

Sputtering of Lunar Regolith by Solar Wind Protons and Heavy Ions

Samer Alnussirat

University of Alabama in Huntsville

M.S. Sabra, NASA-MSFC, Huntsville, AL 35805 A.F. Barghouty, NASA-MSFC, Huntsville, AL 35812 Douglas L. Rickman, NASA-MSFC, Huntsville AL 35812 Fred Meyer, Physics Division, ORNL, Oak Ridge, TN 37831

Outline

- Motivation
- Background
- Sputtering Mechanism
- Theory
- Results
- Conclusion

Motivation

- All previous simulations considered the kinetic sputtering and ignored the potential sputtering.
- Our motivation is include the potential sputtering in the simuation of lunar regolith by solar-wind protons and heavy ions.
- Our results showed that the potential sputtering has significant effects in:
 - 1. Changing the surface chemical composition
 - 2. Surface erosion rate
 - 3. Sputtering process timescale.

Background

- Lunar surface material is accessible to the space weathering factors
- Solar wind protons and heavy ions with kinetic energies of about 1 keV/amu interact with the regolith

Sputtering Mechanism

When a target atom gains energy greater than the surface binding energy, then the atom may be sputtered

 $Y = \frac{Number \ of \ sputtered \ atoms}{Number \ of \ incident \ ions}$

Lunar Regolith Simulant JSC-1A AGGL

XPS: Surface of the simulant consists mostly of oxides

Experimental contamination

Element	С	0	Si	Al	Fe	Ca	Mg	Ti	Na	Р	K	Cr	F
Atomic %	2.3	55.6	19.5	8.4	1.4	4.3	3.9	0.4	3.3	0.3	0.3	0.1	0.1

Mass distribution of sputtered species

Non-Equilibrium Model $\frac{dC_i}{dt} = \frac{1}{\tau} \left[-C_i \sum_j Y_{ij} f_j + C_i^b \sum_k C_k Y_{kj} f_j \right]$

- C_i is the abundant of element i in JSC
- C^b_i is the fractional abundant of element i in the JSC bulk
- Y_{ii} is the yield of element i by solar wind ion j,
- F_i is the fraction of solar wind j in the solar wind flux
- T is a constant has dimension of time.
- A is the inter-atomic distance
- h is the penetration depth
- Y is the sputtering coefficient

Calculated changes in the elemental composition of a JSC-1A AGGL surface as a function of time due to the **kinetic sputtering** of the solar-wind protons and heavy ions.

Potential Sputtering

% changes in the elemental composition of a JSC-1A AGGL surface

Erosion Rate and Sputtering Time Scale:

- The erosion rate is given by:
- Sputtering process timescale

—•

* 7

 $V_s = jY \delta_I \omega$

\mathcal{U}	Erosion rate	Y I ime scale			
	(A ⁰ /year)	(Years)			
	0.224	0.12 724			
> Starukhina	0.261 —	0.14 621			
	0.298	543	0.15		
	0.335	434	0.18		
Our results	0.373 —	395	0.20		
(Kinetic)	0.447	362	0.23		
	0.522 —	310	0.28		
Our results	0.597	271	0.31		
(Kinetic and	0.671	241	0.35		
potential)	0.746	214	0.40		

Conclusions

- Potential sputtering is effective process in regolith-like materials (insulators).
- Solar wind heavy ions contribute about 52% of the proton yield.
- Potential sputtering decreases the sputtering time scale and increases the erosion rate by (33%).

Thanks! Questions?

Energy distribution of sputtered atoms 1:

 Energy distributions of sputtered particles from several targets bombarded with 900 eV Ar⁺ ions

Energy distribution of sputtered atoms 2:

 Energy distribution of sputtered lunar regolith atoms due to kinetic sputtering by solar-wind protons (Starukhina 2003)

Energy distribution of sputtered atoms 3:

 For multi-charged ions (Ar⁷⁺ and of Ar⁹⁺) and graphite target, experimental results show broad energy distribution

Energy distribution of sputtered atoms 4:

 Based on the previous observations and models and including potential sputtering we can suggest the following energy distribution :

