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Mapping of terrestrial chlorophyll fluorescence from space has shownpotential for providing globalmeasurements
related to gross primary productivity (GPP). In particular, space-basedfluorescencemayprovide information on the
length of the carbon uptake period. Here, for the first time we test the ability of satellite fluorescence retrievals to
track seasonal cycle of photosynthesis as estimated from a diverse set of tower gas exchange measurements
from around the world. The satellite fluorescence retrievals are obtained using new observations near the
740 nm emission feature from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument offering the
highest temporal and spatial resolution of available global measurements. Because GOME-2 has a large ground
footprint (~40 × 80 km2) as compared with that of the flux towers and the GOME-2 data require averaging to
reduce random errors, we additionally compare with seasonal cycles of upscaled GPP estimated from a machine
learning approach averaged over the same temporal and spatial domain as the satellite data surrounding the
tower locations.We also examine the seasonality of absorbed photosynthetically-active radiation (APAR) estimated
from satellite measurements. Finally, to assess whether global vegetation models may benefit from the satellite
fluorescence retrievals through validation or additional constraints, we examine seasonal cycles of GPP as produced
from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based
vegetation parameters to derive estimates of APAR that are used to computeGPP. For forested (especially deciduous
broadleaf andmixed forests) and cropland sites, the GOME-2 fluorescence data track the spring onset and autumn
shutoff of photosynthesis as delineated by the upscaled GPP estimates. In contrast, the reflectance-based indicators
and many of the models, particularly those driven by data, tend to overestimate the length of the
photosynthetically-active period for these biomes. Satellite fluorescence measurements therefore show potential
for improving the seasonal dependence of photosynthesis simulated by global models at similar spatial scales.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Vegetation phenology, the study of the timing and length of the
terrestrial growing season and its connection to climate, has shown
important relationships with climate change, surface meteorology,
and the carbon cycle; it influences both spatial and temporal variability

in ecosystem productivity (Gu et al., 2003; White & Nemani, 2003;
Churkina, Schimel, Braswell, & Xiao, 2005; Piao et al., 2008; Gu et al.,
2009; Richardson et al., 2009, 2010, 2012). For example, the timing of
leaf out, particularly for deciduous forests, is an important indicator of
responses to climate change. It has major implications for the seasonal
variation of numerous interactions between the biosphere and atmo-
sphere including the partitioning of available energy into sensible and
latent heat exchange as well as impacts to surface radiation budgets
and dynamics (Randerson, Field, Fung, & Tans, 1999; Baldocchi et al.,
2004; Churkina et al., 2005). The duration of the carbon uptake period
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(CUP), controlled by leaf out and senescence, can explain 80% of the spa-
tial variance in annual net carbon exchange of ecosystems (NEE),
defined as the amount of carbon entering and leaving an ecosystem
(Baldocchi et al., 2001). Bauerle et al. (2012) have shown that while
temperature is an important driver of seasonal changes in photosyn-
thetic physiology, photoperiod also regulates leaf activity, particularly
following summer solstice. They further show that proper accounting
for this effect can significantly improve predictions of seasonal
variations in atmospheric CO2 within a global carbon-cycle model.

Several studies in North American forests (Richardson et al., 2009,
2010; Dragoni et al., 2010) show that earlier spring onset consistently
results in higher gross ecosystem photosynthesis (GEP), as well as
smaller increases in ecosystem respiration, leading to increased net
ecosystem productivity (NEP) for both spring and annual flux integrals.
Piao et al. (2008) find that autumnal warming produces increases in
both photosynthesis and respiration, with greater increases in respira-
tion. Dragoni et al. (2010) further show that in a North American
deciduous forested site, the sensitivity of the carbon cycle to climate
variability depends on the timing of the climate change with respect
to phenological stages as well as to its sign and magnitude.

