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San Jose State University Research Foundation, Moffett Field, CA, 94035

Well prepared traffic scenarios contribute greatly to the success of controller-in-the-loop
simulations. This paper describes each stage in the design process of realistic scenarios based
on real-world traffic, to be used in the Airspace Operations Laboratory for simulations
within the Air Traffic Management Technology Demonstration 1 effort. The steps from the
initial analysis of real-world traffic, to the editing of individual aircraft records in the
scenario file, until the final testing of the scenarios before the simulation conduct, are all
described. The iterative nature of the design process and the various efforts necessary to
reach the required fidelity, as well as the applied design strategies, challenges, and tools used
during this process are also discussed.

I. Introduction
uman-in-the-loop (HITL) simulations are an integral part of the Air Traffic Management (ATM) Technology
Demonstration-1 (ATD-1).1 ATD-1 is an effort to operationally demonstrate the feasibility of high throughput

efficient arrival operations during peak traffic conditions, using NASA-developed technologies. The HITL
simulations of this project help to assess the performance of the integrated software technologies and, to assess the
performance of the human working with those systems.

The Airspace Operations Laboratory (AOL) has a long history in conducting controller-in-the-loop simulations
using the Multi-Aircraft Control System (MACS) as its primary simulation environment.2 The AOL recently
conducted a series of HITL simulations in support of ATD-1.3, 4 In any successful HITL simulations of an ATM
environment, a set of realistic traffic scenarios is required to provide the controllers with a detailed image of the
real-world operations. Achieving a high realism of the modeled traffic, in terms of loads in sectors, loads on routes,
carrier–aircraft type–equipage combinations, filed flight plans, traffic patterns, etc., enables the controllers and pilots
to execute their tasks in the same way as they would in the real world. In general, if the realism of the simulation
environment and the simulated traffic is high, researchers will be able to obtain a reasonable impression of how the
operations might behave when the ATD-1 systems are transferred to, and tested in an operational setting.

In preceding ATD-1 HITL simulations the Airborne Spacing for Terminal Arrival Routes (ASTAR) -equipped
Aircraft Simulator for Traffic Operations Research (ASTOR) simulator (Ref. 5), containing one of the ATD-1
technologies, was integrated into the simulation environment. The complexity of the scenario design process
increased: flights operated by the ASTOR simulator needed strategic placement in the arrival sequence, and required
careful coordination between two file formats: that of the MACS traffic scenarios, and a specific ASTOR scenario
format. The two scenario files needed to interleave seamlessly when running the combined system in a HITL
simulation. Because these early simulations focused on the integration of the ATD-1 systems, the scenarios design
was less constrained initially. For example, not all the traffic types needed to be simulated, and flight initialization
positions and routes were eligible for editing, as long as the general characteristics of the traffic were maintained.

Upcoming ATD-1 HITL simulations will investigate the system performance. An increased level of fidelity of
the traffic scenarios is necessary to support this goal. The experiments will simulate more sectors and additional
traffic, such as over-flights, departure traffic, satellite arrivals, and satellite departures. Also, a range of aircraft
performance groups will be represented in the scenarios (i.e., jets, high- and low-performing turbo-prop aircraft and
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piston aircraft). The distributions of the traffic on the various routes, and the corresponding air carrier and aircraft
type mixes must match those in the real world. The positions of the arrival aircraft need to match as close as possible
to the positions from the recording of actual traffic. A thorough vetting process must then follow, one that includes
lab tests, full scale simulation shakedowns and subject matter expert interviews. This helps to mitigate scenario
artifacts, such as unrealistic aircraft routing, incorrect ownership, immediate conflicts upon simulation initialization,
unrealistic speeds and altitudes, etc.

The next section of this document first informs about other existing scenario generation software and work on
the development of traffic scenarios. To prepare the ground for the current work it then states objectives and gives
an overview of the traffic scenario design process that was followed. In the end details of the airspace are presented.
The section Scenario Design guides step-by-step through the individual scenario development stages. At first,
insights of the data acquisition are laid out, followed by details of the main scenario editing. The section concludes
with information on testing and validation. To explain the actual outcome of the scenario-building effort a variety of
metrics for one of the scenarios are presented. The document ends with a conclusion highlighting the essential
scenario building steps and insights gained during this process, discussing key problems that were encountered, and
pointing out where room for improvement was found.

