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Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model
(GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study
statistically downscales (to 1∕8° spatial resolution) and corrects the bias of daily maximum and minimum
temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the
northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based
on these downscaled data from multiple models, five extreme indices were analyzed for the future climate
to quantify future changes of climate extremes. For a subset of models and indices, results based on raw
and bias corrected model outputs for the present-day climate were compared with observations, which dem-
onstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future cli-
mate, bias correction led to a higher level of agreements among the models in predicting the magnitude and
capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical
downscaling as an intermediate step does not lead to considerable differences in the results of statistical
downscaling for the study domain.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The term “climate change” refers to a persistent, and sometimes
irreversible, shift in the long-term statistics of climate variables in a
specific region or the entire globe. Increase in the atmospheric con-
centrations of greenhouse gases appears to be the predominant
cause of recent climate change. The Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change (IPCC) esti-
mated that the global atmospheric concentration of CO2 increased
from a pre-industrial value of about 280 ppm to 379 ppm in 2005,
and the most conservative projection (following the emission scenar-
io SRES B1) of atmospheric CO2 concentration by the year of 2100 is at
about 600 ppm. The CO2-induced climate change, which has already
started to impact different sectors around the globe, is expected to
become more evident in future decades with far-reaching impact in
many sectors. Therefore, assessments of climate change impact,
both global and regional, are drawing attentions from different
groups of researchers and stakeholders.

All impact assessments require climate data at various spatial and
temporal scales. Observed daily climate data, usually at sufficiently
fine resolution, are available to perform such impact studies for past
decades. However, the lack of daily temperature and precipitation
data for future climate at adequately high spatial resolution has
been a major obstacle to performing fine-scale analyses of future cli-
mate change. Although General Circulation Models (GCMs) are the
typical sources for future climate predictions, the spatial resolutions
of those model outputs are too coarse to be directly used in fine-scale
impact studies. Moreover, all model outputs involve a great deal of
biases that, if not corrected, can lead to significant errors in impact
assessments. Therefore, spatial downscaling and bias correction of GCM
outputs are necessary before their use in regional impact analysis
(Giorgi andMearns, 1991; Kidson and Thompson, 1998;Murphy, 1999).

There are two distinct approaches to downscaling GCM outputs —
dynamic downscaling using a Regional Climate Model (RCM) and
statistical downscaling. Dynamic downscaling is computationally ex-
pensive. It is therefore not always feasible to perform dynamic down-
scaling at the required spatial resolution, especially if predictions
from multiple models are desired. For North America, dynamically
downscaled climate data at daily resolution are available from the
North American Regional Climate Change Assessment Program
(NARCCAP). However, the spatial resolution of the NARCCAP data
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(0.5°×0.5°) is still not high enough for most impact assessments at
local and regional scales. In addition, the outputs from RCMs, too,
are likely to contain biases that need to be removed (Marinucci and
Giorgi, 1992; Chen et al., 1999). In contrast, statistical downscaling
is computationally efficient and can be suitably used to perform the
spatial downscaling and bias correction for a large amount of GCM
outputs, and has become a commonly used tool in impact studies.
Various studies demonstrated that the overall performance of statistical
and dynamic downscaling were similar in reproducing the present-day
climate for the respective regions (Murphy, 1999; Wilby et al.,
2000). In an extensive study, comparing the capacity of statistically
and dynamically downscaled data to reproduce the observed re-
gional hydrology, Wood et al. (2004) showed that dynamical down-
scaling did not provide any additional skill in the context of their
study.

