Collaborative WorkBench for researchers - Work smarter, not harder
Rahul Ramachandran, NASA/MSFC
Kwo-sen Kuo, NASA GSFC and Bayesics LLC
Manil Maskey, University of Alabama in Huntsville, ITSC

Christopher Lynnes, NASA/GSFC

1. Problem

As scientists work to understand the complex interactions in the Earth's atmosphere,
oceans, biosphere, surface, and interior, they increasingly find themselves working with
a more diverse set of data, complex science algorithms, and models. However, each
new dataset, algorithm, or model requires its own knowledge base to obtain reliable and
useful results. Acquiring this knowledge base can be both difficult and time consuming.
One way to address this is to enable social collaboration, with experts coming together
(virtually) to pool their knowledge, tools, and datasets. The concept of “virtual” research
collaborations in science is not new. Bos et al [1] proposed the concept of a
collaboratory as “an organizational entity that spans distance, supports rich and
recurring human interaction oriented to a common research area, and fosters contact
between researchers who are both known and unknown to each other, and provides
access to data sources, artifacts, and tools required to accomplish research tasks.”

While there has been a huge growth in social networking and collaboration platforms
aimed at the general public, only a few have been successfully customized to address
and impact Earth science research modalities despite the obvious utility inherent in such
collaborations. One reason is that to go beyond sharing simple documents, scientific
collaboration platforms typically require using a new set of analysis tools to leverage the
collaboration infrastructure. As a result, adoption of most new collaboration
environments and/or analysis tools for scientific research is inhibited by the steep
learning curve faced by individual researchers.

As part of the NASA Computational Modeling Algorithms and Cyberinfrastructure
(CMAC) program, we are building an Earth science Collaborative Workbench (CWB) to
address this barrier. CWBs augment a scientist's current computational research
environment and tool set to allow him or her to easily collaborate with others and share
diverse data and algorithms. CWBs provide a science algorithm development
environment that seamlessly integrates the researcher's desktop with a cloud
infrastructure. CWBs focus on enabling not only the sharing of research artifacts such
as algorithms, data, and analysis results, but also the collaborative development of

algorithms and interpretation of data and analysis results as well as their knowledge (in
the form of annotations). CWBs mark a momentous improvement in the ability of the
Earth science community to effectively exchange and share data and information.

2. Approach/Methodology

It is important to define some commonly used terminology related to collaboration to
facilitate clarity in later discussions. We define provisioning as infrastructure capabilities
such as computation, storage, data, and tools provided by some agency or similarly
trusted institution. Sharing is defined as the process of exchanging data, programs, and
knowledge among individuals (often strangers) and groups. Collaboration is a
specialized case of sharing. In collaboration, sharing with others (usually known
colleagues) is done in pursuit of a common scientific goal or objective. Collaboration
entails more dynamic and frequent interactions and can occur at different speeds.
Synchronous collaboration occurs in real time such as editing a shared document on
the fly, chatting, video conference, etc., and typically requires a peer-to-peer connection.
Asynchronous collaboration is episodic in nature based on a push-pull model. Examples
of asynchronous collaboration include email exchanges, blogging, repositories, etc.

2.1 Concept of a Collaborative Workbench

The purpose of a workbench is to provide a customizable framework for different
applications. Since the workbench will be common to all the customized tools, it
promotes building modular functionality that can be used and reused by multiple tools.
The objective of our Collaborative Workbench (CWB) is thus to create such an open
and extensible framework for the Earth Science community via a set of plug-ins. Our
CWB is based on the Eclipse [2] Integrated Development Environment (IDE), which is
designed as a small kernel containing a plug-in loader for hundreds of plug-ins. The
kernel itself is an implementation of a known specification to provide an environment for
the plug-ins to execute. This design enables modularity, where discrete chunks of
functionality can be reused to build new applications. The minimal set of plug-ins
necessary to create a client application is called the Eclipse Rich Client Platform (RCP)
[3]; The Eclipse RCP also supports thousands of community-contributed plug-ins,
making it a popular development platform for many diverse applications including the
Science Activity Planner developed at JPL for the Mars rovers [4] and the scientific
experiment tool Gumtree [5]. By leveraging the Eclipse RCP to provide an open,
extensible framework, a CWB supports customizations via plug-ins to build rich user
applications specific for Earth Science. More importantly, CWB plug-ins can be used by
existing science tools built off Eclipse such as IDL or PyDev to provide seamless
collaboration functionalities.

