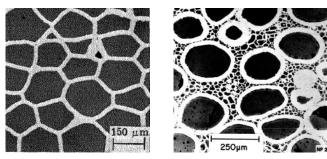
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

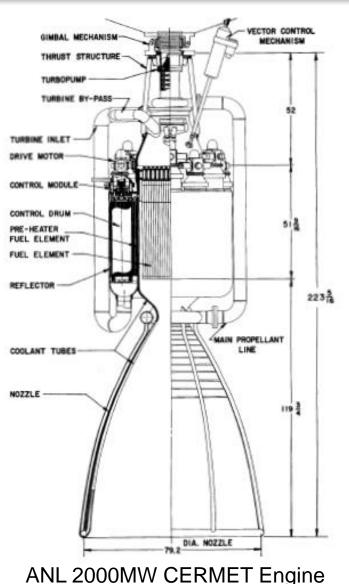
Nuclear Cryogenic Propulsion Stage (NCPS) Advanced Exploration System (AES) Project

> Robert Hickman Jeramie Broadway, Omar Mireles NASA Marshall Space Flight Center

Nuclear and Emerging Technologies for Space (NETS) February 24-26, 2014



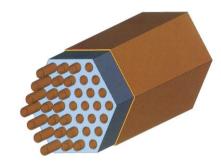
- Historical CERMET Fuel Fabrication and Test Data
- AES FY12-14 Fuel Materials Development
- Development and Qualification Approach
- AES FY15-17 Plan
 - Materials and Process Optimization
 - Hot Hydrogen Screening
 - Material Property and Irradiation Testing
 - Cost/Schedule
- Summary

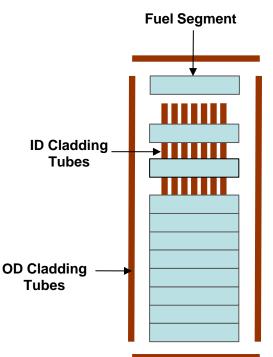


- CERMET fuels consist of a metal matrix with embedded ceramic fuel particles
 - W matrix (high melting point, H2 compatibility)
 - UO2, UN, (U,Zr)CN fuel particles
- Developed in 1960's as an alternate to graphite based fuels
 - Long operating life (>10 hrs, 2500 C)
 - Multiple restart capability at high specific impulse (800-900 sec)
- Improved fission product retention
- Metal phase improves toughness

W - light phase, UO2 - dark phase

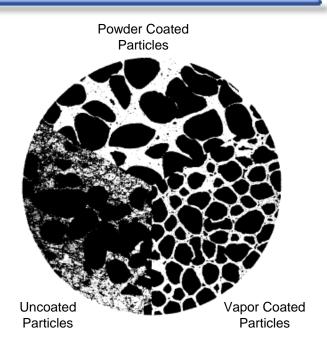
- Current work is based on ANL and GE710 Programs
 - Detailed specifications developed for GE710
 - Extensive capabilities that do not currently exist
- No qualified fuel fabrication processes
 - Key risk for NTP
 - Must recapture and certify process
- CERMET fuel loss mechanisms are known
 - Vaporization of UO2
 - Diffusion through pores and cracks
 - Differences in CTE of W matrix and UO2
 - Thermal decomposition of fuel/matrix
- Proven M&P approaches to inhibit fuel loss
 - Complete surface cladding with tungsten
 - W coated spherical UO2
 - Addition of oxide stabilizers to UO2

