

New Laboratory-Based Satellite Impact Experiments for Breakup Fragment Characterization

J.-C. Liou¹, N. Fitz-Coy², R. Dikova², M. Wilson², T. Huynh³, C. Griffice⁴, M. Sorge⁴, P. Sheaffer⁴, G. Radhakrishnan⁴, J. Opiela⁵, H. Cowardin⁵, P. Krisko⁵, R. Rushing⁶, M. Nolen⁶, B. Roebuck⁶

¹NASA, ²UF, ³AF/SMC, ⁴Aerospace, ⁵Jacobs, ⁶AF/AEDC

The DebriSat Team

NASA Orbital Debris Program Office (ODPO)

Co-sponsor, project and technical oversight, data collection, data analyses,
NASA model improvements: J.-C. Liou, J. Opiela, H. Cowardin, et al.

AF Space and Missile Systems Center (SMC)

Co-sponsor, technical oversight: D. Davis, T. Huynh, J. Guenther, et al.

The Aerospace Corporation

 Design of DebriSat, design/fabrication of DebrisLV, data collection, data analyses, DoD model improvements: M. Sorge, C. Griffice, P. Sheaffer, et al.

University of Florida (UF)

 Design/fabrication of DebriSat, data collection, fragment processing and characterization: N. Fitz-Coy and the student team

AF Arnold Engineering Development Complex (AEDC)

Hypervelocity impact tests: R. Rushing, B. Hoff, M. Nolen, B. Roebuck,
D. Woods, M. Polk, et al.

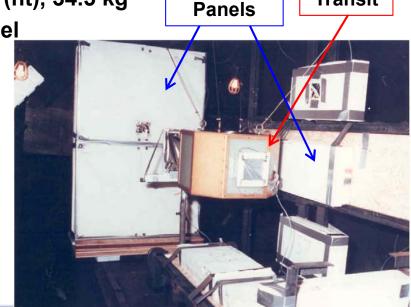
Motivations (1/3)

- Collision fragments are expected to dominate the future orbital debris (OD) environment in low Earth orbit (LEO)
 - The <u>accidental</u> collision between Iridium 33 and Cosmos 2251 in 2009 generated 2000+ trackable fragments and tens of thousands of small untrackable-yet-potentially-damaging/lethal debris (as small as 1 mm)
 - Similar collisions are expected to occur every 5 to 9 years
- A high fidelity breakup model capable of describing the outcome of satellite collisions is needed for
 - Good Space Situational Awareness (SSA) and OD environment definition
 - Reliable short- and long-term impact risk and survivability assessments for critical U.S. space assets
- Laboratory-based satellite impact tests are necessary to fully characterize breakup fragments
 - Fragment size, mass, area-to-mass ratio, shape, composition, optical/radar properties, etc.

Motivations (2/3)

Transit

- The need for laboratory-based impact tests was recognized by DoD and NASA decades ago
- A key laboratory-based test, SOCIT*, supporting the development of the DoD and NASA satellite breakup models was conducted by DNA at AEDC in 1992

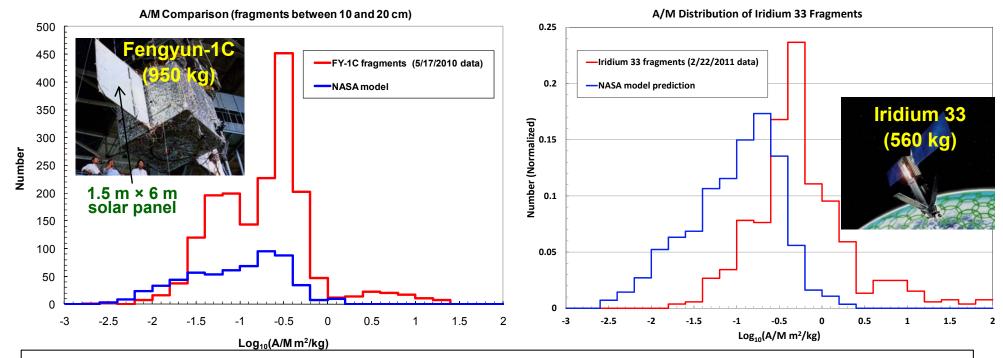

Target satellite: A U.S. Navy Transit navigation satellite

Dimensions and mass: 46 cm (dia) × 30 cm (ht), 34.5 kg

No Multi-layer Insulation (MLI), no solar panel

Was built in the early 1960's

- Projectile: 4.7 cm Al sphere @ 6.1 km/s
- Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years



Soft Catch

Motivations (3/3)

 As new materials and construction techniques are developed for modern satellites, there is a need for new laboratory-based tests to acquire data to improve the existing DoD and NASA breakup models.