Terrestrial biospheremodels have a large spread in themagnitude of
predicted gross primary productivity (GPP) and show substantial
differences in the temporal and biome-related (spatial) variability of
GPP (Huntzinger et al., 2012). They show generally poor performance
as compared with flux tower GPP estimates (Schaefer et al., 2012) and
consistently predict that the growing season begins too early and ends
late for deciduous forests; this results in an over-prediction of gross
ecosystem photosynthesis during spring and autumn (Richardson
et al., 2012). There is need for additional data to validate and improve
these models.

The CUP and other phenological indicators have been estimated
using satellite vegetation indices such as the Normalized Differential
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI)
(e.g., Churkina et al., 2005; Ma et al., 2013; Zhang et al., 2003; Zhou
et al., 2001). These indices have also been used within paramaterized
models to estimate gross primary productivity (GPP), defined as the
total amount of carbon dioxide taken up from the atmosphere via
photosynthesis (e.g., Running et al., 2004; Wang, Xiao, & Yan, 2010;
Xiao et al., 2008). Many of these estimates are based on the light-use
efficiency (LUE) model (Monteith, 1972) given by

GPP tð Þ ¼ LUE tð Þ � fPARchl tð Þ � PARchl tð Þ ¼ LUE tð Þ � APARchl tð Þ; ð1Þ

where fPARchl is the fractional absorbed (by chlorophyll)
photosynthetically-active radiation (PARchl), LUE is defined as the
amount of carbon a specific vegetation type can fix biochemically per
unit of absorbed solar energy, APARchl is the absorbed PAR (for
convenience the subscript ‘chl’ is henceforth dropped), and t is time.
For example, satellite reflectance-based fPAR estimates are given in
the MOD15A2 product from the MODerate-resolution Imaging
Spectroradiometer (MODIS), and LUE can be parameterized as a
function of meteorological parameters for a given biome. However,
the use of reflectance-based indicators such as fPAR can be problematic
in areas where vegetation indices do not drop when vegetation stays
green while photosynthesis declines, (e.g., in evergreen needleleaf
forests), in regions affected by seasonal snow cover under the canopy,
and possibly in areas with high heterogeneity within a satellite pixel
(e.g., Churkina et al., 2005; Xiao et al., 2004). In these cases, LUEmodels
must rely more heavily on their LUE parameterizations.

Fluorescence measurements, particularly global observations from
space, offer an alternative means of remotely sensing the functional
status of vegetation. Fluorescence is generated during the photosynthetic
process. The excitation for chlorophyll fluorescence in nature is provided
by sunlight. The broad-band emission has two chlorophyll-related peaks
at red and far-red wavelengths near 685 and 740 nm, respectively
(e.g., Campbell, Middleton, Corp, & Kim, 2008; Corp et al., 2003).

At the canopy level, steady-state fluorescence from chlorophyll in
vegetation at emission wavelength λem = 740 nm, henceforth denoted
F740, in general can be expressed as an integral of contributions over all
excitation wavelengths from ultraviolet to near-infrared wavelengths,
i.e.,

F740 tð Þ ¼ e λem ¼ 740nm; tð Þ
Z

λex

ΘF λex;λem; tð ÞfPARF λex; tð ÞI λex; tð Þdλex;

ð2Þ

where λex is the excitation wavelength, I is incident radiation at the
surface, e is the fractional amount of fluorescence that escapes the
canopy, and ΘF is the fluorescence efficiency. Here it is recognized (by
use of the subscript F) that fPAR for chlorophyll fluorescence (fPARF)
may differ slightly from fPAR for photosynthesis (fPARchl). fPARF and e
are determined by canopy structure and vegetation biochemistry,
captured in spectral optical properties.

