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Introduction 

First Light and Re-Ionization Assembly of  Galaxies 

Birth of stars and  
proto-planetary systems 

Planetary systems and the 
 origin of life 

GL146 
HH-30 
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Representative Example Orbit 

Operational Orbit Constraints 
RLP-Y: ±832,000 km (130 Re) / RLP-Z: ±532,000 km (83 Re) 

Problem: Develop a robust design approach to deliver the 
observatory to L2. 

MCC-1a 

MCC-1b MCC-2 
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Maneuver Design Approach 

Earth 

Moon’s Orbit 

L2 

Operational Area Deep 
Space 
Deep 
Space

Earth

Moon’s Orbit

Maneuver ΔV Budget (m/s) Maneuver ΔV Budget (m/s) 

MCC-1a 41 MCC-2 5 

MCC-1a Late 8 Extra Margin 5 

MCC-1b 7.5 Total 66.5 

Event Time After Launch 

MCC-1a 12 hours 

MCC-1a Late 2.5 days 

MCC-1b 5.5 days 

MCC-2 30 days 
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Propulsion System 

Secondary Combustion Augmented 
Thrusters (SCATs) 

Dual Thruster Modules (DTMs) 
Monopropellant Rocket Engine,  
1 lbf (MRE-1) 

Image Credit: Northrup Grumman 

Image Credit: jwst.nasa.gov
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Monte Carlo Simulation Variations 

• Problem: How robust is the maneuver design to 
propulsion performance errors? 

• Launch vehicle injection state (discriminate title. Bold/color) 
– Standard deviations and correlation matrix provided by Arianespace 

• Quality of orbit determination (OD) solution at time of MCC 
maneuver 

• SCAT thruster performance Scaling factor ± 5% (3σ)  

• MRE-1 thruster performance 
– Scaling factor U(0,1) applied to 
the maximum duty cycle 

• Attitude knowledge accuracy 
– ± 5% (3σ) in roll, pitch, and yaw. 

 



page-9 

Agenda 

• Introduction to JWST 

• Parallel Architecture 

• Initial Results from Mid-Course Correction 
Monte Carlo Framework 

• Conclusion and Future Work 



page-10 

Task Parallelism Architecture 

• Current simulations contain 1000 sample trajectories, each of which take 
approximately 200 seconds to complete. 

• Spreading the tasks over 36 cores (instead of one) reduces the run time 
from  approximately 2 days to 2 hours. 

Problem: Develop an extensible system that allows for fast 
Monte Carlo simulations. 
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Launch Vehicle Injection Errors 
• Launch Epoch: October 01, 2018 13:45:00 UTC 
• Injection state: 1.10e6 km apogee height 

MCC-1a Nominal Mean - 3 Sigma +3 Sigma 

Separation Specific Energy (km2/s2) -0.35586 -0.35667 -0.39465 -0.31871 

Duration (seconds) 3865.57 3976.63 94.684 7858.58 

ΔV (m/s) 17.617 18.017 1.210 34.824 
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Propulsion Performance (1) 

• Launch Epoch: October 18, 2018 12:30:00 UTC 
• Injection state: 1.06e6 km apogee height 

Maneuver Time Nominal Duration (seconds) Nominal ΔV (m/s) 

MCC-1a Launch + 0.5 days 4952.28 22.279 

MCC-1b Launch + 2.5 days 455.68 1.967 

MCC-2 Launch + 30 days 149.40 0.712 

Cumulative -- 5557.36 24.958 
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Propulsion Performance (2) 
MCC-1a Performance 

MCC-1a Nominal Mean - 3 Sigma +3 Sigma 

Targeted Duration (seconds) 4952.28 -- -- -- 

Achieved ΔV (m/s) 22.279 22.057 20.891 23.223 
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Propulsion Performance (3) 

→ The targeted maneuver duration for MCC-1b is strongly dependent on the 
performance of MCC-1a.  

MCC-1b Performance 
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Propulsion Performance (4) 

MCC-1b Nominal Mean - 3 Sigma +3 Sigma 

Targeted Duration (seconds) 455.68 552.61 44.394 1060.82 

Achieved ΔV (m/s) 1.967 2.347 0.237 4.456 

MCC-1b Performance 
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Propulsion Performance (5) 

→ The achieved ΔV for a given maneuver duration is not 
perfectly linear. 

→ Fluctuations begin to appear due to cumulative effects of 
propulsion performance from MCC-1a and MCC-1b. 

MCC-1b Performance 
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Propulsion Performance (6) 
MCC-2 Performance 

MCC-2 Nominal Mean 

Targeted Duration (seconds) 149.40 221.51 

Achieved ΔV (m/s) 0.712 1.011 
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Propulsion Performance (7) 
MCC-2 Performance 

→ The results are more disperse due to the combination of 
propulsion performance from all 3 MCC maneuvers. 
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ΔV Contribution from MRE-1s 

Duration (seconds) MCC-1a MCC-1b MCC-2 Cumulative 

SCATs Only 5068.83 466.22 155.17 5690.22 

SCATs and MRE-1s 4952.28 455.68 149.40 5557.36 

Percent Difference -2.300 -2.261 -3.719 -2.335 

ΔV (m/s) MCC-1a MCC-1b MCC-2 Cumulative 

SCATs Only 22.290 1.960 0.711 24.961 

SCATs and MRE-1s 22.279 1.967 0.712 24.958 

Percent Difference -0.05 0.357 0.141 -0.012 
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Conclusion and Future Work 

• Task parallelism has been beneficial for generating and analyzing datasets. 

• Launch vehicle dispersions strongly influence the magnitude of MCC-1a. 

• The ΔV budget and maneuver design approach are robust to statistical 
variations in the propulsion system. 

• MRE-1 contributions can contribute a non-trivial amount of Δ V to MCC 
maneuvers. 

• Future work 
– Incorporate the benefits of the AWS GovCloud to help streamline the task 

distribution system. 

– Continue to increase the fidelity of the simulation (the propulsion system in 
particular). 

– Conduct a Monte Carlo simulation that incorporates all of the potential 
statistical variations to help validate the ΔV  budget and the robustness of the 
maneuver planning strategy. 


