Abstract: Here we investigate the effect a non-uniform applied magnetic field has on superconducting transition-edge sensors' (TESs') critical current. This has implications on TES optimization. It has been shown that TESs' resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this "magnetically tuned" TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

Weak-link Behavior of TES

Magnetic field with various current config. in the rings

Experimental Set-up for Non-uniform Field

New measurement scheme for Ic(B)

Modeling Ic(B) to reproduce measured data

Summary and Discussion

- Critical current of TES is a function of temperature, magnetic field and the TES size.
- Fraunhofer-like oscillation of critical current with uniform magnetic field is a strong evidence of TESs' being a weak-link.
- We have come up with a theoretical model that is able to reproduce much of the observed structure in the critical current as a function of non-uniform applied magnetic field.
- Further work is underway to study larger L devices and also TESs with added normal metal structures used for noise mitigation.