Most statistical downscaling approaches are developed based on
the assumption that the statistical relationship between large-scale
GCM outputs and fine-scale observational data established for the
present-day climate will remain unchanged in future climate (Wilby
et al., 1998; Boé et al., 2006). For precipitation, conventional statistical
downscaling methods use the empirical relationship between large-
scale circulation-based predictor variables (geopotential heights, spe-
cific humidity, cloud cover, etc.) and regional climate variables (precip-
itation) that need to be estimated (Zorita and von Storch, 1999; Wilby
andWigley, 2000; Feddersen and Andersen, 2004). Recently, some sim-
pler downscaling methods have been developed that directly use GCM
precipitation as a predictor and involve bias correction ofmodel outputs
(Widmann et al., 2003; Wood et al., 2004; Schmidli et al., 2006; Iizumi
et al., 2011). The performance of bias corrected and statistically
downscaled climate model outputs was satisfactory in different
hydroclimatological studies (Wilby et al., 2000; Wood et al., 2002;
Dettinger et al., 2004). The Bias Correction and Spatial Disaggregation
(BCSD) method, a probability mapping approach to correcting bias
and downscaling climate model outputs as described in Wood et al.
(2002) or its variations,was adopted by several studies to assess the hy-
drological impacts of climate change (Payne et al., 2004; VanRheenen et
al., 2004; Hayhoe et al., 2006). Wood et al. (2004) investigated the per-
formances of three different approaches of statistical downscaling
methods for GCM outputs and the effects of incorporating RCMs as an
intermediate process in hydrologic simulations. They showed that
when applied to both raw GCM data and dynamically downscaled
GCM data, the method developed byWood et al. (2002) produces sim-
ilar results in retrospective hydrologic simulations.

The Bias Correction and Constructed Analogs (BCCA) method, de-
veloped by Maurer and Hidalgo (2008), performs a “lumped” bias
correction based on the month-specific probability distribution of
daily data followed by the constructed analogs approach to statistical-
ly downscale climate models' daily output. Different than the BCSD
approach that corrects the bias at each grid cell independently, the
BCCA method is based on the linear regression of a collection of his-
torically observed weather patterns that closely resemble the GCM
weather pattern for each specific day, and therefore, is more
dynamics-based. Maurer et al. (2010) demonstrated that statistically
downscaled NCEP/NCAR reanalysis data using the BCCA method suc-
cessfully reproduced daily stream flow observed at 11 stations in
California. Abatzoglou and Brown (2011, henceforth AB11) showed
that a modified BCSD method, where a 15-day moving window is
used to define the probability distribution of daily data for bias cor-
rection following the spatial interpolation of GCM outputs to the
downscaled grid, performed reasonably well in producing fine-scale
daily meteorological data required for wildfire analysis.

In this study, using a modification of the BCSD approach, which is
referred to as the Statistical Downscaling and Bias Correction (SDBC)
method hereafter, we create a dataset of daily maximum and mini-
mum temperature and daily precipitation for direct use in ecological
or other impact assessments of climate change for the New England

region, at a spatial resolution of 1∕8°×1∕8° for the future period of
2046–2065. Based on these data, we aim to evaluate the importance
of bias correction of model outputs before their use in regional impact
studies and analyze the effectiveness of the SDBC method in address-
ing the model-related uncertainties in future climate predictions.
Using a few temperature and precipitation extreme indicators as
examples, we also assess the effect of conducting dynamical down-
scaling as an intermediate step before statistical downscaling, by
comparing the SDBC results from RCMs and those from their driving
GCMs.

Section 2 describes the data, methodology and definitions of the
extreme indicators. Section 3 presents results on the impact of bias
correction on reducing model-related uncertainties taking one ex-
treme precipitation indicator for example, and discusses the future
pattern of five extreme indicators estimated based on the statistically
downscaled and bias corrected model outputs. Section 4 summarizes
the results and presents the conclusion.

2. Data and methods

2.1. Spatial downscaling and bias correction

Daily precipitation, maximum temperature and minimum tem-
perature data during the future period of 2046–2065 from six GCMs
and four RCMs are statistically downscaled to the spatial resolution
of 1∕8°×1∕8° in this study. The study area, that includes the New
England region, ranges from 67.0625 W to 75.0625 W in longitudes
and from 38.8125 N to 48.8125 N in latitudes. The GCM simulations
are taken from the World Climate Research Program (WCRP)'s phase
3 of the Coupled Model Intercomparison Project (CMIP3), and include
those from CCSM, GFDL, PCM, CGCM, MPI and MIROC. These GCMs are
so chosen that they cover the full range of model sensitivity to changes
in the atmospheric CO2 concentration as found in IPCC AR4. The RCM
simulations are taken from the NARCCAP database that provides high
resolution climate simulation using different RCMs driven by outputs
from a number of GCMs. For the analysis of temperature extremes,
the RCM–GCM combinations are RCM–CGCM, CRCM–CGCM, CRCM–

CCSM and WRFG–CCSM. In the case of precipitation extremes, RCM–

GFDL replaced CRCM–CCSM. These combinations were chosen based
on data availability at the beginning of this study. Since NARCCAP data
is available for emission scenario SRES A2 only, GCM output is also
taken from the SRES A2 scenario for consistency.