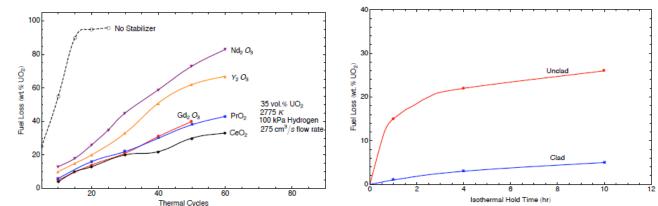



W-UO2 CERMET Samples fabricated during ANL Program

GE710 W-UO2 Fuel Fabrication

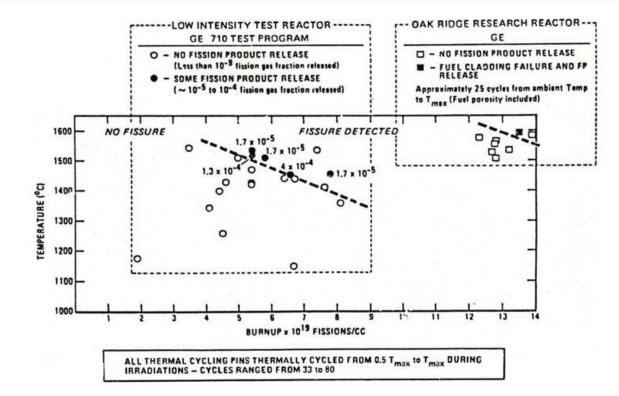
- Powder processing
 - Sieving, weighing, and blending
 - Isostatic pressing of fuel segments (wafers)
 - Hydrogen sintering (consolidation of segments)
- Fuel segment machining
 - Face grinding of fuel segments
 - Channel hole drilling
- Cladding/component fabrication
 - EDM for cladding and HIP can components
 - End plates, inner/outer cladding tubes
- Assembly and bonding process
 - Stacking of fuel segments
 - Insertion of cladding tubes
 - E-beam welding of HIP cans
 - HIP bonding of integrated assembly
- Successfully fabricated and tested numerous elements





W-UO2 CERMET Test Data

- Limited data available with a large variation in starting materials, processing, and testing
- Surface claddings enhance fuel retention and thermal cyclic life
 - 27 wt% loss in unclad vs. 3 wt% for clad samples
- Particle coatings shown to improve UO2 distribution and provide continuous W matrix
 - 23 wt% loss at 2500 C for 2 hours vs. 0.8 wt% loss of samples with W coated UO2
- Addition of oxide stabilizers decrease fuel loss by preventing the reduction of UO2

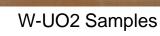


Charts courtesy of Jon Webb, "Literature Review of Historical W-UO2 Fabrication and Testing Efforts", Idaho National Laboratories, Internal Document.

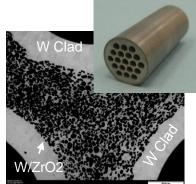
GE710 Irradiation Testing

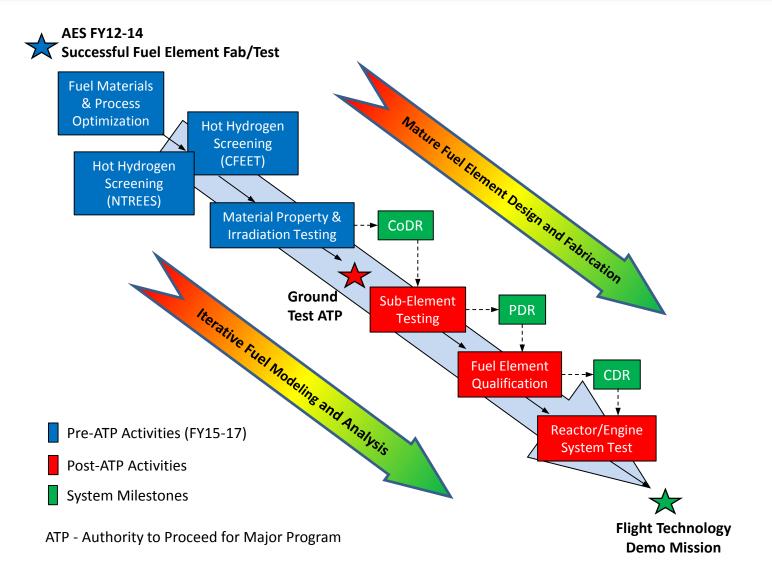
- No in-pile testing at current prototypic NTR conditions
- Majority of samples tested at low temps and longer durations
 - 1500C, 1000's of hours
- Fission gas containment to burn up levels exceeding 9x10¹⁹ fissions/cm³
 - Equivalent to dozens of Mars missions

