Reverse Engineering Crosswind Limits A New Flight Test Technique?

Troy Asher (M), Tim Williams (M), and Brian Strovers

Outline

- Background: Fly without spoilers?!
- Build-up approach
- Math
- A New Flight Test Technique, the SS2B
- Flight test/simulator results
- Lessons Learned

Background

- Adaptive Compliant Trailing Edge (ACTE) project
 - Experimental flight research project within larger ERA project
 - NASA and Air Force Research Laboratory joint effort
- Composite flexible trailing-edge wing flaps
 - Seamless transition between trailing edge surfaces
 - Reduce noise during takeoffs and landings
 - Improve aircraft aerodynamic efficiency

ERA – Environmentally Responsible Aviation

Test Article NASA 804

- NASA Dryden Gulfstream III, N804NA (NASA 804) is a G-1159A
- Designated as a SubsoniC Research Aircraft Testbed (SCRAT)
- Low-wing, twin fanjet, pressurized transport category aircraft
- Lateral control: ailerons and 3 spoilers on each wing
 - Ground spoilers, speed brakes and low speed roll control
- Flight controls hydraulically powered with a manual reversion mode
- Demonstrated max x-wind 21 knots
- 45,000 feet; 340 KIAS/0.85M
- 38,570 lbs empty; 69,700 lbs max
- Fowler flaps 0°, 10°, 20°, 39°

The Problem

- Replace fowler flaps on a G-III with ACTE flaps
 - All wing spoilers had to be removed
 - Some aileron also needed to counter lateral asymmetries inherent in ACTE
- Would 'residual roll capability'
 - Be sufficient for control in crosswinds
 - Be sufficient for control in failure states
- Is this a suitable testbed?

- Building a Simulator
 - Used transport category sim
 - Basic aeromodel from pilot training sim
 - Updated *iteratively* throughout program

- Phase 0A Baseline Aircraft in "Stock" configuration
 - Normal flight mode
 - Stability & Control, Performance, Aeromodeling data
 - Manual Reversion mode Spoilers Off 'Up-and-Away'
- Phase OB Fowler flaps, Spoilers Disabled
 - Four flights SS2B FTT, aero-model, bank-to-bank, HQ
- Back to the Simulator revalidation of HQ

Offset Landing Task

- Setup on ILS approach
- 1-dot width right (~200 ft) of Localizer; on Glidepath
- At 200 ft AGL, correct to land
 - On Centerline
 - Wings level
 - 1500 ft from the approach end
 - Vref -10 knots

Phase OA HQ Results

Stock Aircraft

- Simulator aeromodel still immature at this point
- Sim improved over time

- Aircraft, as expected
- No HQ in Man Reversion mode – open loop only

- Wing low crosswind landing is a steady heading sideslip
 - Use lateral directional equations of motion
 - P, R, \dot{P} , \dot{R} , $\dot{\beta} = 0$
 - Side force reduces to
 - Roll reduces to
 - Yaw reduces to

 $-g\phi = Y_{\beta}\beta + Y_{\delta r}\delta r + Y_{\delta a}\delta a$ $0 = L_{\beta}\beta + L_{\delta r}\delta r + L_{\delta a}\delta a$ $0 = N_{\beta}\beta + N_{\delta r}\delta r + N_{\delta a}\delta a$

- 3 equations 4 unknowns ϕ , β , δr , and δa
 - Solve each unknown as a function of β ($\frac{\phi}{\beta}$, $\frac{\delta r}{\beta}$, and $\frac{\delta a}{\beta}$)
 - Find β at the limit for ϕ , δr , or δa (75% for Mil-Std-1797)
- Convert β to lateral velocity

Limit With 75% Aileron Deflection

Predictions

Skeptical that 25% aileron deflection would be sufficient

Pre-Phase OB

No Spoilers

- Flew test profile and several scenarios in the simulator
 - Simulator included all Phase 0A data including man reversion
 - Crosswind landings done with up to 10 knots of crosswind

- Crosswind limit questions
 - Is 5 knots crosswind too conservative?
 - Is 25% residual aileron deflection enough?
 - How much residual roll rate is enough?
- Original plan
 - Steady Heading Sideslip + Bank-to-Bank Roll
 - Calculate resulting residual roll rate
- Why not just measure it!