The SDBC method proposed in this study is a modification of the
BCSD approach of Wood et al. (2002, 2004) and Maurer (2007). One
limitation of the BCSD method, like most statistical downscaling ap-
proaches, is the sensitivity of the finally downscaled results to the ini-
tial spatial resolution at which bias correction is applied. For example,
in the case of precipitation, the coarser initial resolution may lead to
an underestimation of frequency and magnitude of the extreme
events. In order to address this uncertainty, in the SDBC method,
raw GCM and RCM outputs are statistically downscaled to the final

Table 1
Extreme climate indicators which were selected and analyzed in this study.

Extreme
Indicators

Definitions Unit

Fd Total number of frost days, defined as the number of days
per year with minimum temperature below 0 °C

Days

GSL Growing season length, defined as the period between the
first spell of five consecutive days with mean temperature
above 5 °C and the first spell of five consecutive days with
mean temperature below 5 °C

Days

TGO Time when the greenup onset occurs in the spring Julian day
R5d Maximum 5-day total precipitation mm
R10 Total number of days with precipitation greater than 10 mm Days
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spatial resolution prior to correcting the bias. A similar modification
was made by AB11, where the raw model outputs were spatially in-
terpolated before bias correction was performed. Li et al. (2010), in
their study on bias correction of monthly precipitation and tempera-
ture, also regridded coarse-scale model data to the same resolution as
the observation before correcting the bias in order to address the un-
certainties related to interpolation along with model bias. In this
study, the downscaling is applied to a “factor value”. The “factor” for
precipitation is the ratio of model precipitation to observed precipita-
tion aggregated to the model resolution, and for temperature is the
difference between model temperature and observed temperature ag-
gregated to the model resolution. The downscaling of the factor values
follows the synergraphic mapping system (SYMAP) algorithm devel-
oped by Shepard (1968). Combining the downscaled factor with the
fine resolution observational data (multiplication for precipitation and
addition for temperature) produces a downscaled model output, which
retains the model climatology but derives its fine-resolution spatial
pattern from observations. Bias correction (following the probability
mapping approach) is then applied as a last step to correct the remaining
model bias.

The bias correction algorithm of the BCSD method is based on the
comparison between the Cumulative Distribution Function (CDF) for
the observed climate and that for a given GCM (or RCM) outputs dur-
ing the same time period. It assumes that the model biases in both
present and future climate simulations follow the same pattern. The
observed temperature and precipitation data used in this study are
taken from the dataset developed by Maurer et al. (2002). This
dataset, having a spatial resolution of 1∕8°×1∕8° and spanning the
period of 1951–2010, was derived from the National Oceanic and

Atmospheric Administration (NOAA) Cooperative Observer (Co-op)
stations data. The Co-op data were gridded to the 1∕8° resolution
using the SYMAP algorithm. However, in order to perform the bias
correction for daily data, both the BCCA and the AB11 method
adopted the lumped approach to define the quantile map instead of
restricting the distribution to a specific Julian day of interest. Similarly,
in this study, the CDF is calculated based on the month-specific
probability distribution of daily data of the present-day climate.

In models, it rains almost every day at lower rain intensity, while
in observation there are many zero precipitation days and the rain in-
tensity during the rainy days is larger than in models. That creates an
inconsistency between the daily precipitation CDF of the model and
that of the observational data. In order to address this problem, we
modified the CDF of model precipitation data. Specifically, if P0 is
the probability threshold of having zero precipitation days in the ob-
served climatology, the values of any model precipitation having
probability threshold lower than P0 were set to zero. As such, the
CDFs of both model and observed data were made consistent. One
drawback, however, is that many drizzling days are set to no-rain
days, which leads to slight underestimation of the rain amount.

Fig. 2. Mean values of total number of days with precipitation greater than 10 mm in present climate which were calculated using raw GCM simulations (1961–1999) at 2° and
dynamically downscaled RCM simulations (1971–1995) at 0.5° and their comparisons with observation at their corresponding resolutions.

