

# Maintaining Aura's Orbit Requirements Under New Maneuver Operations

Megan Johnson Jeremy Petersen Session1-2 May 05, 2014



Smarter approaches. Better results.<sup>SM</sup>

#### **Overview**



- Background
  - Afternoon Constellation
  - Aura Operational Requirements
- No-slew maneuvers
- Alternate maneuver schemes
  - Mirror pole maneuvers
  - Hybrid maneuver scheme
- Open Issues

#### **Afternoon Constellation**





ai-solutions.com

#### **Ground Track**





- SMA control via Drag Make Up (DMU) maneuvers is required to accurately maintain the ground track
- The ground track must stay on the WRS-2 path for science data collection
  - DMU Frequency is driven by atmospheric drag

## Sun Synchronous Orbits





- MLT control via Inclination Adjust Maneuvers (IAMs) is required to accurately maintain along-track separation between missions and repeatable lighting conditions
- Nominally perform 3-5 maneuvers per year in the Spring
- MLT deviations driven by luni-solar pertubations acting on inclination
- A further mission requirement constricts the MLT prediction to vary by no more than ± 2 seconds over the course of one year



| Orbital Element            | Value                                                           |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| WRS-2 Ground Track         | $18 \pm 20$ km mission requirement                              |  |  |  |  |  |
| Mean Local Time Aura       | 13:30:00 to 14:00:00<br>8.5 minutes $\pm$ 15 seconds w.r.t Aqua |  |  |  |  |  |
| Mean Local Time Aqua       | 13:35:00 to 13:36:30                                            |  |  |  |  |  |
| Semi-major Axis            | 7077.7 km ± 0.3 km                                              |  |  |  |  |  |
| Inclination                | 98.2 ± 0.15 degrees                                             |  |  |  |  |  |
| <b>Argument of Perigee</b> | 90 ± 20 degrees                                                 |  |  |  |  |  |
| Eccentricity               | $0.0012 \pm 0.0004$                                             |  |  |  |  |  |

### **Slewed vs No-slew Maneuvers**



 How can the mission requirements be maintained with an added orbit-normal delta-V?



#### **Effect of No-slew Maneuvers**



$$\begin{aligned} \frac{da}{dt} &= \frac{2}{n\sqrt{1-e^2}} \left( e\sin(v)F_R + \frac{p}{r}rF_S \right) \\ \frac{de}{dt} &= \frac{\sqrt{1-e^2}}{na} \left( \sin(v)F_R + \left( \cos(v) + \frac{e+\cos(v)}{1+e\cos(v)}r \right)F_S \right) \\ \frac{di}{dt} &= \frac{r}{na^2\sqrt{1-e^2}}F_w \cos(v) \quad \left[ \frac{d\Omega}{dt} = \frac{r}{na^2\sqrt{1-e^2}}F_W \frac{\sin(v)}{\sin(v)} \right] \\ \frac{d\omega}{dt} &= \frac{\sqrt{1-e^2}}{na^2e} \left\{ -\cos(v)F_R + \sin(v)\left(1+\frac{r}{p}\right)F_S \right\} - \frac{r\cot(i)\sin(v)F_w}{h} \\ \frac{dM_o}{dt} &= \frac{1}{na^2e} \left\{ (p\cos(v) - 2er)F_R - (p+r)\sin(v)F_S \right\} \end{aligned}$$

#### Legend:

#### **Equations in the RSW frame**

- **a**: Semi-major axis
- **n**: mean motion
- $\Omega$ : RAAN

- e: eccentricity i: inclination
  - **p**: a(1-e<sup>2</sup>)
- **v**: argument of latitude **w**: argument of perigee **r**: radial distance from Earth's center **F**<sub>R</sub>: Force parallel to position vector
  - - t: time

- **F**<sub>w</sub>: Force in the instantaneous direction of angular momentum vector
- 8



• Pros

- Simplified spacecraft commanding
- Minimized required communications coverage
- Reduced science data collection loss per maneuvers
- Simplified maneuver planning for emergency scenarios
- Improved maneuver predictions
- Reduced man hours for maneuver execution
- Cons
  - Increased complexity in long and short term maneuver planning
  - No historical data for maneuver trending

#### **Maneuver Strategies**



#### Frozen Orbit Maintenance

Original strategy to maintain argument of perigee and eccentricity values

#### Mirror Pole Paired Burns

- Alternates maneuvers at North and South Pole
- Each pair cancels out added delta-inclination
- North Pole Only
- South Pole Only
- Mirror Node Paired Burns
  - Alternates maneuvers at Ascending and Descending Nodes
- Ascending Node Only
- Descending Node Only
- Hybrid Strategy
  - Maneuvers are Mirror Pole Paired Burns or Frozen Orbit Maintenance burns depending on the time of year

#### **Mirror Pole Maneuver Strategy**





ai-solutions.com

### No-Slew effect on MLT





Descendin

accrues the least MLT difference over time

| Ascending Node (0°)                   | + | 5.364         |     |
|---------------------------------------|---|---------------|-----|
| Descending Node (180°)                | - | 5.494         |     |
| Mirror Nodes (0°/180°)                | - | 0.914         |     |
| Frozen Orbit<br>Maintenance (various) | - | 0.374         |     |
|                                       | ( | ai-solutions. | con |