The Sideslip-to-Bank Maneuver (SS2B)

- 1. Backwards "Steady-Heading Sideslip"
 - Establish desired bank angle first
 - Then feed in rudder to maintain heading
 - Stabilize for 10 seconds
- 2. "Bank-to-Bank Roll"
 - Full yoke into established bank
 - Rudder fixed
- 3. Terminate at max bank angle
- 4. Recover to wings level

Sideslip-to-Bank Maneuver

- No Flap
- 1.2 V_{stall} = 133 KIAS
- 3/8 initial yoke deflection

- 10,000 ft; 1.2 Vstall
- Heavy weight early in flight (≈ 58,500 lbs)
- Light weight end of flight (≈ 44,000 lbs)
- Yoke deflections (both left and right)
 - 3/8
 - 1/2
 - 5/8
- Flap Positions
 - 0°
 - 10°
 - 20° (man rev limit)
- Terminate roll at 20° bank

Sideslip-to-Bank Maneuver

- Flaps 20-deg
- 1.2 V_{stall} = 115 KIAS
- 1/2 initial yoke deflection

Sideslip-to-Bank Time History

- SHSS, time < 2 s
 - Sideslip used for crosswind
 - Aileron usage
- Full aileron, time 3 to 9 s
 - **Residual roll rate**
- Return to wings level coordinated flight, time > 10s

Initial Phase OB Results

• Phase OB pilot comments

- Aircraft acceptable for flight in controlled environment with ≤ 50% yoke deflection
- Easily handle > 5 kts wind
- Need to expand the crosswind limit

- How much roll rate is needed for crosswind landings?
 - 14 CFR Part 25
 - No "exceptional pilot skill, alertness, or strength"
 - Mil-Std-1797
 - < 75% roll control authority (retains level II FQ)
 - No roll rate guidance
 - NASA TN-7062
 - Roll rates > 5°/sec had "acceptable" pilot ratings
 - 45%-60% control deflection was Satisfactory
- Tire Speed (182 knots)
- FAA handbook 8110.8 allows (4° crab)

Design Criteria

- 1. Maximum 50% control wheel deflection to maintain runway alignment
- 2. Takeoff and landing does not require "exceptional pilot skill, alertness, or strength"
- 3. Touch down at less than 182 knots ground speed
- 4. Maximum of 2 degrees crab angle at touch down

Flight Data

- 50% yoke deflection criteria
- Resulted in 4 deg/s roll rate minimum

New Crosswind Limit

- Crosswind limit is based on landing speed (V_{ref})
 - Added 2° crab angle to increase usability (+ 4 to 5 knots)
- Adjust V_{ref} to 10 times the crosswind component ("Pilot Math")

- Practiced 1st in the sim
- 2 Flights
 - 1st 8 knot crosswind
 - 2nd offset landings
 (with action at 250 ft)
- Data gathered in-flight was minimal to support results
- Returned to the simulator

Simulation Handling Quality Validation

- How do we know these crosswind limits are safe yet useable?
 - Evaluate HQ in the simulation with 10-20 knot crosswinds
- Does simulation accurately represents the aircraft?
 - Compare HQ using offset landing task
- Flight simulation
 - Enabled the team to focus primary safety concerns on crosswind landing capability
 - Enabled a scaled degradation of a aileron authority to determine handling quality limits
 - Supported flight test and in return flight test data supported a more accurate simulator model

SETP - 27 Sept 2013

Lessons Learned

- The Sideslip-to-Bank maneuver can be an accurate predictor of residual roll rate capability in the presence of sideslip
 - For a modified G-III, it resulted in a limit that is safe yet useable
 - Chosen criteria are critical to the final outcome
- An accurate flight simulator is an essential tool
 - Practice/refine FTTs without wasting precious flight time
 - Evaluate modified aircraft before taking any in-flight risk
 - Accurate evaluation of analytical predictions
 - Continue research in a meaningful way after flying was over

Fight for a simulator for your project and do what is necessary to keep it! It will pay for itself 10 times over.

Questions?

ITY II

Back-up

SETP - 27 Sept 2013

Prediction versus Actual

G-III Flight Envelope

Technique Comparison

Spoilerless Roll Handling Qualities

Instrumentation

Hot Films

Cockpit Instrumentation

Instrumentation