A more simplified formulation has also been used to express steady
state fluorescence (e.g., Berry et al., 2013; Louis et al., 2005), i.e.,

F740 tð Þ≃e tð ÞΘF tð Þ � fPARF tð Þ � PARF tð Þ ¼ e tð ÞΘF tð Þ � APARF tð Þ: ð3Þ

Again, we recognize that PARF may differ somewhat from PARchl

(typically assumed to be 400–700 nm) as the action spectrum for
fluorescence may weight ultraviolet wavelengths more heavily
(Chappelle & Williams, 1987; Middleton, Corp, & Campbell, 2008;
Rosema, Verhoef, Schoote, & Snel, 1991). Eq. (3) is similar in form to
Eq. (1). Conversely, Eq. (1) could also be written in a somewhat more
complex form similar to Eq. (2) as an integral over photosynthetically-
active wavelengths. Eq. (3)may be used to approximate Eq. (2) provided
that the spectral structure of ΘF, fPARF, and I remains relatively constant
with time.

If Eq. (3) is taken as is and APARF(t) ≃ APARchl(t), then the ratio of
GPP(t) to F740(t) is proportional to the ratio of LUE(t) to e(t)ΘF(t).
There is theoretical evidence to support that under strong illumination,
the ratio of LUE to ΘF remains relatively constant, at least for fluores-
cence from photosystem II (Berry et al., 2013). Experimental studies
have also shown that in high light conditions (i.e., in the early afternoon
and late morning when many satellite measurements are made),
chlorophyll fluorescence is positively correlated with APAR, LUE, and
GPP (e.g., Amoros-Lopez et al., 2008; Flexas et al., 2002; Guanter et al.,
2014; Louis et al., 2005; Meroni et al., 2008; van der Tol, Verhoef, &
Rosema, 2009; Zarco-Tejada et al., 2009). Therefore, we may expect
similar seasonal variability in GPP and F740 for a given vegetation type
as long as e remains relatively constant.

The main objective of this study is to test the ability of F740 to
accurately track the seasonal cycle of GPP across different vegetation
types. A new F740 data set derived from observations from the GOME-
2 satellite instrument provides the temporal and spatial resolution
needed for afirst direct comparisonwith globalflux tower gas exchange
measurements in terms of the seasonality of photosynthesis. Towards
our goal, we compare the seasonal cycle of GOME-2 F740, averaged
over multiple years, with that of GPP from a diverse set of flux towers
from around the world at middle latitudes where there is a distinct
cycle in photosynthesis. Because the spatial scale of the tower measure-
ments is much smaller than the large footprint GOME-2 satellite
measurements (additionally averaged over time and space to reduce
random errors), we also compare with upscaled GPP estimated with
the Max Planck Institute for Biogeochemistry (MPI-BGC) machine
learning algorithm; these upscaled GPP estimates are averaged at the
same spatial resolution and over the same time period as the GOME-2
F740 retrievals. This allows us to assess potential representativeness
errors in the comparison between GOME-2 F740 and GPP from flux
towers. We perform additional comparisons to determine whether the
seasonal cycle of fluorescence more closely tracks photosynthesis as
compared with absorbed photosynthetically-active radiation (APAR),
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derived from satellite reflectances. Finally, in order to assess whether
fluorescence data may provide additional validation of and/or
constraints for global vegetation models, we compare seasonal cycles of
GOME-2 F740 and GPP generated from an ensemble of state-of-the-art
physically-based and data driven models; the mostly global models
are typically run at similar spatial resolutions as compared with the
GOME-2 F740 data set.

2. Data

2.1. GOME-2 fluorescence at 740 nm (F740)

2.1.1. Background on remote sensing of terrestrial chlorophyll fluorescence
Fluorescence from chlorophyll in terrestrial vegetation has beenmea-

suredwith ground-, aircraft, and satellite-based instrumentation atwave-
lengths in and surrounding the O2 A- and B-bands (e.g., Amoros-Lopez
et al., 2008; Guanter et al., 2007, 2013; Meroni et al., 2009; Middleton
et al., 2010; Moya et al., 2004; Rascher et al., 2009). The filling-in of
solar Fraunhofer lines by terrestrial fluorescence at wavelengths on
both shoulders of the O2-A absorption band (755 and 770 nm) has
been observed using the Japanese Greenhouse gases Observing
SATellite (GOSAT) (Frankenberg et al., 2011, Guanter et al., 2012;
Joiner et al., 2011, 2012). Joiner et al. (2012) found a small filling-in of
the broad solar Fraunhofer ionized calcium (Ca II) line at 866 nm
consistent with fluorescence using the SCanning Imaging Absorption
spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument
flying on the European Space Agency's (ESA's) EnviSat.