2.2 Infrastructure Components

While the CWB plug-ins aid researchers by supporting data analysis and visualization
clients, there are infrastructure components required to support our vision of
collaboration. These components are:

A. Catalog Service

One of the key components of the infrastructure is a catalog service that serves to store
and manage information for both the personal resources for a researcher as well as all
the community resources. The personal resource management or the “myScience”
catalog provides active management of a researcher’s activities, projects and science
artifacts. The information model of the myScience catalog is based on the notion of an
Experiment. Experiments serve as containers for collections comprising of one or more
logical data sets, science codes (workflows) and ancillary (config) files. A workflow
maps to a set of different individual programs that are chained together and executed to
meet the goal of the experiment. The myScience catalog supports search capabilities
via metadata annotations for resources. The “Community” catalog component supports
collaboration by connecting researchers and making metadata available for the shared
science artifacts stored on the Cloud infrastructure. The Community Catalog serves as
a community metadata repository that can be searched via a browser or service API for
all the shared science artifacts.

Both the myScience and Community catalogs are built using Drupal content
management framework, a robust open-source collaboration framework well supported
by the developer community. This allowed us to utilize a number of existing features
within Drupal with minimal code development. These features include the modules
which provides REST-based service APIs for the CWB to connect the Community
Catalog with the myScience Catalog and built-in roles and permissions functionality
enabling users to control permissions on the shared science artifacts with other
individuals, groups, or the entire community.

B. Cloud Infrastructure

Cloud computing has now become a viable option to provide scalable computing
infrastructure for enterprises. As defined by NIST [6], “Cloud computing is a model for
enabling convenient, on-demand network access to a shared pool of configurable
computing resources (for example, networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction.” More and more enterprises are moving toward Cloud
computing because of its elasticity and scalability, thereby being able to expand or

reduce resources based on demand. Clouds allow multi-tenancy, where multiple users
can leverage the same infrastructure and can balance workloads across servers — both
inside the data center and across data centers.

For our initial imlementation, we have configured our CWB to utilize Amazon’'s EC2 [7]
and S3 Cloud infrastructure [8] via the AWS Java API [9]. The user's CWB account and
corresponding Amazon Identity and Management (IAM) [10] account is managed by the
CMS. Execution of workflows is performed in EC2. User-uploaded data and
experiment results are stored on S3. Workflows (and programs) can access the data
stored on S3 during execution, which in turn, is transferred to EC2. There is no cost
associated within Amazon for data transfers between EC2 and S3. Users are assigned
a personal space (“bucket”) where they can create new experiments. Asynchronous
sharing of data and workflows occurs by allowing a set of users to copy these resources
to the searchable “community” bucket. Collaborators can also directly import the
contents in any experiment folder stored in the community bucket to their personal
space. Currently, any Python or IDL science code as well as some specialized libraries
such as ADAM Data Mining toolkit [11], can be executed in the EC2. The deployment
and the execution of the programs on EC2 is enabled by a set of REST [12] web
services. For supporting synchronous collaborations, openfire implementation of XMPP
protocols [13] has been used to customize the Eclipse Communications Framework
(ECF) plug-ins. This addition enables real time writing and editing of science code
within any application using CWB plug-ins.

3. Results

We demonstrate the value of a CWB via a use case, in which two scientists are involved
in algorithm development for NASA’'s Global Precipitation Measurement (GPM) [14]
mission, a Decadal Survey Era mission [15]. GPM is a constellation of satellites-of-
opportunity [16], consisting of a GPM core satellite and a number of constellation
satellites as they become available. The GPM core satellite has as its payload a dual-
frequency precipitation radar (DPR) contributed by the Japan Aerospace and
Exploration Agency (JAXA) and a GPM microwave imager (GMI) [17] contributed by
NASA. The constellation satellites will be contributed by other US agencies or
international partner agencies, most of which will carry only microwave radiometers.