#### Mirror Pole Maneuvers – Frozen Orbit



 The mirror pole strategy causes the amplitude of the argument of perigee and eccentricity to grow over time



#### • Can MLT and Frozen Orbit control be optimized?

- Want to do mirror pole paired burns directly following Spring IAM series
- Switch to frozen orbit maintenance maneuvers late in the year to minimize the time the delta-INC can accumulate prior to IAM series
- Case studies:
  - Slewed: all maneuvers used for frozen orbit control
  - All Mirror Pole: no-slew maneuvers
  - All Frozen Orbit: no-slew with frozen orbit control
  - One Mirror Pole Pair: once one pair is completed, switch to frozen orbit control
  - Two Mirror Pole Pairs: once two pairs are completed, switch to frozen orbit control

## Hybrid Maneuver Strategy – Eccentricity



| 0.0016             | Slewed<br>All Mirror        |           |                    | Scienc                   | e requiremen | t +/- 0.0004   | Mc       | INEUVER           | Plan      | Max l<br>Differe | Eccentricity<br>nce (4 Years) |
|--------------------|-----------------------------|-----------|--------------------|--------------------------|--------------|----------------|----------|-------------------|-----------|------------------|-------------------------------|
| 0.0014             | All Frozen<br>One Mirror Po | ole Pair  |                    |                          |              |                |          | All Sle           | W         | 6                | 25E-05                        |
| 0.0013             | Two Mirror Po               | ole Pairs |                    |                          | ٨            |                | All      | Mirro             | · Pole    | 1                | 47E-04                        |
| <b>u</b><br>0.0012 | mAn                         | M         |                    | 111 ()                   |              |                | All      | Frozen            | Orbit     | 5                | .69E-05                       |
| 0.0011             | . Maker                     | W/W/W     |                    |                          | V V          |                | One      | e Mirro<br>Pair   | r Pole    | 8                | 06E-05                        |
| 0.0010             | •                           |           | V                  | v •                      | VV           | - • • •        | Two      | ) Mirro<br>Pairs  | r Pole    | 1                | .20E04                        |
|                    |                             |           |                    |                          |              |                |          |                   |           |                  |                               |
| 0,0009             |                             |           |                    | 108.000                  | Slowed       |                |          | ≪_ <sub>Sci</sub> | ence requ | irement +/       | - 20 degrees                  |
| 0.0008             | 2013                        | 2014      | 2015<br>Date       | - 105.000 -<br>102.000 - | All Mirro    | or             |          |                   |           |                  |                               |
|                    | DI                          | М         |                    |                          | One Mir      | ror Pole Pair  |          |                   |           |                  |                               |
| Ma                 | neuver Plan                 | Max Argur | nent oi<br>ference | 96.000                   | Two Mir      | ror Pole Pairs |          | <u> </u>          |           | Λ                | Λ Ν                           |
|                    |                             | (4 Year   | rs)                | <b>6</b> 93,000          | $h \wedge A$ | ALAMA A        |          | M                 |           |                  |                               |
|                    | All Slew                    | 3.12      |                    | 87.000                   | way          |                |          |                   |           | $\mathbf{M}$     | NEW WKW                       |
| All                | Mirror Pole                 | 6.64      |                    | n614.000                 | · <b>V</b>   | • • • • •      |          | VVV               |           | V V              |                               |
| All I              | Frozen Orbit                | 3.19      |                    | 81.000 -                 |              |                |          |                   |           |                  |                               |
| One                | Mirror Pole                 | 3.76      |                    | 75,000                   |              |                |          |                   |           |                  |                               |
|                    | Pair                        |           |                    | 72.000                   | ·<br>·       |                | <b>0</b> |                   |           |                  |                               |
| Two                | Mirror Pole<br>Pairs        | 5.78      |                    |                          | 2013         | 2014           | 2015     | Date              | 20        | 16               | 2017                          |

### **Hybrid Maneuver Scheme - MLT**





 All maneuver strategies maintained the +/- 2 second prediction requirement over one year\_





- No-slew operations bring additional complexity when planning DMU maneuvers
  - Changes to MLT
  - Changes in frozen orbit when compensating for MLT change
- The Mirror Pole Paired maneuver strategy works to maintain MLT but degrades the frozen orbit
- The hybrid maneuver strategy is able to address both concerns by combining the mirror pole paired burns strategy with frozen orbit burns throughout the year





- Further analysis of the effects atmospheric density has on the hybrid maneuver scheme
  - Mirror pole maneuver strategy is effected differently in a low drag environment than a high drag one
  - Frequency of maneuvers will also change when to switch from mirror pole to frozen orbit burns
- Investigate the effect Risk Mitigation Maneuvers (RMMs) on mission requirements
- Lifetime simulation of no-slew operations on Aqua, the Afternoon Constellation lead mission