Joiner et al. (2013) demonstrated that fluorescence can be retrieved
near the 740 nm emission peak using atmospheric hyperspectral
satellite-based instrumentation. They applied their approach to data
from the Global Ozone Monitoring Experiment 2 (GOME-2) flying on
operational European meteorological (MetOp) satellites. GOME-2
provides the highest fidelity satellite fluorescence data set currently
available; the data, gridded to a spatial resolution of about 0.5° latitude
by 0.5° longitude at a monthly time resolution, have estimated errors of
0.1–0.4 mW/m2/nm/sr.

2.1.2. The GOME-2 instrument
GOME-2 is a grating spectrometer that measures backscattered

sunlight in a nadir-viewing geometry at wavelengths between 270
and 800 nm in four separate channels (Munro et al., 2006). It has been
launched on the MetOp A and B platforms on 19 October 2006 and 17
September 2012, respectively. Both MetOp A and B are in sun-
synchronous orbits with an equator crossing time near 09:30 AM, but
approximately 45 min (half an orbit) apart.

Here, we use data from MetOp A covering 2007–2011. We use
radiances from channel 4 at a spectral resolution of ~0.5 nm with a
signal-to-noise ratio of ~1000. The nominal ground pixel lengths at
nadir are approximately 40 and 80 km in the along- and across-track
directions, respectively. The default swath width is 1920 km. This
enables global coverage of the Earth's surface within about 1.5 days.
The actual coverage for fluorescence retrievals is reduced because data
in heavily clouded overcast conditions are filtered out as described in
more detail below.

2.1.3. Retrieval of far-red fluorescence from GOME-2
We derive GOME-2 F740 primarily from the filling-in of solar Fraun-

hofer lines in the vicinity of the 740 nm far-red fluorescence emission
peak as in Joiner et al. (2013). The basis for the retrieval relies on the
fact that an additive signal such as fluorescence produces a filling-in of
a solar line when an Earth backscattered spectrum is normalized with
respect to the solar spectrum or a reference spectrum that does not
contain fluorescence. The retrieval uses a principal component analysis
approach with a simplified radiative transfer model to disentangle the
spectral signatures of three basic components: atmospheric absorption,
surface reflectance, and fluorescence emission. GOME-2 F740 is given in

radiance units (mW/m2/nm/sr) and varies somewhat with viewing
geometry (Guanter et al., 2012; Joiner et al., 2012).

The retrieval algorithm performed well when tested with simulated
data and was applied to radiances from GOME-2 (Joiner et al., 2013).
Fluorescence from GOME-2 compared well in terms of spatial and
temporal variability with that from GOSAT (Guanter et al., 2012)
obtained with a more simple retrieval approach. The GOME-2 fluores-
cence data set provides substantially improved sampling and precision
(and therefore spatial resolution) as compared with GOSAT; therefore
only GOME-2 data are used in this study.

We have made some minor changes to the approach of Joiner et al.
(2013) that bring the GOME-2 results into slightly better agreement
with GOSAT and reduce small biases where no fluorescence is expected.
We use a spectral fittingwindow between 715 and 758 nm and a single
set of principal components (PCs), derived from cloudy data over ocean,
to estimate the spectral structure of atmospheric absorption; absorption
is dominated by water vapor over this spectral range. The O2 A-band is
not included in the fitting window. The principal components are
derived from radiance spectra here as opposed to the logarithm of the
radiance spectra as in Joiner et al. (2013). We also attempted to correct
for drift in the absolute instrument calibration by fitting a degradation
factor to the GOME-2 solar spectra.

