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Motivation

* All previous simulations considered the kinetic
sputtering and ignored the potential sputtering.

* Our motivation is include the potential sputtering
in the simuation of lunar regolith by solar-wind
protons and heavy ions.

* Our results showed that the potential sputtering
has significant effects in:

1. Changing the surface chemical composition
2. Surface erosion rate

3. Sputtering process timescale.
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Background

e Lunar surface material is accessible to the space
weathering factors

* Solar wind protons and heavy ions with kinetic
energies of about 1 keV/amu interact with the regolith

Cosmic and Solar Wind
Micrometeorite Solar Rays Implantation
Bombardment

Sputtering

Vaporization

. lunar regolith
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Sputtering Mechanism

When a target atom gains energy greater than the
surface binding energy, then the atom may be sputtered

__ Number of sputtered atoms

—

Number of incident ions
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Lunar Regolith Simulant JSC-1A AGGL

XPS: Surface of the simulant consists mostly of oxides
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Mass distribution of sputtered species
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Non-EquiIibrium Mo_del

c; 1 .
I I k ]

C. is the abundant of element i in JSC

C". is the fractional abundant of element i in the JSC bulk
Y;; is the yield of element i by solar wind ion j,

F; is the fraction of solar wind j in the solar wind flux

T is a constant has dimension of time.

. . . h
A is the inter-atomic distance T =—%5—
h is the penetration depth a Jy
Y is the sputtering coefficient
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Calculated changes in the elemental composition of a JSC-
1A AGGL surface as a function of time due to the kinetic
sputtering of the solar-wind protons and heavy ions.
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% changes in the elemental composition
of a JSC-1A AGGL surface
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Erosion Rate and Sputtering Time Scale:

 The erosion rate is given by: V.=iY S e

* Sputtering process timescale = 3“
Y Time scale Erosion rate a JY

(Years) (A%/year)

0.12 724 0.224
0.14 621 0.261 Starukhina
0.15 543 0.298
0.18 434 0.335
0.20 395 0.373 Our results
0.23 362 0.447 ~ (Kinetic)
0.28 310 0.522
0.31 271 0.597 \ Our results
0.35 241 0.671 (Kinetic and
0.40 214 0.746 potential)
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Conclusions

* Potential sputtering is effective process in
regolith-like materials (insulators).

* Solar wind heavy ions contribute about 52% of
the proton yield.

* Potential sputtering decreases the sputtering
time scale and increases the erosion rate by

(33%).
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Thanks!
Questions?
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Energy distribution of sputtered atoms 1:

* Energy distributions of sputtered particles from

several targets bombarded with 900 eV
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Energy distribution of sputtered atoms 2:

* Energy distribution of sputtered lunar regolith
atoms due to kinetic sputtering by solar-wind
protons (Starukhina 2003)
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Energy distribution of sputtered atoms 3:

For multi-charged ions (Ar’* and of Ar®*) and
graphite target, experimental results show
broad energy distribution
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Energy distribution of sputtered atoms 4:

* Based on the previous observations and
models and including potential sputtering we
can suggest the following energy distribution :
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