

James Webb Space Telescope Initial Mid Course Correction Monte Carlo Implementation using Task Parallelism

Jeremy Petersen (a.i. solutions) Jason Tichy (a.i. solutions) Geoffrey Wawrzyniak (a.i. solutions) Karen Richon (NASA GSFC)

- Introduction to JWST
- Parallel Architecture
- Initial Results from Mid-Course Correction
 Monte Carlo Framework
- Conclusion and Future Work

- Introduction to JWST
- Parallel Architecture
- Initial Results from Mid-Course Correction
 Monte Carlo Framework
- Conclusion and Future Work

Introduction

First Light and Re-Ionization

Birth of stars and proto-planetary systems

Assembly of Galaxies

Planetary systems and the origin of life

Problem: Develop a robust design approach to deliver the observatory to L2. Operational Orbit Constraints

x (Re)

Maneuver Design Approach

Event	Time After Launch
MCC-1a	12 hours
MCC-1a Late	2.5 days
MCC-1b	5.5 days
MCC-2	30 days

F
Э
5
66.5

Propulsion System

Image Credit: Northrup Grumman

Secondary Combustion Augmented Thrusters (SCATs)

Dual Thruster Modules (DTMs) Monopropellant Rocket Engine, 1 lbf (MRE-1)

Image Credit: jwst.nasa.gov

- Problem: How robust is the maneuver design to propulsion performance errors?
- Launch vehicle injection state (discriminate title. Bold/color)
 - Standard deviations and correlation matrix provided by Arianespace
- Quality of orbit determination (OD) solution at time of MCC maneuver
- SCAT thruster performance Scaling factor ± 5% (3σ)
- MRE-1 thruster performance
 - Scaling factor U(0,1) applied to
 the maximum duty cycle
- Attitude knowledge accuracy
 - $\pm 5\%$ (3 σ) in roll, pitch, and yaw.

$$a_b = \frac{1}{M} \begin{pmatrix} (1 + \xi \cdot \sigma_s) F_s \\ + \sum_{i=1}^8 (\eta_{b,i} D C_{b,i} \cdot F_{m,i} \cos \beta_i) \end{pmatrix}$$

- Introduction to JWST
- Parallel Architecture
- Initial Results from Mid-Course Correction
 Monte Carlo Framework
- Conclusion and Future Work

Problem: Develop an extensible system that allows for fast

- Current simulations contain 1000 sample trajectories, each of which take approximately 200 seconds to complete.
- Spreading the tasks over 36 cores (instead of one) reduces the run time from approximately 2 days to 2 hours.

- Introduction to JWST
- Parallel Architecture
- Initial Results from Mid-Course Correction
 Monte Carlo Framework
- Conclusion and Future Work

- Launch Epoch: October 01, 2018 13:45:00 UTC
- Injection state: 1.10e6 km apogee height

MCC-1a	Nominal	Mean	- 3 Sigma	+3 Sigma
Separation Specific Energy (km ² /s ²)	-0.35586	-0.35667	-0.39465	-0.31871
Duration (seconds)	3865.57	3976.63	94.684	7858.58
ΔV (m/s)	17.617	18.017	1.210	34.824

- Launch Epoch: October 18, 2018 12:30:00 UTC
- Injection state: 1.06e6 km apogee height

	Maneuver Time	Nominal Duration (seconds)	Nominal ΔV (m/s)
MCC-1a	Launch + 0.5 days	4952.28	22.279
MCC-1b	Launch + 2.5 days	455.68	1.967
MCC-2	Launch + 30 days	149.40	0.712
Cumulative		5557.36	24.958

MCC-1a Performance

MCC-1b Performance

→ The targeted maneuver duration for MCC-1b is strongly dependent on the performance of MCC-1a.

MCC-1b Performance

Iominal	Mean	- 3 Sigma	+3 Sigma
455.68	552.61	44.394	1060.82
1.967	2.347	0.237	4.456
	455.68 1.967	A55.68552.611.9672.347	IominalIviean- 3 Sigma455.68552.6144.3941.9672.3470.237

MCC-1b Performance

- → The achieved ΔV for a given maneuver duration is not perfectly linear.
- → Fluctuations begin to appear due to cumulative effects of propulsion performance from MCC-1a and MCC-1b.

MCC-2 Performance

		CARACTER AND
MCC-2	Nominal	Mean
Targeted Duration (seconds)	149.40	221.51
Achieved ΔV (m/s)	0.712	1.011

MCC-2 Performance

→ The results are more disperse due to the combination of propulsion performance from all 3 MCC maneuvers.

		The WAY I THE WAY		
Duration (seconds)	MCC-1a	MCC-1b	MCC-2	Cumulative
SCATs Only	5068.83	466.22	155.17	5690.22
SCATs and MRE-1s	4952.28	455.68	149.40	5557.36
Percent Difference	-2.300	-2.261	-3.719	-2.335
ΔV (m/s)	MCC-1a	MCC-1b	MCC-2	Cumulative
<mark>ΔV (m/s)</mark> SCATs Only	MCC-1a 22.290	MCC-1b 1.960	MCC-2 0.711	Cumulative 24.961
ΔV (m/s) SCATs Only SCATs and MRE-1s	MCC-1a 22.290 22.279	MCC-1b 1.960 1.967	MCC-2 0.711 0.712	Cumulative 24.961 24.958

- Task parallelism has been beneficial for generating and analyzing datasets.
- Launch vehicle dispersions strongly influence the magnitude of MCC-1a.
- The ΔV budget and maneuver design approach are robust to statistical variations in the propulsion system.
- MRE-1 contributions can contribute a non-trivial amount of Δ V to MCC maneuvers.
- Future work
 - Incorporate the benefits of the AWS GovCloud to help streamline the task distribution system.
 - Continue to increase the fidelity of the simulation (the propulsion system in particular).
 - Conduct a Monte Carlo simulation that incorporates all of the potential statistical variations to help validate the ΔV budget and the robustness of the maneuver planning strategy.