

- · Develop/optimize technology capable of removing
- PCBs from contaminated sediments · Develop design for functional GPRSS unit
- · Produce and prove functionality of prototype units in a laboratory setting
- · Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA
- · Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments

Overview of Previous Results

· Various polymers tested for ability to remove PCBs from contaminated sediments (Table 1)

Table	e 1							
	% PCB Removal							
Sample ID	3 Weeks	7 Weeks	17 Weeks		T/	able 2		
Black Norprene Tubing	5.73%	7.96%	10.63%	Table 2				
White Norprene Tubing	2.15%	4.54%	4.60%	% 0	% of PCBs removed by Ethanol-filled			
Latex Glove	0.93%	3.14%	4.14%	Polyethylene (1 month Study)				
Thick Nitrile Glove	0.95%	0.31%	1.59%		Interior	Within Polymer	Tota	
Abrasion Resistant Gum Rubber (5/8*)	1.03%	3.43%	1.86%	Pipet 1	35.4	14.0	49.3	
Natural Gum Foam	3.04%	14.17%	20.26%	Pipet 2	31.7	11.0	42.7	
Abrasian Resistant Gum Rubber (1/16*)	3.02%	5.42%	8.27%	Pipet 3	35.9	12.0	48.0	
Weather Resistant Butyl Rubber	3.44%	7.14%	18.46%	Pipet 4	41.9	17.6	59.6	
Weather Resistant Butyl Rubber	3.85%	9.02%	9.87%					
Viton Mat	4.22%	7.30%	6.03%					
Black Viton Tubing	1.89%	0.94%	2.76%					
White Viton Tubing	0.99%	0.63%	0.91%					
Butyl Rubber (glove)	3.99%	3.48%	4.10%					

- · Butvl Rubber, Norprene, Gum Rubber/Foam showed highest removal capacities
- · Interior solvent studies showed marked increase in PCB removal capacity when combined with polymers (Table 2)
- · Polymer blanket designed for feasibility studies
- Small-scale demonstration unit produced for testing and physical optimization studies (Figure 1)

Comparison of	Sediment					
Remediation Technologies						
Table 3						

	<u>GPRSS</u>	<u>Monitored</u> <u>Natural Recovery</u> (<u>MNR)</u>	Dredging/ Removal	
Environmentally	0	0	8	0
Friendly?			<u> </u>	
Destroys PCBs?	٢	8	٢	8
Source Treatment?	٢	8	8	8
Reusable?	٢	()	8	8
Low Cost?	٢	٢	8	

Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)

Robert DeVor¹, James Captain¹, Kyle Weis¹, Phillip Malonev², Greg Booth³ Jacqueline Quinn⁴ ¹QinetiQ North America, ²NASA Postdoctoral Program ³Toxicological and Environmental Associates, Inc., ⁴National Aeronautics and Space Administration

Current Research Results (FY13/FY14)

- Current work focused on optimizing GPRSS technology for use in real-world applications.
 - Creation of functional design; production of prototype test units using results from previous studies • Commercial vendor produced "spikes" of different polymers (LDPE, HDPE, PP) to allow
 - for testing and evaluation. Figure 2 shows an HDPE spike
 - Testing was performed to determine the "sphere of influence" each individual spike would
 - have. The original prototypes had a 2" spacing between spikes
 - The results of this study (Table 4) showed that a 3" spacing would suffice

X

• Concurrent testing of the mass-produced spikes was conducted to Figure 2

ample ID	Diffusion Rate (ug/in ² /week)				
HDPE	12.48				
LDPE	13.42				
PP	8.20				

Table 5

determine the transport rate of the PCBs through the various polymers • Results (Table 5) showed that LDPE had the highest transport capability for PCBs, however physical characteristics of the polymer proved to be unsuitable for real-world use

• HDPE spikes had nearly as high a diffusion rate as LDPE, and were rigid enough for insertion into sediments

- Field deployment was undertaken in a contaminated pond in Altavista, VA in September 2013
 - Two 9ft2 treatment zones were cordoned off; pre-treatment concentrations were obtained
 - Each treatment zone was divided into 9 zones which were treated with an individual GPRSS unit. Pre- and post-concentration samples were taken from the locations marked in Figure 3
 - All samples were split for analysis both at KSC and by an independent certified 3rd party laboratory.
 - First samples were taken in early February (~19 weeks), and the ethanol was replaced and the blankets were re-installed for a second treatment. The results of the 3rd party testing are given in Table 6/7. KSC analysis showed even higher removal rates.

Та	ble 7 – Box 2		Table 6 – Box 1			
	Conc. (ppm)		Conc. (ppm)		
Sample ID	9/24/2013	2/4/2014	Sample ID	9/24/2013	2/4/2014	
NW	74.2	26.8	NW	74.2	26.8	
NE	92.1	26.2	NE	92.1	26.2	
С	85.1	66.9	С	85.1	66.9	
SW	151	28.3	SW	151	28.3	
SE	144	21.4	SE	144	21.4	
Overlying			Overlying			
water	N/A	2.4 (ppb)	water	N/A	2.4 (ppb)	

Summary

- · Developed and optimized design for GPRSS technology
- · Laboratory-scale tests proved functionality of GPRSS design
- · Final down-select of polymers were chosen based upon laboratory results
- · Produced multiple units for field demonstration at Altavista, VA
- Preliminary results (certified 3rd party lab) show that 70% of sites sampled have been reduced to below EPA action limits for PCBs

Future Directions

- Analyze 2nd sample set (~32 weeks) from Altavista, VA field demonstration
- · Analyze GPRSS blankets from Altavista, VA field demonstration to attempt mass-balance of PCBs
- · Evaluate re-usability of both blanket and interior solvent
 - · Test effectiveness of removal capability of PCBs over multiple removal cycles
 - · Test extraction efficiency from polymer blanket
- Evaluate capability of combining polymer blanket with AMTS technology for degradation of PCBs removed /extracted from contaminated sediments

X