II. Background

A. Related work
Building traffic scenarios for fast- or real-time simulations have long been an integral part of the overall

simulation process. It may take considerable amounts of time to construct traffic files that meet the needs of the
simulation. Depending on the desired complexity of the traffic and airspace, and whether the simulation will be
conducted in fast-time or real-time, scenarios may be compiled manually, partially automatically, or even
completely automatically. Even with automatically-generated scenarios, often there is some degree of manual
editing still required.6, 7

The AvScenario software is described as a tool which automates many scenario-building steps.6 It is able to
automatically read a variety of existing flight data that, after import, can be modified in several ways. Using a
graphical interface, routes as well as flight path start- and end points can be modified by simple drag and drop
actions. It also provides direct text-editing features without the need for the user to employ other text-editor or
spread-sheet software. The software also provides the functionality to easily modify adaptation data such as navaids,
routes and other airspace features like special use airspace areas. An AvScenario traffic file can be exported in the
generic extensible markup language (XML) format, or into specific simulator formats. For the latter, an explicit
mapping of the individual scenario information elements is required.

In the AwSim trajectory simulation software scenarios provide typical information, such as latitude, longitude,
altitude, and time to simulate flights as a population of 4-dimensional trajectories. Other parameters included are
aircraft types, weights, and fuel burn values. AwSim uses an agent-based model employing Monte-Carlo algorithms
to generate the 4-dimensional trajectories, and can work from live flight data feeds such as Aircraft Situation
Display to Industry (ASDI).8

Other scenario-building software takes advantage of a genetic algorithm to modify real-world traffic by time-
shifting the flights such that aircraft-to-aircraft encounters and conflicts are being generated.9, 10 Also, European Air
Navigation Service Providers and universities are employing fast-time and real-time simulations for their research,
for which traffic scenarios are required: a software application called TRAffic MOdeller (TRAMO) was created to
aid users in building traffic scenarios for usability studies.11 It has manual editing capabilities and also provides
batch processing functions to import traffic data from external sources, such as Reorganized ATC Mathematical
Simulator (RAMS) or Total Airspace and Airport Modeler (TAAM). Similar to AwSim it also provides drag-and-
drop editing of the flight trajectories. ATACs SkyView software can use real-world data to build traffic scenarios for
controller training.12

B. Traffic Scenario Objective
The objective of the scenario design task was to create traffic scenarios that mirror real-world high-demand

arrival flows under realistic wind conditions, for all airport flow configurations. Recordings of live traffic served as
the basis for the scenarios, which were intended to be used for various simulations within the ATD-1 effort, thereby
increasing the comparability of simulation results across the experiments conducted by the different research groups.
The scenarios were first designed to support the requirements of the Controller Managed Spacing (CMS) ATD-1
(CA) experiment series. A critical goal was to develop traffic scenarios that captured the original characteristics of
the live traffic recordings as best as possible, with as few differences from the live recording as possible.
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C. Process Overview
The scenario design process that was used followed the development flow illustrated in Ref. 6, but can be broken

down into three main steps. One, the scenario design preparation, which includes real-world traffic identification,
acquisition and the preparation of the raw traffic data for output. Two, the main scenario design. This step includes
initial scenario editing and cleanup, the main aircraft record set adjustment and, building the ASTOR scenarios. The
third step includes scenario testing, validation and fine tuning. The three steps are described in the subsequent
paragraphs in more detail.

The overall process relied on two main software applications: the Trajectory-Based Route Analysis and Control
(TRAC) tool, and the Multi Aircraft Control System (MACS), both developed at NASA Ames. TRAC is an air
traffic visualization, graphical design and analysis software that supports the iterative design of next generation
(NextGen) air traffic management concepts. 7, 13 It provides an airspace graphical user interface onto which default
and custom airspace adaptation data, simulation data, and other analysis features can be overlaid using individually
controllable layers. Several tools and functions provide extensive data manipulation and analysis capabilities. TRAC
supports data sources from MACS and other research tools. It is able to load, visualize and filter raw data from live
traffic recordings, and output the relevant data from the identified periods of interest in a format that can be
understood by the MACS software.