Table 2
Root-mean-square error (RMSE) and coefficient of determination (R2) for present-day
(1971–1995) mean of R10, based on comparison of model present-day climate against
observation.

Model GFDL CGCM RCM_GFDL CRCM_CGCM

RMSE 4.94 5.14 13.13 26.22
R2 0.51 0.32 0.27 0.15
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2.2. Climate extremes

Table 1 lists the definitions for the extreme climate indicators
discussed in this study — three indicators for extreme temperature
and two indicators for extreme precipitation. Four out of thesefive indi-
cators, apart from the Time for Greenup Onset (TGO), follow the defini-
tions in Frich et al. (2002) and such definitions have been used in other
studies (Tebaldi et al., 2006; Orlowsky and Seneviratne, 2011). Despite
potential limitations related to the use of a fixed threshold (Kiktev et al.,
2003; Alexander et al., 2006), these five indicators are chosen here for
their strong relevance to plant ecology (an area this studywas originally
designed to serve). TGO was added in this study in order to see how
changes in themaximum andminimum temperature may alter vegeta-
tion phenology. The greenup onset was determined by calculating
the Growing Degree Days (GDD) for plants. In this study, the day of
the year when the value of GDD reaches 150 was considered as the be-
ginning of greenup according to the Integrated Biosphere Simulator
(IBIS) vegetation model (Foley et al., 1996; Kucharik et al., 2000).

Tebaldi et al. (2006) analyzed the historical and future changes in
extreme events based on ten extreme indicators (defined by Frich et
al., 2002) using the multi-model ensembles of nine GCMs participat-
ing in IPCC-AR4. A follow-up study by Orlowsky and Seneviratne
(2011) expanded the Tebaldi et al. (2006) study for the complete
dataset of available GCMs for the emission scenario SRES A2 including
the analysis at seasonal time scales. While these studies were instru-
mental in setting the stage for further studies on climate extremes in
future years, they lack direct applicability for regional studies because
of the coarse spatial resolution of GCM outputs and the biases associ-
ated with them. In this study, spatial downscaling and bias correction

are conducted to make the results more accurate for the small region
of interest.

2.3. Comparison with other similar approaches

Here we compare the performance of four different statistical
downscaling methods for daily climate data in predicting the future
changes in climate extremes, using R10 and the GFDL model as an ex-
ample. Future mean (2046–2065) for R10, which were calculated
from the bias corrected and downscaled GFDL outputs following the
original BCSD, the BCCA, the AB11, and the SDBC method, and the
predicted change from present-day climate (1961–1999) are com-
pared (Fig. 1). For the original BCSD data, we performed the bias cor-
rection and downscaling following the methodology of Wood et al.
(2002) where the quantile maps for daily data were defined based on
the probability distribution of a specific Julian day of interest. After the
bias correction, the “factor” values (as defined in Section 2.1) were

Fig. 3. Future mean (2046–2065) of total number of days with precipitation greater than 10 mm for GCMs (2°) and RCMs (0.5°), based on raw (top row) and bias corrected (bottom
row) outputs.

Table 3
Root-mean-square deviation (RMSD) and coefficient of determination (R2) between
two models for future (2046–2065) mean of R10, based on raw model output and
bias corrected model outputs.

Models GFDL and CGCM RCM_GFDL and CRCM_CGCM

(Raw/bias corrected) (Raw/bias corrected)

RMSD 8.81/2.58 22.35/2.09
R2 0.44/0.80 0.52/0.86
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calculated and downscaled to produce climate data at the final resolu-
tion. For the AB11 data, following the methodology of Abatzoglou and
Brown (2011), we first spatially interpolated the coarse-scale model
output to the final resolution prior to performing the bias correction
where quantile maps were defined using the lumped approach. The
BCCA data was downloaded from the “Bias Corrected and Downscaled
WCRP CMIP3 Climate Projections” archive at http://gdo-dcp.ucllnl.org/
downscaled_cmip3_projections. Future changes of R10 derived from
the raw GFDL output feature an overall increase for the northeast US.
However, the original BCSD approach predicts a decrease over a large
region, while results from the BCCA method show a decrease in R10
for the entire region. Both the AB11 and the SDBC, with very similar re-
sults for future mean of R10, perform better in retaining the signal from
the raw GCM to predict the future changes of extreme precipitation.

