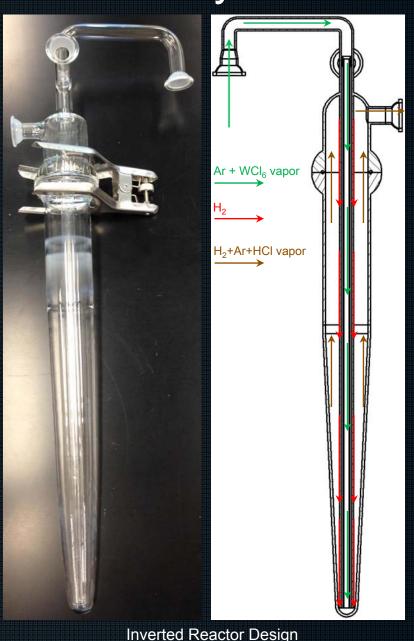
Powder loading and fluidization vs powder mass

Inverted Reactor Geometry

Reactor manifold

- Pyrex
- Co-centric reactant and fluidization lines
- Ball-socket gas connections

Reactor Wall


- Quartz
- Tapered
- Contains powder, eliminates powder drop out collection hopper

Reactor O-ring Joint

- Standard item
- Eliminates glass-to-metal transitions
- Thicker walls = robust

Inverted Reactor

UO₂ fluidization and coating trials in March

Additional CVD Upgrades

Inverted reactor sublimer

Inverted Reactor System Layout

Gas line simplification, fitting/valve reduction

Data Acquisition and Control System

Reactor handling glove box.

Kalrez 4079 O-rings

Conclusions

- Demonstrated viability of the WCl₆ CVD process to coat ZrO₂ particles with W.
- Inverted reactor designs are far more forgiving and robust than spouted designs.
- Corrosive nature of WCl₆ vapor limits reactor material to Inconel, pyrex, quartz.
- Transition from surrogate to dUO₂ powder as quickly as possible in order to address changes in process variables specific to dUO₂.

Recommendations for Future Work

Optimize process variables

- WCl₆ powder, H₂, Ar impurity content
 Reactor temperature
- Reactor heat/cool rates
- H₂/WCl₆ mole ratio
 Flow rates as a function of coating thickness
- Deposition rate as a function of particle size

Coating characterization

- Thickness
- Spatial uniformity
- Impurity content
- Adhesion
- Micro-hardness
- Surface roughness
- Grain structure (epitaxial content, grain orientation)
- Grain orientation effect on coating properties (heat transfer/diffusion)
- Grain boundary population impact on fuel retention

Potential H₂ heat treatments

- Pre-deposition to clean substrate surface: effect on coating adhesion
 Post-deposition to remove impurities: effect on W grain growth

Acknowledgements

- Funding was provided by the "Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage" project.
- The authors would like to thank Roger Harper, Eric Stewart, Mike Houts, Jim Martin of NASA MSFC, and Gene Nelson of AG Scientific Glass.
- The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.