MACS provides an environment for rapid prototyping, human-in-the-loop air traffic simulations, and evaluation
of the current and future air/ground operations. 2 It is the simulation platform used for the ATD-1 HITL studies. It
includes a powerful scenario editor that provides a synchronized graphical (Scenario Editor) and tabular (AC Table
Editor) representation of the traffic scenario. While users can edit all elements necessary to simulate a flight directly
in the table, they can also modify aspects of an aircraft trajectory (e.g., initialization position) by drag-and-drop
actions in the graphical interface. The scenario editor provides several automated functions, such as ‘auto-update’
which re-computes the value of one flight parameter based on the modified value of another. For example, the target
waypoint (i.e., the next downstream waypoint) is linked to, and updated depending on, the initialization point of a
flight: if the initialization point changes, the target waypoint can update automatically. The scenario editor also
provides an error-checking functionality. It typically checks against aircraft performance values and rules for route
definition. Additional scenario editor tools include: trajectory manipulation functions (i.e., functions to quickly alter
altitude, initialization time and initialization position), load graphs (e.g., indicating the predicted traffic count in
sectors) and conflict highlighting tools (for identifying aircraft-to-aircraft or aircraft-to-weather encounters).

Traffic scenarios for ATD-1 were designed to simulate operations at and around Phoenix International Airport
(KPHX), because it shares characteristics of likely ATD-1 demonstration sites, including established RNAV OPDs.
After an examination of live traffic recordings, several peak arrival demand periods were identified based on their
peak terminal area entry rates. They reflect different times of the year and times of the day, and exhibit different
arrival-fix distributions. In the end, the two maximum arrival rushes were selected, which included traffic pushes
from over three of the four arrival directions. In one case the arrival rush occurs during an east-flow airport
configuration, whereas in the other case the arrival rush occurs during a west-flow airport configuration.

Each traffic scenario is comprised of four main aircraft groups: the first group contains flights that are members
of an identified peak arrival rush (subsequently referred to as arrivals). The second group of aircraft includes
additional arrival flights that arrive after the members of the peak period (subsequently referred to as extended
arrivals). These aircraft served to ensure that Center and Terminal Radar Approach Control (TRACON) Feeder and
Center controllers still have traffic in their sectors when the last flights of the arrival peak are approaching their
landing runway. The third group of aircraft consisted of the departures leaving KPHX. Only departures leaving from
the inboard runway were selected and included into the traffic scenarios. Lastly, the fourth group of aircraft included
the over-flight traffic. These are flights departing and landing from airports other than KPHX. Any over-flight
aircraft not interacting with the traffic in the test sectors was removed from the scenario, to minimize the amount of
traffic the ghost controllers had to interact with.

D. Airspace and Routes
Figure 1 shows the test airspace including the test sectors with radio frequency and altitude strata labels, as well

as the routes including the waypoints with altitude and speed restrictions. The simulation’s test airspace was
comprised of three high-altitude sectors (37, 50, 93) and five low-altitude sectors (43, 39, 38, 46, 42) from
Albuquerque Center (ZAB), four high-altitude sectors (40, 60, 36) one low-altitude sector (35) from Los Angeles
Center (ZLA), and four Phoenix TRACON (P50) sectors; two feeder sectors (206-Apache, 212-Santan) and two
final sectors (205-Freeway, 204-Verde). Additionally, the simulation was supported by several confederate ghost
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5. Sector Assignments
In a last step of the main scenario editing sector ownerships were assigned to the flights. Two columns in the

scenarios that is, <ctasSectorId> and <acSectorId>, define the sector assignments. <ctasSectorId> indicates the
sector that has track control of the aircraft when it gets initialized. <acSectorId> indicates the pseudo pilot station
linked to this sector, that will have ownership of the aircraft. The <acSectorId> was set to be auto-updated by the
<ctasSectorId>. Initially, all aircraft were assigned to the Ghost High sector. Then, using the map view of the
Scenario Editor the aircraft inside and just outside of the test sectors were selected and assigned to the respective
sector number if their altitude was less than the Ghost High floor altitude. Cross-checks of the altitude values against
the sector floor indicated flights that had to be assigned to the Ghost Low sector. Lastly, flights assigned to the
Ghost High sector with altitudes lower than the sector floor altitude were assigned to the Ghost Low sector. Any
flights that have one of the P50 satellite airports as their destination were assigned to the Satellite Ghost controller.
Any departures out of KPHX or out of any of the satellite airports were assigned to the Departure ghost controller.