3. Results and discussions

A major challenge in using model outputs in impact assessments is
the strongmodel-dependency of future predictions due to unavoidable
model biases. The use of bias correction in this study reduces the range
of such model uncertainties. As an example, the climatic mean of R10,
calculated using the outputs from GFDL and CGCM interpolated at 2°
spatial resolution, were comparedwith the observedmean for the peri-
od of 1961–1999 (calculated using the Maurer et al. (2002) dataset
spatially aggregated from 1∕8° to 2°) (top row of Fig. 2). GFDL overesti-
mates the mean value for R10, while CGCM tends to underestimate.
Similar analysis of R10 for the period of 1971–1995 was performed
using dynamically downscaled GCM outputs from two NARCCAP

combinations, RCM-GFDL and CRCM-CGCM, at a spatial resolution of
0.5° (bottom row of Fig. 2). The difference between the model outputs
and observed data appears to increase after the dynamic downscaling
of GFDL output using RegCM, and the level of underestimation in
CRCM_CGCM is similar to that in CGCM. The values of root-mean-
square error (RMSE, the square root of the mean squared deviation)
and coefficient of determination (R2) between model prediction and
observations for present-day (1971–1995) mean of R10 show that
after the dynamic downscaling of GCM data, model biases still remain
or even become larger (Table 2). Various studies showed that biases
in the driving GCM can be amplified by RCM because of the systematic
errors in boundary forcing in unconstrained dynamic downscaling
(Christensen et al., 1998; Noguer et al., 1998). It is worth mentioning
that although disagreements exist among different models, all of them
capture the main spatial patterns for the mean value of R10, with a
gradual increase of heavy precipitation event from inland to the coast.
However, the comparison between the model simulation and observed
data, when they were used to perform extreme climate analysis, makes
it evident that both GCM and RCM simulations can involve a great deal
of biases.

The mean values of R10 for the future period of 2046–2065 calcu-
lated using daily precipitation data from GCM and RCM simulations
before and after bias correction show variable levels of model dis-
agreement depending on bias correction (Fig. 3). Without bias correc-
tion, model predictions involve a large degree of uncertainties. For
the raw GCM data (top row), the mean value of future R10 in the
GFDL model is higher than that in the CGCM for most of the region.
Similar comparison between RCM–GFDL and CRCM–CGCM simulations

Fig. 4. Future mean (2046–2065) of frost days from spatially downscaled and bias corrected GCM & RCM simulations.
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shows a larger disagreement, with RCM–GFDL always predicting a
greater number of heavy precipitation events. The model-related vari-
ability decreases when the model outputs are used to perform similar
analysis after they are bias corrected (but not downscaled) following
the bias correction algorithm of the SDBC method (bottom row). The
similarity in the spatial patterns captured by both GCMs and RCMs
after bias correction is also remarkable. The comparison of root-
mean-square deviation (RMSD) and R2 values between twomodel pre-
dictions before and after bias correction reveals a higher degree of
agreement between models after the removal of biases (Table 3).

The 20-year (2046–2065) mean of five extreme indicators (de-
fined in Table 1) were calculated for the northeast US using spatially
downscaled and bias corrected data from different GCM and RCM
simulations. The indicators were also estimated based on observation
for the period of 1976–1995 and the predicted changes were defined
as the differences between bias corrected model predictions for
2046–2065 and present-day observations (1976–1995), averaged
among GCMs and RCMs respectively. After bias correction, both the
magnitude and spatial pattern of Fd in future climate predicted by
all GCMs and RCMs are very similar to one another, with a larger
number of frost days for inland than coastal areas (Fig. 4). Similarly,
bias correction of model outputs leads to a higher level of agreements
among the models in predicting both the magnitude and spatial pat-
tern of the future mean GSL (Fig. 5). Because of the warmer temper-
ature along the coastal areas, the mean growing season is longer as
compared to that in inland areas. Similarly, the growing season length
is found to be longer in lower latitudes, which is consistent with tem-
perature gradient. Because of the decrease in mean temperature from

coastal to inland areas, a spatial trend for later greenup occurrence
(as reflected by the higher values of TGO) further away from the
coast or at higher latitudes is predicted by all the models (Fig. 6).
The high values of spatial correlation coefficient between each individual
model and themulti-model average (GCMand RCM separately) for tem-
perature extremes indicate that the SDBCmethod has been successful in
reducing the variability among the outputs from different models and
thus reduces the uncertainties related to their use in regional impact
studies (Table 4).