2.1.4. Processing of GOME-2 fluorescence retrievals
For cloud screening of GOME-2 data as in Joiner et al. (2013), we

make use of the concept of the effective cloud fraction, fe, described in
detail by Stammes et al. (2008). fe can be computed by inverting the
following equation:

Im ¼ Iclr 1− f eð Þ þ Icld f e; ð4Þ

where Im is the measured radiance, and Iclr and Icld are considered to be
clear and cloudy subpixels (i.e., the independent pixel approximation).
Iclr is computed using a surface albedo data set as described in Joiner
et al. (2013) and Icld ismodeled as a Lambertian surfacewith an effective
reflectivity of 0.8. In this mixed Lambertianmodel of cloudy scenes, fe is
not a true geometrical cloud fraction, but rather represents an estimated
fraction of the surface that is completely shielded by clouds (i.e., the
satellite sensor sees only the clear fraction of a pixel approximated by
1 − fe).

Here, we retain only pixels with fe b 40 %. The impact of this empir-
ically chosen threshold is described in more detail in Section 3. Due to
uncertainties in theGOME-2 absolute calibration and the surface albedo
data set used in the calculation of fe, our cloud screening procedure
primarily removes heavily clouded (overcast) pixels; cases of thin and
broken clouds are retained in the sample. Clouds do not affect the
spectral signature of fluorescence as is the case for vegetation indices
derived from satellite reflectances. Therefore, the main effect of clouds
on fluorescence measurements is a shielding effect, i.e., a fraction of
the surface is shielded by clouds/aerosol from satellite observation.
Radiative transfer simulations show that a substantial fraction of the
fluorescence signal (~80%) can penetrate through clouds/aerosols of
low to moderate optical thickness (up to 5) (Frankenberg, O'Dell,
Guanter, & McDuffie, 2012). Joiner et al. (2012) similarly estimate that
with a 40% geometrical cloud cover, 80% or more of the surface will be
seen for cloud optical thicknesses up to 10.

We generate climatological 8 day mean GOME-2 F740 values using
GOME-2 data averaged over the time period Jan. 2007 through Dec.
2011. The 8-day intervals were chosen to match those of the MODIS
fPAR (MOD15) data set as described below. For comparison with data
from a given flux tower site, we average quality-controlled pixels that
have centers within 1° latitude and 1° longitude of the tower location;
we apply quality control checks as described in Joiner et al. (2013) In
addition, we use only GOME-2 pixels with solar zenith angles (SZA)
less than 70° to avoid possible biases due to rotational-Raman scattering
(Vasilkov, Joiner, & Spurr, 2013).
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Table 1
Network sites used in analysis (see text for more details).

Code State/country & name Years IGBPa IGBPb % Reference

AU-Fog Fogg Dam, Australia 2006–2007 WET SAV 72.2 Beringer, Livesley, Randle, and Hutley (2013), Ma et al. (2013)
AU-
How

Howard Springs, Australia 2001–2006 WSA SAV 61.1 Beringer et al. (2011), Ma et al. (2013)

AU-
Tum

Tumbarumba, Australia 2001–2006 EBF EBF 41.0 Bonan et al. (2011)

AU-Wac Wallaby Creek, Australia 2005–2007 EBF EBF 43.8 Kilinc, Beringer, Hutley, Tapper, and McGuire (2013)
BW-
Ma1

Maun–Mopane Woodland,
Botswana

1999–2001 WSA SAV 91.0 Veenendaal, Kolle, and Lloyd (2004)