A mission such as GPM involves science expertise of several disciplines and thus
corresponding communities, including but not limited to electromagnetic scattering,
radiative transfer, radar and radiometer engineering/science, atmospheric numerical
modeling, and data analysis. Since GPM is an international mission, members of these
communities are spread over diverse nations and regions of the globe. In addition,
each member researcher may have his or her own favorite tools, algorithms, and data
management approach. This diversity makes effective collaboration exceedingly

difficult either among members of the same community or, even worse, across
communities. Our CWB is conceived and designed to address the major “pain points”
in such situations. In the following use case, we focus on a (tiny) segment of the
retrieval algorithm development process for clarity’s sake to demonstrate the
capabilities of our CWB after providing some necessary background.

Just as for the remote sensing of any other atmospheric particulate matter, e.g. aerosol
and cloud particles, the single-scattering properties (SSPs) of precipitation particles are
also the fundamental quantities for remote-sensing measurements of precipitation.
These single-scattering properties, or SSPs, are used by an instrument response
simulator (IRS) [18], which is basically composed of a selected Radiative Transfer (RT)
model from a suite of RT models as well as modules for simulating engineering
components, to simulate instrument (radar and radiometer in this case) responses to
precipitating atmospheric columns in various weather systems and regimes. These
simulations in turn form a basis for precipitation retrieval.

In this CWB demonstration, an electromagnetic scattering expert, Alice, is in charge of
providing SSPs of irregularly shaped atmospheric ice particles for retrieval algorithm
development. Bruce is the instrument response simulator (IRS) expert who needs to
work with Alice to incorporate the SSPs along with other types of precipitating particles
into his simulations. Since the types of ice particles are rather complex and there is no
simple way to classify them unambiguously, Alice uses alphanumerically coded names
in a directory structure to identify and organize the particles she has created, as well as
their corresponding SSPs obtained for a number of microwave frequencies covering the
range needed for the mission.

With the conventional means of collaboration, Alice would have to “package” all her
results and generate the documentation, explaining what the coded names mean and
how the package is organized, i.e. what means what and which information is where.
More likely than not, Bruce would have trouble using the SSP package without further
consulting Alice. Alice would probably explain further in a few more emails but there is
no guarantee that Bruce “gets it”. More interactive means of communication, like a
phone call, may be called for. But, due to their time-zone disparity, finding a suitable
time may take a couple more email exchanges.

All Bruce actually needs to know is just where and how to read in Alice’s results as input
to his simulator! Alice probably already has a routine somewhere that already does that,
which she has used to find statistics of the particles and their associated SSPs; it just
needs to be tailored for Bruce’s purpose. However, because Alice uses IDL while Bruce
does his code development in Python, the “programming language divide” further
complicates the collaborative process.

With the CWB, Alice can not only share the entire directory structure that contains the
particles and associated SSPs, but also share the programs to extract statistics. She
can annotate these artifacts, i.e. files, directories, and programs, with their explicit
meanings to help Bruce, or any other on the team, learn to use these SSPs correctly.

Probably the most innovative feature of the CWB is the “collaborative code development”
capability. Alice and Bruce can log into their respective workbenches on their own

computers, connect and co-develop code together. Let's say Alice and Bruce have
arranged to have such a co-development session. After they establish connection via
XMPP, Bruce starts editing his Python code in the CWB for extracting IRS input out of
Alice’s SSP collection. He can use the instant messaging capability of the CWB to ask
Alice and obtain answers immediately to his questions. Bruce can even “share” the

code editor panel with Alice. That is, both of them can edit the same code in their
respective CWB editors and in real-time see what the other is doing, analogous to co-
editing a Google Doc. Alice can type in the path(s) (directory locations for appropriate
files) in the shared editor for Bruce since she is a lot more familiar with the directory
structure. Such collaborations drastically shorten the science algorithm development
time needed for locationally distributed teams to obtain simulated instrument responses.

Furthermore, what if another team member, Charlie, who is also an IRS expert but uses
a radiative transfer module of a different methodology and would like to compare the
simulated responses with those obtained by Bruce? In the conventional collaboration
mode, Alice would now have to send Charlie her package, her documentation, and all
of her communication with Bruce. In addition, Charlie basically has to repeat what
Bruce had done by learning how to use Alice’s data as well as creating another copy of
this data. With the CWB, Charlie can acquire that capability quickly by having a co-
development session with Alice and/or Bruce where they all use the same copy of data
shared by Alice in the community storage bucket. With the help from both Alice and
Bruce, it should take Charlie even less time than Bruce to learn to use Alice’s data. In
fact, if Charlie also uses Python for development, it is not difficult to imagine that he
creates a robust working code for his IRS input preparation after just one co-
development session with Bruce.