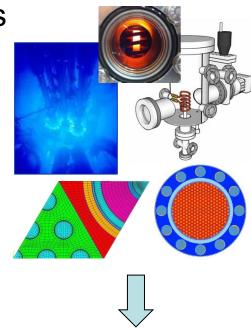
- UO2 feedstocks (ORNL sol gel, CSNR alginate)
- Powder handling (glove box sieving, blending, filling)
- CVD W coated UO2 spheres, W claddings
- Hot Isostatic Pressing (HIP)
- Post Machining (sectioning, grinding)
- Compact Fuel Element Testing (CFEET)
- Successful fab/test of W-UO2 sample

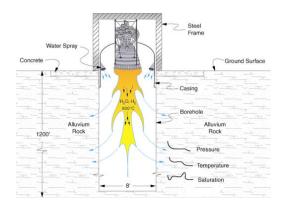


Dedicated Depleted Uranium Labs

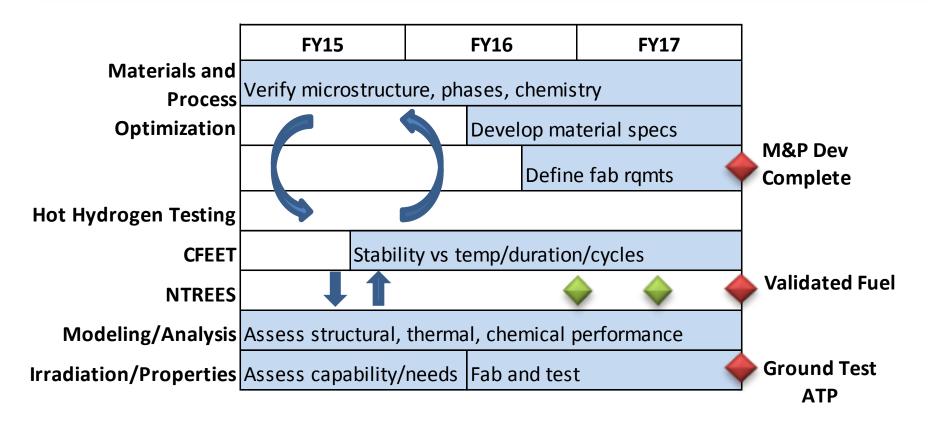






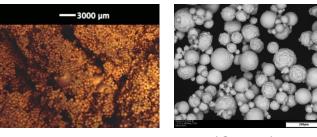

CERMET Fuel Development Path

- "Certify" fuel material and fabrication process
- Separate effects testing
 - Thermal chemical and cyclic stability in H2
 - Irradiation for fission tolerance and retention
- Combined effects testing (\$\$\$\$)
 - Radiation, temperature, H2, and pressure
 - Subscale HFIR or ATR
 - Single element and/or bundle in ATR
 - Nuclear Furnace?
- High cost for prototypic testing
- Affordable option-separate effects and fuel modeling to eliminate combined effects?
 - What are the risks for engine ground test?

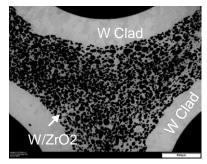


- Goal is to mature fuel for future ground test program
 - Enable qualification and production in FY17-20??
 - Develop basis for performance, production cost and schedule
- Complete M&P development and characterization
 - Understand processing-microstructure-property relationships
 - Extensive subscale screening in H2
 - Baseline materials, properties, and specifications
 - Demonstrate prototypical performance of fuel
- Most of the capabilities currently exist to meet FY15-17 goals – May require upgrades for LEU (HEU facility does not exist for fuel fab)
- Limited material properties and irradiation screening
- Testing and modeling to anchor designs & performance
 - Structural, thermal, chemical, and neutronics
 - Separate effects testing to validate