6. ASTOR Scenario Design
The AOL has the capabilities to simulate eight high-fidelity single pilot stations. The ASTOR simulator stations

from NASA Langley were integrated with the MACS simulation environment. Flights operated by the ASTOR
simulator needed strategic placement in the arrival sequence, and required careful coordination between two file
formats: that of the MACS traffic scenarios, and the specific ASTOR scenario format.

As a first step candidate ASTOR flights were identified in the east- and west-flow MACS scenarios. Because the
ASTOR aircraft performance model that is recommended for HITL studies emulates the characteristics of a Boeing
B757-200 (B752) aircraft, flights using this aircraft type were primary ASTOR candidates. Other aircraft types of
the same weight class (e.g., A321, B738, etc.) were also emulated reasonably well using the B752 performance
model. Additionally, other constraints had to be met: candidates had to land within one hour of simulation time and
needed to be initialized before their TOD.

In the east- and west-flow traffic scenario two KPHX arrivals were B752 aircraft. Several other ASTOR
candidate flights in each scenario were identified complying with the aforementioned constraints. Table 1 lists the
flights that were ultimately selected as
ASTORs.

In the next scenario editing step key
aircraft values from the eight ASTOR
flights in each MACS scenario were
copied to the respective ASTOR scenario
file. Those values included call-sign,
latitude, longitude, true heading, mach
number, altitude, origin, destination,
cruise altitude, climb Speed, descent
speed, cost index, aircraft type, filed
route, target waypoint, and beacon code.
Before copying those values, however,
the aircraft type of the six additional
ASTOR candidates in MACS were set to
be B752 aircraft to account for the B752
aircraft model used for the ASTOR
simulators. The weight was set to a
common cruise weight of 194000 lbs. As
a result the speed values of those flights
were updated automatically (cells were
set to auto-update). The mach values of
all ASTOR candidates were rounded to have two digit decimals.

Figure 11 shows an example snippet of an ASTOR scenario file. The entries from line 1-23 define database
references (routes and airspace), wind file references and define values that are needed to interact with MACS (e.g.,
the name of the MACS scenario bundle). Lines 26-54 show the entries that define the current and future state of one
ASTOR flight, where line 27 defines the initialization state of the flight. Line 33 references the name of a company
route (KLASKPHX01) that determines which route the aircraft will actually fly. Some default company routes are
provided by the ASTOR system, but in order to retain the original routing from the MACS scenario, custom routes
were added.

East-flow
<callsign> <filedRoute> <acType>
AWE119 PKOA./.FOOTS..FICKY..SXC..TRM..BLH.GEELA6.KPHX B752
AWE125 PHNL./.EDSEL..ELKEY..LAX..TRM..BLH.GEELA6.KPHX B752
AWE3 KLAX./.TRM.J169.BLH.GEELA6.KPHX A321
AWE158 KLAS./.PRFUM.MAIER5.KPHX A319
AWE271 PANC./.WINEN..CORKR.MAIER5.KPHX A319
AWE54 KMCI./.ALS..GUP.EAGUL5.KPHX A321
BSK610 KCID./.RSK.J161.ZUN.EAGUL5.KPHX B738
AWE265 KBWI./.LBL..WILPA..ZUN.EAGUL5.KPHX A319
West-flow
DAL2021 KDTW./.GCK..CIM..ZUN.EAGUL5.KPHX B752
N610G PHNL./.EDSEL..ELKEY..LAX.J96.YCDIL.J50.BLH.GEELA6.KPHX B752
AWE500 KLAX./.TRM.J169.BLH.GEELA6.KPHX A320
AWE197 KSAN./.IPL.J18.MOHAK.GEELA6.KPHX A321
AWE152 KGEG./.WINEN..CORKR.MAIER5.KPHX A321
AWE34 KPDX./.WINEN..CORKR.MAIER5.KPHX A321
AWE191 KPHL./.LBL.J19.FTI.J244.ZUN.EAGUL5.KPHX A321
UPS2876 KSDF./.CIM..ZUN.EAGUL5.KPHX B763

Table 1. ASTOR flights selected for east- and west flow
configuration.