CA-Mer Quebec Eastern Peatland–Mer Bleue 1998–2005 WET DBF 70.1 Lafleur, Roulet, and Admiral (2001), Kross (2011)
CA-Qcu Quebec Boreal Cutover Site 2001–2007 ENF ENF 72.2 Giasson, Coursolle, and Margolis (2006)
DE-Tha Anchor Station Tharandt, Germany 1996–2007 ENF MF 67.4 Grünwald and Bernhofer (2007)
IL-Yat Yatir, Israel 2001–2006 ENF SH 45.1 Rotenberg and Yakir (2010)
IT-Amp Amplero, Italy 2002–2006 GRA MF 67.4 Gilmanov et al. (2010)
IT-Cpz Castelporziano, Italy 1997–2007 EBF WAT 45.1 Garbulsky, Penuelas, Papale, and Filella (2008)
IT-Ro1 Roccarespampani, Italy 2000–2007 DBF MF 53.5 Migliavacca et al. (2010)
NL-Hor Horstermeer, Netherlands 2004–2007 GRA CRO 54.9 Hendriks, van Huissteden, Dolman, and van der Molen (2007, 2008)
NL-Loo Loobos, Netherlands 1996–2007 ENF CRO 48.6 Elbers, Jacobs, Kruijt, Jans, and Moors (2011)
US-
ARM

OK ARM Southern Great Plains-
Lamont

2000–2007 CRO GRA 44.4 Billesbach, Fischer, Torn, and Berry (2004)

US-Aud AZ Audubon Research Ranch 2002–2006 GRA SAV 47.2 Gilmanov et al. (2010)
US-Bar NH Bartlett Experimental Forest 2004–2006 DBF DBF 70.1 Jenkins et al. (2007)
US-Bkg SD Brookings 2004–2006 GRA CRO 79.2 Gilmanov et al. (2005)
US-Blo CA Blodgett Forest 1997–2007 ENF ENF 53.5 Goldstein et al. (2000)
US-Bo1 IL Bondville 1996–2007 CRO CRO 77.1 Turner, Urbansky et al. (2003)
US-Dk3 NC Duke Forest Loblolly Pine 1998–2005 ENF MF 45.8 Luo et al. (2001), Stoy et al. (2008)
US-FPe MT Fort Peck 2000–2006 GRA GRA 66.7 Gilmanov et al. (2003)
US-Goo MS Goodwin Creek 2002–2006 GRA DBF 50.0 Yuan et al. (2007)
US-Ha1 MA Harvard Forest EMS Tower

(HFR1)
1991–2006 DBF DBF 97.2 Urbanski et al. (2007), Goulden, Munger, Fan, Daube, and Wofsy (1996)

US-Ho1 ME Howland Forest (main tower) 1996–2004 ENF MF 61.8 Thornton et al. (2002)
US-Ho2 ME Howland Forest (west tower) 1999–2005 ENF MF 61.8 Thornton et al. (2002)
US-IB1 IL Fermi Agricultural 2005–2007 CRO CRO 50.7 Xiao et al. (2008)
US-IB2 IL Fermi Prairie 2004–2007 GRA CRO 50.7 Xiao et al. (2008)
US-Los WI Lost Creek 2000–2006 CSH MF 92.4 Sulman, Desai, Cook, Saliendra, and Mackay (2009), Desai et al. (2008)
US-
MMS

IN Morgan Monroe State Forest 1999–2006 DBF MF 37.5 Schmid, Grimmond, Cropley, Offerle, and Su (2000), Dragoni, Schmid, Grimmond, and
Loescher (2007)

US-MOz MO Missouri Ozark Site 2004–2007 DBF DBF 59.7 Gu et al. (2003, 2006, 2012)
US-Me2 OR Metolius Intermed. Pine 2002–2007 ENF ENF 56.2 Loescher et al. (2006)
US-Me3 OR Metolius Second Young Pine 2004–2005 ENF ENF 56.2 Loescher et al. (2006)
US-Me4 OR Metolius-old aged ponderosa

pine
1996–2000 ENF ENF 56.2 Loescher et al. (2006)

US-Me5 OR Metolius First Young Pine 1999–2002 ENF ENF 56.2 Loescher et al. (2006)
US-NR1 CO Niwot Ridge 1998–2007 ENF ENF 41.0 Monson et al. (2002)
US-Ne1 NE Mead — irrigated continuous

maize
2001–2006 CRO CRO 97.9 Suyker, Verma, Burba, and Arkebauer (2005), Verma et al. (2005)

US-Ne2 NE Mead — irrigated maize–
soybean rot.