CERMET Fuel Development Timeline



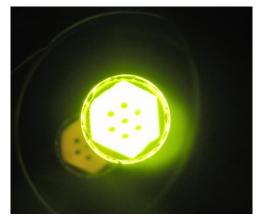
- Iterative M&P optimization and subscale H2 screening
- Continuous improvement and validation of modeling
- Validation of fuel element design and performance



CERMET Fuel Development Tasks

- UO2 feedstock (spheres)
 - Sol Gel (ORNL)
 - Ammonium Alginate (CSNR)
 - Develop particle size constraints, yields, etc.
- W coated UO2 (MSFC)
 - Optimize processing of various size UO2 spheres
 - Develop production approach
- W-UO2 fuel segment consolidation
 - Hot Isostatic Press (MSFC)
 - Full length net shape consolidation
 - Integral claddings
 - Spark Plasma Sintering (CSNR)
 - Similar to GE710 but improved consolidation
 - Stacked and bonded segments/claddings
 - Net shape fabrication of cooling channels

(CSNR) (ORNL) UO2 Spheres


W Clad CERMET (MSFC)

UO2 CERMET (CSNR)

- Hot hydrogen testing (MSFC)
 - Subscale screening in CFEET
 - Full length validation in NTREES
- Material characterization (MSFC, INL)
 - Consolidated microstructure, phases, density
 - Chemistry
 - Fuel loss and migration
- Material properties (MSFC, INL, Industry)
 - Thermal expansion, conductivity (diffusivity, specific heat)
 - Tensile, modulus, bend ductility
- Production facility study (NASA, INL, Industry)
 - Process needs, location, facility requirements, etc.

H2 Testing of W-UO2 sample at MSFC

- Irradiation may not be a key driver in fuel failure/design
 - GE710 fuel "qualified" for 100 hours at 2148 C with minimal testing
 - Must be verified to understand risk
 - Combined effects testing required at some point for qualification
- Irradiation testing (ORNL, INL, or University)
 - LEU or HEU? (need fission heating)
 - Subject samples to nuclear environment
 - Evaluate fission product tolerance and containment
 - Dimensional stability and swelling
 - Perform post test metallographic evaluation
- Limitations
 - Temperature, pressure, and H2 environment
 - How much can we really learn?
- Goal is to develop basis for future qualification

- Costs
 - Costs comparable to current AES effort
 - More funding for DOE and Industry participation
 - Characterization capability does not exist at NASA
- Risks
 - RF heating/NTREES may not work for validating fuel element
 - Monolithic designs not feasible (may require segmented design)
 - LEU/HEU required for irradiation testing (no fabrication facility)

	FY15	FY16	FY17		
UO2 feedstocks	850	850	850		
Fuel Segment Consolidation	750	750	750		\$M
Characterization	650	650	650	Total FY15-17 CERMET	15.9
Material Properties	450	600	600	Total FY12-14 CERMET	12.3
Irradiation Testing	150	1150	1150		
Modeling/Analysis	600	600	600		\$M
Hot Hydrogen Testing	475	625	625	NASA	8.2
Industry	500	500	500	DOE/Industry	7.7
	4425	5725	5725		

- Materials, processing, and fuel failure mechanisms are defined from previous ANL and GE710 programs
- Demonstrated fabrication and testing of W-UO2 samples during current AES FY12-14 effort
 - Developed critical capabilities and technologies
- AES FY15-17 CERMET development and optimization
 - Optimize materials and processes, hot hydrogen screening, irradiation and material properties testing to form basis of ground test program
- What makes this affordable?
 - Existing facilities/capabilities to complete optimization
 - Limited testing to validate fuel and obtain critical irradiation/property data
 - Exploratory irradiation testing
 - Defer expensive in-pile testing until qualification approach is clear
 - Separate effects testing and modeling to evaluate the need for combined effects testing in prototypic reactor conditions

• Jim Werner – Idaho National Laboratory (INL)

Questions?