Some A
initializatio
have all A
same time
wait time f
ASTOR a
up along t
amount an
set to 120
The initial
time value
back to the

When 
human-in-t
MACS, th
scenarios g
the same 
avoid hav
same call-
first letter 
flights in 
replaced w
XWE158).
<entryTim
high value
aircraft ou
them as “d
future scen

C. Scenar
Before 

distributed
individual 
extended 
flights wer
scenario fi
MACS sce
to probe f
prevent it.
simulation 

Several
controllers
P50 contro
applying fu
of the mod

Several
to simulate
active. Thi
area was n
had to be t
area was a
were unkn
flights that
areas the s
special per

ASTOR flight
on time greate

ASTOR station
e and, in order
for pseudo pil
ircraft in MA
their filed rout
nd their initializ
0 seconds  (cf.
lization latitud
s were then co

e ASTOR scen
running the 

the-loop mod
he ASTOR an
get initialized 
time and play

ving duplicate 
signs on top o
of the call-sign

the MACS 
with an ‘X’ (e
. Additi

meSeconds> we
e (e.g., 5555

ut of the simula
dummies” in th
nario edits.

rio Testing and
testing the 

d lab con
scenario fil

arrivals, depa
re merged into 
ile. After the 
enario editor fu
for any aircraf

After this sc
shakedowns to

l lab check-ou
s and pseudo p
ollers) provide
urther changes

difications in th
l important cha
e the P50 opera
is means that th
not penetrated.
taken into cons
active or not. T
nown. For the 
t cross main SU
same. They we
rmission to pen

Americ

s had an origi
er than zero. 

ns initialize at 
r to avoid a lo
ots the respect

ACS were back
te the appropri
zation times w
 to Footnote †

de, longitude a
opied from MA
arios.

scenario in
de together w
nd MACS tra

and launched
y in parallel. 

flights with 
of each other, 
ns of the AST

scenarios w
e.g., AWE158
ionally 
ere set to a v
5) to move 
ation, but to k
he traffic files 

d Validation
scenarios in

nfiguration 
les for arriv
artures and ov

one single tra
merge a built

function was u
ft that are in c
enario editing 
o gain further c
ut sessions wi
pilots, and a fu
d valuable ins
 and fine-tunin

he MACS and A
anges were app
ations with the 
he filed route a

Controllers al
sideration. The
The only indica

scenario desig
UA areas that a
ere considered
netrate that are

can Institute of

inal
To
the

ong
tive
ked
iate

were
††).
and

ACS

n a
with
ffic

d at
To
the
the
OR

were
�
the

very
the
eep
for

n a
the
als,
ver-
ffic
t in

used
conflict upon i

step the scen
controller feed
ith researchers
ull-day meeting
sights into the 
ng the scenario
ASTOR traffic
plied to the sce
north-western

and route entrie
lso explained o
e cm_sim traffi
ator was if flig
gn process and
are active almo
d inactive. Flig
ea; no control a

Figure 1

f Aeronautics a
12

initialization w
narios were in 
dback.
s only, multipl
g with subject 
operations of

os a change con
c files.
enarios after the
n Military Oper
es for all flights
other special u
ic data does no
ghts were pene
d the simulatio
ost all the time.
ghts that initial
action to move

11. Snippet of 

and Astronauti

which would l
n a state ready

le full-day sim
matter expert
P50 and unco

ntrol procedure

e shakedowns 
rations Area (M
s crossing that 
use airspace (S
ot include any 
etrating those r
on conduct the
. Keep the rout
lize inside a S
e the flight out

a ASTOR sce

ics

leave the contr
y to be tested 

mulation shake
ts  (SME) (i.e., 
overed a numb
e was put into

and SME feed
MOA) around L
t area had to be
SUA’s) regions
information w

regions or not;
e following w
ting of flights t

SUA area were
t of that area w

enario file.