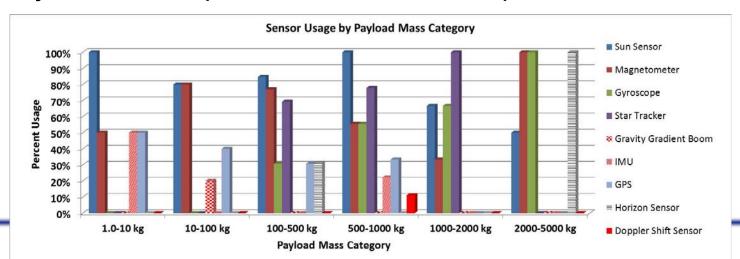
NASA model predictions are noticeably different from fragments generated by modern satellites, such as FY-1C (left) and Iridium (right).

DebriSat Project Goals

- Design and fabricate a 60-cm/50-kg class satellite ("DebriSat"), including MLI and solar panels, to be representative of modern payloads in LEO
- Carry out a hypervelocity impact test with sufficient kinetic energy to completely breakup DebriSat
- Collect and characterize the physical properties of fragments down to ~2 mm in size
- Analyze the data to improve the existing DoD and NASA satellite breakup models
- Benefits of improved satellite breakup models
 - Better Space Situational Awareness (SSA) and OD environment definition
 - More reliable short- and long-term impact risk and survivability assessments for critical U.S. space assets

DebriSat versus SOCIT/Transit

- DebriSat has a modern design and is 63% more massive than Transit
- DebriSat is covered with MLI and equipped with solar panels

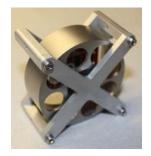

	SOCIT/Transit	DebriSat	
Target body dimensions	46 cm (dia) $ imes$ 30 cm (ht)	$60~\mathrm{cm}~\mathrm{(dia)} imes 50~\mathrm{cm}~\mathrm{(ht)}$	
Target mass	34.5 kg	56 kg	
MLI and solar panel	No	Yes	
Projectile material	Al sphere	Hollow Al cylinder	
Projectile dimension/mass	4.7 cm diameter, 150 g	$8.6~\mathrm{cm} imes 9~\mathrm{cm}$, 570 g	
Impact speed	6.1 km/sec	6.8 km/sec	
Impact Energy to Target Mass ratio (EMR)	78 J/g (2.7 MJ total)	235 J/g (13.2 MJ total)	

DebriSat Design (1/3)

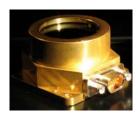
DebriSat is intended to be representative of modern LEO satellites

- A survey of recent LEO payloads was conducted
- 50 satellites were selected for detailed analysis
- Common subsystems, materials, mass fractions, structure, and construction methods were identified
- Sub-system mass fraction analysis performed by Aerospace CDC group using ~150 satellites
- Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines

DebriSat Design (2/3)

