National Aeronautics and Space Administration

Micrometeoroid and Orbital Debris (MMOD) Risk Overview

Eric Christiansen NASA Johnson Space Center July 2014

- Background on micrometeoroid and orbital debris (MMOD) environment
- MMOD shielding overview
- ISS MMOD risk issues
 - Radiators
 - Solar arrays
 - Solar array masts
 - EVA Handrails
 - Hardware behind bumpers or covers
 - Return vehicle thermal protection systems (TPS)

MMOD Environment Models

- Orbital Debris provided by JSC & is the predominate threat in low Earth orbit
 - ORDEM 3.0 is latest model (released December 2013)
 - Man-made objects in orbit about Earth impacting up to 16 km/s
 - average 9-10 km/s for ISS orbit
 - High-density debris (steel) is major issue
 - http://orbitaldebris.jsc.nasa.gov/

Meteoroid model provided by MSFC

- MEM-R2 is latest release
- http://www.nasa.gov/offices/meo/home/index.html
- Natural particles in orbit about sun
 - Mg-silicates, Ni-Fe, others
- Meteoroid environment (MEM): 11-72 km/s
 - Average 22-23 km/s

MMOD Environment Models

- Meteoroids consist of background sporadic flux (static), and streams from meteor showers (variable)
 - Occasionally, showers can turn into storms
- Orbital Debris is dynamic, changing as function of the rate of on-orbit explosions & collisions, launch rate and atmospheric drag/solar activity

Cataloged objects >10 cm diameter

Cataloged objects >10 cm diameter

Cataloged objects >10 cm diameter

Cataloged objects >10 cm diameter

2000

Cataloged objects >10 cm diameter

2010

Cataloged objects >10 cm diameter

Effects of Micrometeoroid and Orbital Debris (MMOD) Impacts

• Even small MMOD impacts can cause a lot of damage

- Hypervelocity MMOD impacts represent a substantial threat to spacecraft
- Rule of thumb: at 7km/s, aluminum sphere can penetrate completely through an aluminum plate 4x the sphere's diameter

National Aeronautics and Space Administration

Monolithic versus Stuffed Whipple Shield Weight Comparison of Equal-Performance Shielding

(spacecraft interior)

ISS shielding overview

- Several hundred MMOD shields protect ISS, differing by materials, standoff distance, and capability
- Heavier shields on front & sides (where we expect most MMOD impacts), less capable shielding on aft, nadir and visiting vehicles

Issues: MMOD Damage to ISS Radiators

MMOD Damage to ISS Radiators

MMOD Damage to ISS Radiators (US)

• MMOD impact damages observed to ISS radiator panels (Aug. 2013)

National Aeronautics and Space Administration

P4 photovoltaic radiator

• Initial indication found on 6/30/2014

Measurement of P4-PVR Radiator Damage "2A" Side of Panel 3

ISS Solar Array Damage

ISS Solar Array Mast

• Deployable structural booms or masts used to support ISS solar arrays

MMOD Damage to ISS Solar Array Masts

ISS038e006032, Nov. 2013

Hypervelocity impact tests

 Mast elements have been hypervelocity impact tested and structurally tested to assess residual strength for ISS life extension

GJSC WSTF HITF14036

Handrail and EVA tool MMOD damage

Tear in EVA glove

(STS-118 EVA#3)

- Many craters noted to ISS handrails and EVA tools
- Sharp crater lips have lead to cuts on EVA gloves
- EVA terminated early on STS-118 due to glove cuts
- Modifications to EVA suit and ISS EVA procedures necessary to reduce cut glove risk from MMOD damage

Ku-band antenna

- An MMOD Strike was seen on the ISS Ku Antenna Gimbal Gear Cover. The image was captured during Mission ULF2 / STS-126.
- Interior damage?

Thermal protection systems (TPS) for crew return vehicles

- MMOD risk to thermal protection system (TPS) of ISS crew return vehicles (Soyuz, Commercial vehicles) is high
 - Concern is TPS damage that can lead to loss-of-vehicle during reentry
 - Issue can be mitigated by inspection and repair or safe-haven (not Program baseline)

INC 37 Soyuz 35S Cupola W5 D3s w/180mm lens October 25, 2013

National Aeronautics and Space Administration

BACKUP CHARTS

SS016E009184

STS-120 Solar Array Wing (SAW) EVA repair was caused by MMOD impact damage

During STS-120 two solar array wings were removed from Z1 truss and relocated to P6 location. During redeployment, the 4B solar array wing was torn in two places, due to a snagged guide wire. The guide wire was removed and "cuff-links" added to stabilize the array.

Scanning Electron Microscope EDXA Evaluation of retrieved guide wire

7 of 21 wires in the guide wire cable were broken, causing the guide wire to hang-up in a solar array grommet. 3 of the 7 cut wires exhibited evidence of extensive melt at broken ends, indicative of MMOD impact.

MMOD Damage to ISS

• MMOD impact damages observed to radiator panel during EVA-20 (Nov. 2012)

Observed Spacecraft MMOD Impacts Shuttle Windows

Sampling of Shuttle Window MMOD Impact Craters (all displayed on same dimensional scale)

MMOD Risk Assessment Process

 Process used to identify MMOD risk drivers, evaluate risk mitigation options & optimization, verify compliance with protection requirements

ISS Service Module Shielding

- Service Module (SM) identified as high penetration risk using Bumper risk analysis
 - large cone region
 - forward sides of small diameter cylinder
- Shields designed and tested, EVA installed
 - 23 augmentation shields for the cone region
 - 5 augmentation shields for the cylinder region
- 28 shields reduced SM MMOD risk by 30%

MLI Thermal Blanket 0.5/10/0.5mm graphite-epoxy honeycomb 2mm Al pressure shell

EVA Installation 23 "conformal" panels on cone region

5 panels on small diameter cylinder