The differences between the future mean (2046–2065, based on
the bias-corrected and downscaled GCM and RCM ensembles) and
the observed mean of the present-day climate (1976–1995) reflect
the predicted changes in extreme temperature events in the future
climate (Fig. 7). All models predict a decrease in the future mean of
Fd because of the warming of the climate. The decrease ranges from
27 to 36 days for most of the area in the northeast US, with the de-
crease predicted by the GCM ensemble being slightly larger in magni-
tude than the RCM ensemble. Mean GSL will increase because the
growing season will start earlier and end later in the warmer future
climate. This increase tends to be greater in higher latitudes based
on the GCM ensemble, and is relatively uniform in the RCM ensemble
(ranging from 15 to 25 days for the entire northeast US). As GDD re-
quired for leaf out will be met earlier in a warmer climate, an advance
in the greenup onset is predicted by both model ensembles. This ad-
vance is faster in the coastal areas than inland areas, and this spatial
contrast is stronger in the RCM ensemble than the GCM ensemble.

Except for the WRFG–CCSM, the 20-year (2046–2065) mean
values for R10 derived from the bias corrected and downscaled

Fig. 5. Future mean (2046–2065) of growing season length (days) from spatially downscaled and bias corrected GCM and RCM simulations.
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GCM and RCM outputs agree well, with more frequent heavy precip-
itation events occurring in the coastal area (Fig. 8). Despite bias cor-
rection, WRFG–CCSM deviates from other models with overall lower
values, especially along the coast where it predicts a decrease in
R10 as compared to the present-day mean. This is due to the signal
from the raw WRFG–CCSM output which predicts a decrease in
heavy precipitation events in future climate. Bias corrected model
outputs also show some variability in predicting the future mean
(2046–2065) for R5d. However, majority of the models capture

similar spatial pattern, with higher values along the coastal area and
lower further inland, especially in the northeastern part of the region
(Fig. 9). Compared to R10, the larger disparity between individual
model and the multi-model average for R5d leads to the lower spatial
correlation coefficient for both ensembles (Table 4). Differences be-
tween future mean and present-day (1976–1995) observed mean of
the extreme precipitation indices show the future changes in extreme
precipitation events (Fig. 10). Almost the entire region is projected to
experience an increase, albeit small, in the number of days per annum
with precipitation greater than 10 mm. The GCM and RCM ensem-
bles, both indicating a decrease for some areas in the northeast US,
show larger disparity in predicting changes in maximum 5-day total
precipitation.

One of the objectives of our study was to investigate whether in-
corporating dynamic downscaling by RCM as an intermediate step
(i.e., dynamic downscaling of GCM output followed by statistical
downscaling of RCM output) can impact the final results (compared
with statistical downscaling directly from GCM output). In order to
test the significance of the impact of dynamic downscaling, variances
of the mean values of each extreme indicator obtained from GCM–

SDBC approach were compared with those from GCM–RCM–SDBC ap-
proach. Levene's Test was performed to analyze the equality of vari-
ances from two groups. Table 5 shows the spatially averaged values
of Levene's Test statistic. The groups were so chosen to maximize
the possibility of getting largest variances between two groups. In
all cases, the values of Levene's Tests statistic are less than the critical
F-value at 10% level of significance. Therefore, including RCMs as
an intermediate step does not considerably reduce (or increase) the

Fig. 6. Future mean (2046–2065) of time for greenup onset (Julian day) from spatially downscaled and bias corrected GCM and RCM simulations.

Table 4
Spatial correlation coefficient between each individual model and the multi-model av-
erage (GCM and RCM separately) in predicting temperature and precipitation ex-
tremes after statistical downscaling and bias correction.