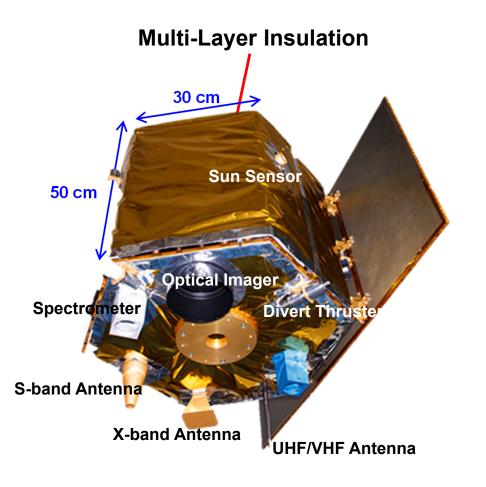


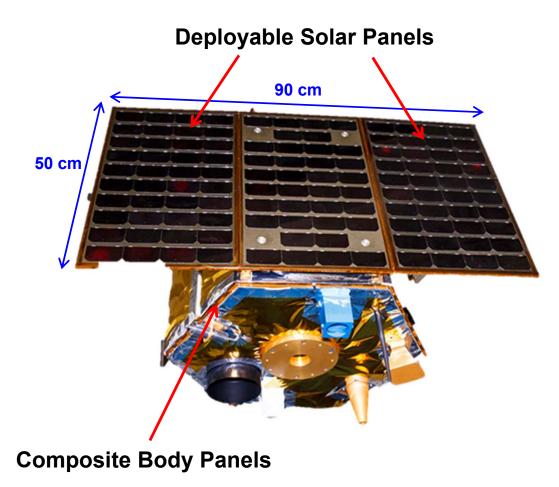
DebriSat includes 7 major subsystems


- Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management
- Each subsystem contains standard components, such as star trackers, reaction wheels, flight computer, data recorder, thrusters, antennas, avionics boxes, heat pipes, cables, harnesses, etc.
- To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials

Reaction wheel (Credit: Sinclair Interplanetary)

Emulated reaction wheel


Sun sensor (Credit: Surrey)



Emulated sun sensor

DebriSat Design (3/3)

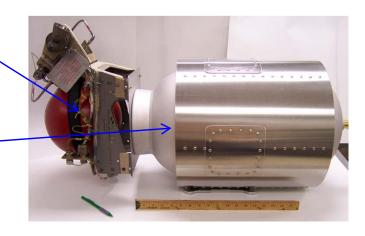
Hypervelocity Impact Tests at AEDC

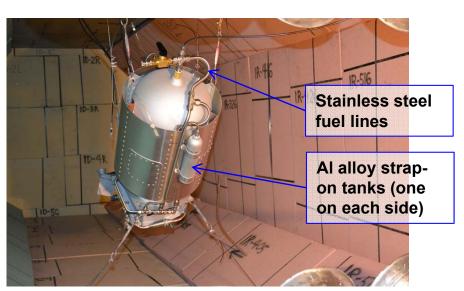
- Range-G operates the largest two-stage light gas gun in the U.S.
- Standard diagnostic instruments include X-rays, highspeed Phantom cameras, and lasers
 - With additional IR cameras, piezoelectric sensors, and witness plates
- Low-density polyurethane foam panels are installed inside target chamber to "soft catch" fragments

Examples of the before (without target) and after impact views of the target chamber (10 ft \times 20 ft).

Projectile Design

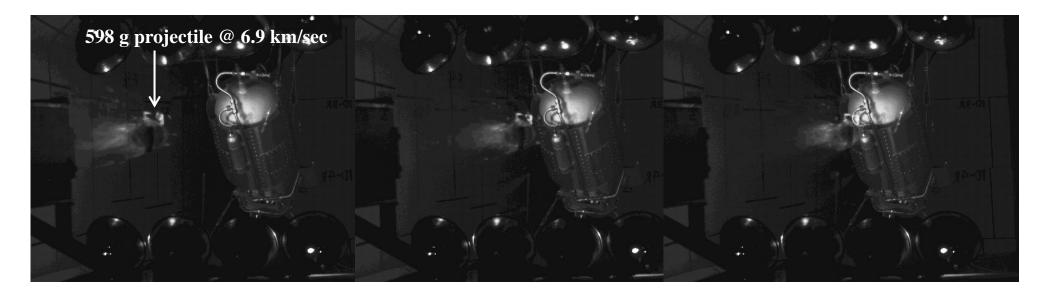
- To maximize the projectile mass at the 7 km/sec impact speed without a sabot, a special projectile was designed featuring a hollow aluminum cylinder embedded in a nylon cap
 - The nylon cap served as a bore rider for the aluminum cylinder to prevent hydrogen leakage and also to protect the barrel