rollers no cha
in lab session

edowns with r
two recently r

ber of issues. B
place that kep

dback. It was d
Luke Air Force
e changed so th
s around KPH

whether or not a
 the reason ho

was decided: re
that cross othe
e considered to
was necessary 

ance to
ns and

retired
retired
Before
t track

ecided
e Base

hat this
HX that

a SUA
owever
e-route
r SUA
o have
by the



test subjec
grey shadin

KPHX 
are handle
issue contr
do not us
routes. The
scenarios w
were adju
SMEs poin
were used 
to fly RN
were simp
types that
CRJ2 aircr

Initial s
The flight 
The Ghost
accordingl
at those fl
through the

7. Little g
Throug

affected ju
controller w
file itself o

During
the respect
again. Oth
opposed to
to the same
<inVnav>
Pseudo pil

Figur

ts. Figure 12 s
ng. Other SUA
SMEs also po

ed by the satel
rol vectors via
e any of the 
e routes of the
were checked 

usted if neces
nted out that c
in the traffic 

NAV operation
ply replaced w
t are RNAV 
raft were replac
shakedowns re
data blocks fro

t High/Low se
y. Other flight
lights more clo
e floor of the s

gotchas with big
ghout the main 
ust a few aircra
workload. Whi

others would re
g tests it was no
tive waypoint.
er flights with

o staying level 
e value as the 
fields in the A

ots were briefe

re 12. Restr

Americ

hows the test s
As are outlined 
ointed out the r
llite arrival se

a specific wayp
RNAV or n

e Group C airc
for correct ro

ssary. Furtherm
certain aircraft 

scenarios wer
ns. Those airc
with similar p

capable. For 
ced with CRJ9
evealed that th
om the aircraft
ctor split was 

ts were pointed
osely it becam
ectors and sho

g impact
scenario desig

aft but had a la
ile some of the

equire software
oticed that a few
Once the fligh
a cruise altitud
until intercept
(current) altitu
AC Table Edi
ed to switch the

ricted airspac

can Institute of

sector outlines
in red.
routing that Gr

ectors who
points and
on-RNAV

craft in the
outing and
more, the
types that

re not able
craft types
performing

example,
 aircraft.
e initial choice
t in in ownersh
set up instead

d out by the co
me clear that th

uld get handed

gn process and
arger impact o
e errors could b
e changes. In th
w arriving flig
hts passed it, th
de lower than t
ting the vertica

ude). In both sit
itor to false an
e flight mode f

e regions arou

f Aeronautics a
13

in black and t

roup C (Table 

e of north/sout
hip of the ghos
d. The sector o
ntrollers that s
hey were mos
d off from the G

d during testing
n the whole sy

be fixed or wor
his section two
hts would desc

hey would clim
the first altitud
al path downst
tuations the so
nd have the ai
for those aircra

und KPHX.

Group A
Group A T

C
Group B T

T
C

Group C A
T

Table 2. Air
ARTCC and 

and Astronauti

the SUA areas

2) aircraft typ

th Ghost Contr
st controllers w
ownerships of 
suddenly poppe
stly departures
Ghost Low con

g several small
ystem; other fl
rkarounds coul

o examples are 
cent to their fir

mb back up to t
de restriction w
tream (target a
olution that pre
ircraft fly in f

aft back to VNA

Aircraft type
Turbojets (exc
C500-C551 ser
Turboprops (ex
T34T and BE
C500-C551 ser
All other aircr
T34T and BE9
rcraft groups 
Phoenix TRA

ics

that were cons

pically get assi

roller split did 
would clutter th

the affected a
ed up in the se

s from satellite
ntroller.

l errors and pro
lights were imp
ld be found by
described.

rst altitude rest
the cruise altitu

would climb to
altitude and cru
evented this beh
flight level cha
AV at the appr

cept EA50, C2
ries aircraft)
xcept C208, D

E99), EA50, C
ries.
raft and C208
99.

as defined in
ACON Letter o

sidered active

gned.15 Usuall

not work very
heir scope too 
aircraft were up
ectors. When lo
e airports that 

oblems occurre
mpacted and the
y edits in the sc

triction well ah
ude until desce
 meet this restr

uise altitude we
havior was to 
ange (FLCH) 
ropriate times.