Model Spatial correlation coefficient with model average

Fd GSL TGO R5d R10

GFDL 0.997 0.989 0.986 0.823 0.984
CGCM 0.998 0.989 0.997 0.823 0.969
MPI 0.999 0.996 0.998 0.776 0.987
MIROC 0.995 0.995 0.995 0.773 0.958
PCM N/A N/A N/A 0.79 0.945
CCSM N/A N/A N/A 0.763 0.972
RCM–CGCM 0.998 0.997 0.998 0.655 0.983
CRCM–CCSM 0.998 0.998 0.999 N/A N/A
CRCM–CGCM 0.994 0.995 0.999 0.746 0.981
WRFG–CCSM 0.997 0.996 0.998 0.708 0.932
RCM–GFDL N/A N/A N/A 0.787 0.962
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disagreement among the models in their future projections of the cli-
mate extremes.

4. Summary and conclusion

The BCSD method of Wood et al. (2002) was modified to develop
the SDBC approach to process daily outputs from GCMs and RCMs,
which results in a multi-model dataset of bias corrected and

downscaled daily maximum and minimum temperature and precipi-
tation for the period of 2046–2065 at a spatial resolution of
1∕8°×1∕8°.

Using the bias corrected and downscaled dataset developed from
GCM and RCM simulations for the A2 emission scenario, three
temperature-related and two precipitation-related extreme indicators
were analyzed for the northeast US. After the spatial downscaling
and bias correction, the agreement among the GCM and RCM outputs
increased in predicting extreme events in the future climate. The

Fig. 7. Present-day mean (1976–1995) and predicted change for extreme temperature indicators, based on the GCM and RCM ensemble in future climate (2046–2065).
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incorporation of dynamic downscaling by RCMs prior to the statistical
downscaling did not cause any significant changes in the prediction of
temperature and precipitation extremes in future climate. This implies
that statistical downscaling with bias correction is an effective tool to
derive fine resolution predictions directly from coarse resolution
GCMs' outputs. However, the skill of the downscaling procedure largely
depends on the scope of the study. For process-based studies (e.g., in
studies on the interaction between different climatic variables or the
feedback between different component of the regional climate system;
Alo and Wang, 2010), statistical downscaling may not be appropriate
and dynamic downscaling will be the choice.

In order to quantify the future changes in extreme events, future
predictions from GCM and RCM ensembles were compared against

present-day observations. Results from the ensembles of six GCMs
and four RCMs might not be sufficient in completely addressing the
uncertainty in model predictions. Including only one emission scenar-
io is another limitation related to the prediction of climate extremes
presented in this study. Also not captured is the uncertainties related
to possible absence of low-frequency natural variability in the histor-
ical record or model hindcast. However, robust characterization of
uncertainty in climate prediction is beyond the scope of our study
and the analysis of future changes in the climate extremes is included
as an illustration of the applicability of fine-scale daily climate dataset
developed here in regional climate impact studies. Based on the re-
sults of this study, the total number of frost days is projected to
decrease in the future due to warming, and the magnitude of the

Fig. 8. Future mean (2046–2065) of total number of days with precipitation greater than 10 mm from spatially downscaled and bias corrected GCM and RCM simulations.
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decrease will be fairly uniform across most of the northeast US. In a
warmer climate, the accumulated growing degree days required for
leaf greenup will be met earlier causing an earlier greenup onset,
while the earlier arrival of spring and delayed fall will lead to an ex-
tended growing season. Analysis of precipitation extremes indicates
that the number of days with precipitation greater than 10 mm is
projected to increase in the northeast US, although in some parts of
the region a decrease in the amount of maximum 5-day total precip-
itation is projected.

The SDBC method, similar to other statistical downscaling ap-
proaches based on probability mapping, retains the large-scale climate
change signal predicted by the GCM or RCM. The bias correction
implemented as part of the statistical downscaling method potentially
offsets the added value of regional climate simulation using a RCM

(which generally performs better than GCMs in simulating regional
climate). However, its main contribution is to produce a future value
for the climate variable of interest at high resolution, with model bias
corrected. The resultingfine-scale climate data provides amore credible
future forcing for impact assessment models, which takes the future
climate itself as the input (as opposed to the predicted change). This
is especially important in the case of nonlinear processes/responses to
climate changes.
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