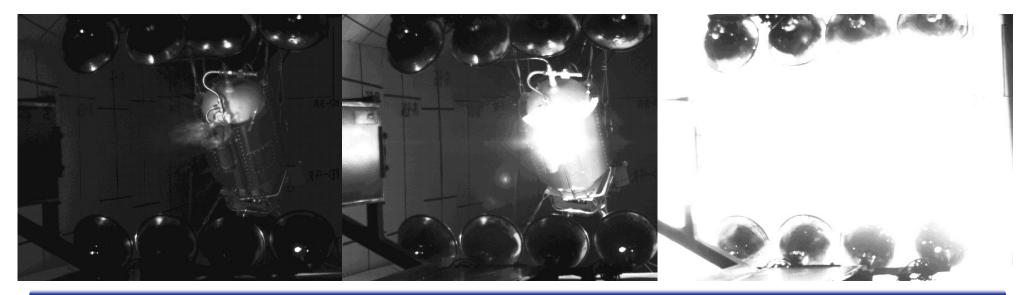

Pre-test Shot DebrisLV Design



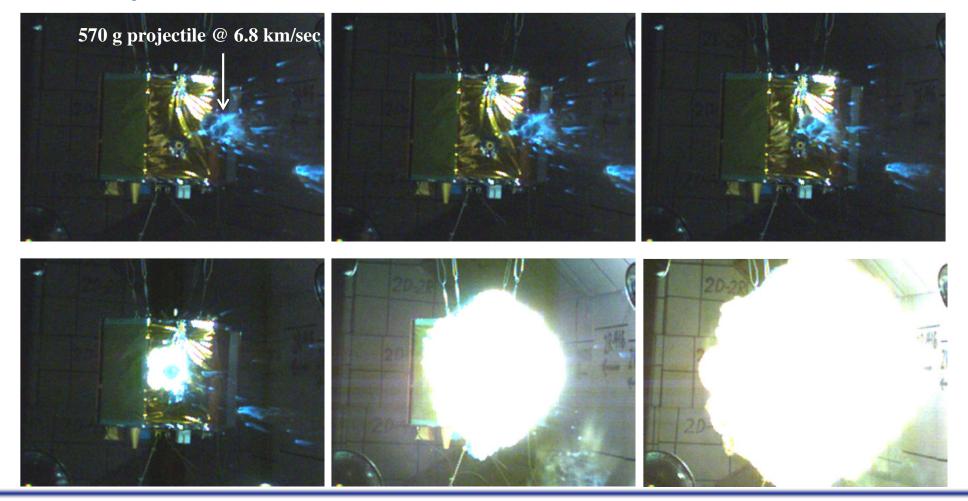
- To further increase the benefits of the project, Aerospace built a target resembling a launch vehicle upper stage ("DebrisLV") for the pre-test shot
 - DebrisLV: 17.1 kg, body dimensions ~ 88 cm (length) × 35 cm (diameter)
- Pre-test shot was successfully conducted on April 1st
 - Projectile impacted DebrisLV at 6.9 km/sec and completed fragmented DebrisLV

Delta-II Ti roll control thruster assembly


Al alloy tank (xenon 15 psia) and Al alloy skin



DebrisLV Impact Sequences



DebriSat Impact Sequences

- DebriSat shot was successfully conducted on April 15th
 - Projectile impacted DebriSat at 6.8 km/sec and completed fragmented the target

Post-Impact Fragment Collection

- After each impact, all intact foam panels, broken foam pieces, loose fragments, and dust were carefully collected, documented, and stored
 - 41 pallets of ~2 m × 2 m × 2 m boxes were packed
 - Estimated ≥2 mm DebriSat fragments are on the order of 85,000

Fragment Characterization Plan

- Conduct x-ray scanning of foam panels/pieces to identify locations of ≥2 mm fragments
- Extract ≥2 mm fragments from foam panels/pieces
- Measure fragments individually
 - Dimensions, mass, shape, density, composition, photos
- Obtain 3D scanning data for selected fragments
 - Cross-sectional area, A/M, bulk density
- Conduct radar, photometric, and spectral measurements for selected fragments
 - Support improvements to radar and optical size estimation models

No	Characteristic	Label	Shape	x[m]	y[m]	z[m]	M[ko]	1		
1	CFRP+Aluminum	Medium	Plate_Square	0.28284	0.28284	0.03031		4 24 mm y = 31.7 mm		
2	CFRP+Aluminum	Medium	Plate_Square	0 28284	0 28284	0.02186	8.87			
3	CFRP	Low	Plate Square	4 0						
	CERR. Al.	U		50 60 70 80 90 100 110	-	3		zi = 951 mm z = 17.78 mm		
	Sample fragments and data from a 2008 cubesat impact test.									

Project Schedule

- Project preparation: 2009-2011
- Project kickoff: Sep 2011
- Preliminary design: Jun 2012
- Final design: Jan 2013
- AEDC impact test plan draft: Aug 2013
- Complete fabrication of DebriSat: Jan 2014
- Vibration and thermal vacuum tests: Mar 2014
- Hypervelocity impacts at AEDC: April 2014
- Complete basic fragment measurements: Dec 2015*
- Radar and optical measurements: 2016*
- Process/analyze data for model improvements: 2016*

(*contingent upon available resources.)