Figs 1 and 2 show how CWB tool can be used for both sharing asynchronously and real
time code development collaborations.

4. Discussion

As science becomes more interdisciplinary, collaboration to share expertise and
resources has become more essential. Tools that enable such collaborations within
research teams and across teams--distributed both geographically and organizationally-
-will serve as useful productivity augmentors. With environments like the CWB,
collaboration will become much easier and thus more effective. Common data sets,

tools, and results can be hosted where every member can access them, thereby
reducing duplication. Dissemination of experience and knowledge can take place
immediately via tags, comments, and one-on-one collaborative sessions tied directly to
each piece of data, tools, or results. The overall effect will be increased efficiency and
productivity. CWBs represent a firm step towards addressing these problems and
achieving these goals.

One of the lessons learned during this work of adapting an exemplar science use case
to promote “sharability” was the inherent difficulty involved in capturing the implicit “data
management structures and rules” needed along with the science software code itself.
The science code often use some implicit file/directory structures and naming
conventions. As the code and data gets propagated further out into the research
network, it becomes harder to correctly interpret and reuse these resources without
requiring explicit collaboration, thereby hampering reusability. Asking all researchers to
conform to a set of agreed-upon conventions does not appear to a practical and viable
approach. New solutions that are able to log all the intended semantics with minimal
input from the researchers are indeed needed to address these individual-level
data/resource “sharing” problems. These solutions need to go beyond the current
catalog-based metadata approaches that only support search and discovery but do not
address reuse.

5. Acknowledgements

This work is funded by a NASA grant and the authors would like to acknowledge Dr.
Tsengdar Lee and Mike Seabloom for supporting this research. In addition, the authors
would like to acknowledge the contributions of Thomas Harris and his Exlis VIS team in
helping make IDL compatible with the CWB.

6. References

[1] Bos, N., A. Zimmerman, J. Olson, J. Yew, J. Yerkie, E. Dahl, and et al. 2007. From
shared databases to communities of practice: A taxonomy of collaboratories. Journal of
Computer-Mediated Communication 12.

[2] www.eclipse.org/

[3] Clayberg, E., and D. Rubel. 2008. Eclipse: Building Commercial-Quality Plug-ins:
Addison Wesley Professional.

[4] Norris, J.S.; Powell, M.W.; Vona, M.A.; Backes, P.G.; Wick, J.V., "Mars Exploration
Rover Operations with the Science Activity Planner,” Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on , vol., no.,
pp.4618,4623, 18-22 April 2005, doi: 10.1109/ROBOT.2005.1570832

[5] Lam, Tony, Nick Hauser, Andy Gotz, Paul Hathaway, Fredi Franceschini, Hugh
Rayner, and Lidia Zhang. 2005. GumTree - An Integrated Scientific Experiment
Environment. In International Conference on Neutron Scattering. Sydney, Australia.

[6] Mell, P., and T. Grance. 2011. The NIST Definition of Cloud Computing:
Recommendations of the National Institute of Standards and Technology: National
Institute of Standards and Technology, U.S. Department of Commerce.
[http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf]

[7] aws.amazon.com/ec2

[8] aws.amazon.com/s3

[9] aws.amazon.com/sdkforjava/
[10] aws.amazon.com/iam

[11] John Rushing, Rahul Ramachandran, Udaysankar Nair, Sara Graves, Ron Welch,
Amy Lin (2005),ADaM: A Data Mining Toolkit for Scientists and Engineers, Computers
& Geosciences 31 (5) p. 607-6

[12] Fielding, Roy Thomas (2000), Architectural Styles and the Design of Network-
based Software Architectures, Doctoral dissertation, University of California, Irvine

