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Introduction
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Representative Example Orbit

Problem: Develop a robust design approach to deliver the
observatory to L2.
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Maneuver Desigh Approach
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@ Monte Carlo Simulation Variations

q,

Problem: How robust is the maneuver design to
propulsion performance errors?
Launch vehicle injection state (discriminate title. Bold/color)

— Standard deviations and correlation matrix provided by Arianespace

Quality of orbit determination (OD) solution at time of MCC
maneuver

SCAT thruster performance Scaling factor + 5% (30)

MRE-1 thruster performance o, GTEeE

— Scaling factor U(0,1) applied to BT M +Z(nb,iDCb,i - Frp i €OS 3;)
i=1

the maximum duty cycle

Attitude knowledge accuracy
— +5% (30) in roll, pitch, and yaw.
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@ Task Parallelism Architecture

Problem: Develop an extensible system that allows for fast

Monte Carlo simulations.

App pushes Workers pull
tasks onto tasks from queue

] queue
[ Viewing Task \ »| Worker

Application J Queue

A

—p  Worker b——

_—

Application polls
DB for status
and results

~——p| Worker 4]

Workers report progress and
results to DB

e Current simulations contain 1000 sample trajectories, each of which take
approximately 200 seconds to complete.

Spreading the tasks over 36 cores (instead of one) reduces the run time
from approximately 2 days to 2 hours.
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@ Launch Vehicle Injection Errors

* Launch Epoch: October 01, 2018 13:45:00 UTC
* Injection state: 1.10e6 km apogee height

wccia | Nominal| Mean |-3Sigma | +35igma.

Separation Specific Energy (km?/s?) -0.35586 -0.35667 -0.39465 -0.31871
Duration (seconds) 3865.57 3976.63 94.684 7858.58
AV (m/s) 17.617 18.017 1.210 34.824
- MCC-1a dV Histrogram 40 MCCladV vs Separation Specific Energy
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@/ Propulsion Performance (1)

* Launch Epoch: October 18, 2018 12:30:00 UTC
* Injection state: 1.06e6 km apogee height

_ Nominal Duration (seconds) | Nominal AV (m/s)

MCC-1a Launch + 0.5 days 4952.28 22.279
MCC-1b Launch + 2.5 days 455.68 1.967
MCC-2 Launch + 30 days 149.40 0.712
Cumulative -- 5557.36 24.958

@ page-13



]

q,

Propulsion Performance (2)

MCC-1a Performance

MCC-1a dV Histrogram
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@ Propulsion Performance (3)
MCC-1b Performance

- MCC-1b Targeted Burn Duration vs MCC-1a dV
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— The targeted maneuver duration for MCC-1b is strongly dependent on the
performance of MCC-1a.
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@ Propulsion Performance (4)
MCC-1b Performance

160 MCC-1b Duration Histogram 160 MCC-1b dV Histrogram
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Wccib | Nominal | Mean |-3Sigma | +3Sigma.

Targeted Duration (seconds) 455.68 552.61 44.394 1060.82
Achieved AV (m/s) 1.967 2.347 0.237 4.456
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@ Propulsion Performance (5)
MCC-1b Performance

MCC-1b Achieved dV vs Targeted MCC-1b Maneuver Duration

N w N w
%

Achieved MCC-1b dV (m/s)
=

==

200 400 600 800 1000 1200
Targeted MCC-1b Maneuver Duration (seconds)

— The achieved AV for a given maneuver duration is not
perfectly linear.

— Fluctuations begin to appear due to cumulative effects of
propulsion performance from MCC-1a and MCC-1b.
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Propulsion Performance (6)

MCC-2 Performance
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@ Propulsion Performance (7)
MCC-2 Performance

MCC-2 Targeted Burn Duration vs MCC-1b dV
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— The results are more disperse due to the combination of
propulsion performance from all 3 MCC maneuvers.

q,
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@ AV Contribution from MRE-1s

Duration (seconds) | MCC-1a | MCC-1b | MCC-2

SCATs Only 5068.83 466.22 155.17 5690.22
SCATs and MRE-1s  4952.28 455.68 149.40 5557.36
Percent Difference  -2.300 -2.261 -3.719 -2.335
SCATs Only 22.290 1.960 0.711 24.961
SCATs and MRE-1s 22.279 1.967 0.712 24.958
Percent Difference -0.05 0.357 0.141 -0.012
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Conclusion and Future Work

» Task parallelism has been beneficial for generating and analyzing datasets.
* Launch vehicle dispersions strongly influence the magnitude of MCC-1a.

* The AV budget and maneuver design approach are robust to statistical
variations in the propulsion system.

e MRE-1 contributions can contribute a non-trivial amount of A V to MCC
maneuvers.

e Future work

— Incorporate the benefits of the AWS GovCloud to help streamline the task
distribution system.

— Continue to increase the fidelity of the simulation (the propulsion system in
particular).

— Conduct a Monte Carlo simulation that incorporates all of the potential
@ statistical variations to help validate the AV budget and the robustness of the

maneuver planning strategy.
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