25A/B, E50P,

DHC6&7, P46T
25A/B, E50P,

, DHC6&7, P

n the Albuque
of Agreement

with a

ly they

y well.
much.
pdated
ooking
climb

ed that
erefore
cenario

head of
ending
riction
ere set
set the
mode.

 and

T and
, and

P46T,

erque



American Institute of Aeronautics and Astronautics
14

Tests also revealed that aircraft that land into the Albuquerque International Sunport Airport would descent, but
then get stuck at a very low altitude (about 1600 ft). The flights would not get deleted from the simulation and kept
flying indefinitely. Debugging showed that the MACS software confused the destination airport, listed in FAA
format (i.e., ABQ), with the Very High Frequency Omni-directional Radio-range (VOR) of the same name. A
software update allowed MACS to recognize airport names following the ICAO naming convention. The filed route,
route, departure and destination airport entries were updated accordingly. An automated function in MACS assisted
with those edits.

D. Scenario versions
In preparation for the most recent CA experiment several data collection and training scenarios were created by

using the two original east- and west-flow scenarios as templates. Besides the two original scenarios three additional
data collection versions per airport flow configuration needed to be generated to be simulated in four wind
environments per arrival direction. To minimize learning effects the call-signs for each flight for each version were
modified. TRAC provides an automated function that generates new call-signs for a loaded data set. The function
will retain the airline portion of the call-sign, as well as the length of the number string while keeping the first digit
the same.

For controller training, scenarios with a reduced traffic load were needed initially. One third of each traffic group
was deleted from the two original scenarios. The call-signs were randomized four times for each arrival direction to
generate versions for the four wind sets. Finally, in order to further minimize learning effects a small random value
was added to the initialization times of the arrival and extended-arrival flights which caused the scenario to play out
slightly different. Later in the controller training, the same traffic loads as in the data collection runs were simulated.
To generate scenario versions for those later training runs the two original data collection scenarios were used, and
the randomized call-signs from the thinned training scenarios were applied. Additionally, new flight initialization
times were generated the same way as described above.

Finally, the controllers were supposed to work at least once one of the data collection scenarios to possibly
uncover any last scenario problems. To reduce learning effects the call-signs for each flight were randomized once
more. All scenario versions were subject to the change control procedure.

The first data collection runs showed that controllers were getting increasingly better in controlling the traffic,
and consequently their workload was getting lower. To counteract this trend it was decided to insert additional
flights into the arrival rush period of the scenarios. For the east-flow scenarios six additional flights were added, for
the west-flow scenarios five additional flights were added. All added flights were duplicates of jet aircraft on the
RNAV routes. The remaining runs were sufficient to fill a complete data collection matrix with each of the eight
scenario versions simulated once.

IV. Results
This section uses the east-flow traffic scenario to describe example results of the scenario design effort. The

scenario building effort required approximately three months to complete, spanning the time from when the traffic
days were chosen until simulation conduct. At times, several people worked separately on the traffic files, helping to
finish the scenarios in time.

The east-flow scenario (without the additional six flights introduced later on) contained 338 flights. Figure 14-A
shows the ratio between the four different flight categories, arrival peak members (ARR), extended arrivals
(ARR-EXT), departures (DEP) and over-flights (OVR). The chart in Fig. 14-B shows all aircraft types of the 69
flights in the arrival rush. The most frequently used types are Boeing B737, Airbus A320, and Airbus A319, and
Bombardier CRJ9 aircraft.

Figure 15 shows the lateral positions of the peak arrival and extended-arrival flights at the start of the traffic
scenario in blue, with the respective original traffic at the correlating point in time of the raw cm_sim data file in
red. It shows a near perfect alignment of the raw and simulated traffic in ZAB. The initialization positions of these
arrival flights, with few exceptions, have not been altered. On the contrary, arrival flights from ZLA have been
backed up along their routes to avoid having flights pop up inside the ZLA test sectors. Therefore, those flights do
not lineup initially.
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In addition, it became obvious that an early in-depth familiarization with the airspace and its operations is
essential. Specifically, understanding published operating procedures and letters of agreement, studying maps and
recorded traffic, is crucial. Discussions with subject matter experts familiar with the selected site are invaluable and
should be performed early. Actual field visits can and should complement the pool of information consisting of the
sources just mentioned.
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