[13] xmpp.org/xmpp-protocols/

[14] http://pmm.nasa.gov/GPM

[15] http://science.nasa.gov/earth-science/decadal-surveys/

[16] http://pmm.nasa.gov/GPM/constellation-partners

[17] http://pmm.nasa.gov/GPM/flight-project/spacecraft-and-instruments

[18] Simone Tanelli ; Wei-Kwo Tao ; Toshihisa Matsui ; Chris A. Hostetler ; Johnathan
W. Hair ; Carolyn Butler ; Kwo-Sen Kuo ; Noppasin Niamsuwan ; Michael P. Johnson ;
Joseph C. Jacob; Leung Tsang ; Khawaja Shams ; Sermsak Jaruwatanadilok ; Shadi
Oveisgharan ; Marc Simard ; Francis J. Turk; Integrated instrument simulator suites for
Earth science. Proc. SPIE 8529, Remote Sensing and Modeling of the Atmosphere,
Oceans, and Interactions IV, 85290D (November 8, 2012); doi:10.1117/12.977577.

Figures

-

PR e
8 Search = a8 Search Results [1] surface.pro &2
= PRO surface
S Mo Search ; Define the elevation data to use.
RESTORE, 'morbells.cat'
. B Teapm ; Display the elevation surfoce in o buffer instead of o window.
[Experiments 3 =8 s = SURFACEC glev, /BUFFER $
¥ £ emac-community - Publicly Shared + TITLE = 'Marocn Bells Elevation Data’)
¥ (& clynnes ; Overloy the contour data on the elevation surface.
* (= hrul ¢ = CONTOURC elev, /OVERPLOT §
b (= kskuo . JIVALUE $
P = manilmaskey » M_LEVELS = 15 §
¥ (= mseablom » PLANAR = @)
» (= RxR END
(=-shree
> = userl
* (Sruserll
b = user3
¥ (= userd
v a scattering - Personal Sandbox
¥ [manilmaskey
|
marby New >
®
[surfac GO Into
[Dsurtae L5 Copy #C
» = kuostest Paste HY
¥ = temp i Delete ®
re
& templ Upload
» = testidl
> Brestiog
b uploads Team >
Synchronize With »
Profile As > S
Debug As » 1\ Contacts £3 Program List Messages
Run As > ¥ |} manilmaskey@zelda.itsc.uah.edu
Compare With » ¥ {§) emac (2/26)

Restore from Local History...

Remow:

e from Context

DL_O

4 hrui
A userl

Figure 1 (A) A screen capture of the CWB showing the functionality that enables a user
to seamlessly share their science experiments using a community bucket in the cloud

B, Contacts 33 Q Pragram List %, Messages

Q{o) V:.E

a (i cmac(1/18)

4§ manilmaskey@zelda.itsc.uah.edu

| & user

Send IM

Send URL

Send Show View Request
Send Screen Capture

Send File

Remove

Figure 1 (B) A screen capture showing the built-in real time communication capability

within the CWB

- i | (G Guick Access
Search I = 0O G Search Results | [Surfacepro 8
e PO surface
Bl ey o ; Define the elevation dita to use.
RESTORE, 'marbells.dot’
vam i Display the elevotion surface in a buffer insteod of o window,

1 Experiments 5

¥ 7 emac-community - Fublicly Shaced

¥ [scamesing - Ferscnal Sandbox
¥ [manitmaskey

¥ (& Example IOL 0
[marbeisdat
[surtace.pro
[SurfaceLpro

* = huostest

* Etemp

= empl

* (= testidl

» [Wusting - srared

* o uploads

s = SURFACEC elev, /BUFFER §

o TITLE = ‘Mgrgen Bells Elevetion Dota’)

i Overloy the contour dato on the elevation surfoce.

© = CONTOURC eley, /OVERPLOT §
. FIVALLE §
+ M_LEVELS = 15 §
, PLANAR = 8)
oo |
Undo
Revert File
Save

Open With

Show In TEW

Cut

Copy
Paste
Quick Fix
Shift Right
Shift Left

Profile As
Debug As

Run As

Team
Compare With

WContd peplace With

wv
®1

rYyvwvvwrvw

j|a_£‘|m C CMACWR

=]

W TER

¥ » Share Editor With » manlmaskey@zeldaitscushed] » cmac » [N
R ——

Synchronize With
Preferences...

Figure 2: A screen capture demonstrating the capability to share the code editor pane
with other research team members to enable real time code development