2001–2006 CRO CRO 97.9 Suyker et al. (2005), Verma et al. (2005)

US-Ne3 NE Mead — rainfed maize–soybean
rot.

2001–2006 CRO CRO 98.6 Suyker et al. (2005), Verma et al. (2005)

US-Oho OH Oak Openings 2004–2005 DBF CRO 69.4 Sun et al. (2010)
US-PFa WI Park Falls/WLEF 1995–2005 MF MF 96.5 Davis et al. (2003) Desai et al. (2008)
US-SO2 CA Shy Oaks Old 1998–2006 CSH SH 72.9 Stylinski, Gamon, and Oechel (2002)
US-SP1 FL Slashpine-Austin Cary-65 yr nat

regen
2000–2006 ENF MF 47.2 Powell et al. (2008)

US-SP2 FL Slashpine-Mize-clearcut-3 yr
regen

1998–2005 ENF MF 47.2 Bracho et al. (2012)

US-SP3 FL Slashpine-Donaldson-mid-rot-
12 yr

1999–2005 ENF MF 47.2 Bracho et al. (2012)

US-Shd OK Shidler Tallgrass Prairie 1997–2000 GRA GRA 44.4 Gilmanov et al. (2003)
US-Syv MI Sylvania Wilderness Area 2001–2006 MF MF 88.9 Desai, Bolstad, Cook, Davis, and Carey (2005)
US-Ton CA Tonzi Ranch 2001–2007 WSA SAV 55.6 Sims et al. (2005)
US-
UMB

MI Univ. Mich. Biological Station 1999–2006 DBF MF 84.7 Gough, Hardiman, Vogel, Nave, and Curtis (2010)

US-Var CA Vaira Ranch- Ione 2000–2007 GRA SAV 55.6 Sims et al. (2005)
US-
WBW

TN Walker Branch Watershed 1995–2000 DBF MF 49.3 Misson et al. (2007)

US-WCr WI Willow Creek 1998–2006 DBF MF 99.3 Cook et al. (2004)
ZA-Kru Skukuza-Kruger Natl. Park, South

Africa
2001–2003 SAV SAV 75.7 Scholes et al. (2001)

a IGBP vegetation type at site — CRO: Croplands; CSH: Closed Shrublands; DBF: Deciduous Broadleaf Forest; EBF: Evergreen Broadleaf Forest; ENF: Evergreen Needleleaf Forest; GRA:
Grasslands; GMF: Grass + Mixed Forest; MF: Mixed Forest; OSH: Open Shrublands; SAV: Savannas; SH: Shrublands; WET: Wetlands; WSA: Woody Savannas.

b Predominant IGBP type within satellite averaging area (see text) where WSA and SAV are combined as SAV, CSH and OSH as SH, and MF and GMF as MF.
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Weestimated uncertainties in each 8-day bin as the root sum square
of the standard error of the mean (of all samples in the bin) and a
nominal GOME-2 F740 constant error of 0.2mW/m2/nm/sr. The standard
errors alone appear to underestimate the uncertainties as the large
numbers of samples used in the averaging process lead to relatively
small standard errors in most bins. The constant error is introduced to
account for other error sources such as cloud contamination.

2.2. AmeriFlux and FluxNet tower measurements

We use quality-controlled 1/2 hourly GPP from the FluxNet synthesis
project (http://www.fluxdata.org/) (Baldocchi et al., 2001) and addition-
al US stations in the AmeriFlux site synthesis project (Barr, Ricciuto et al.,
2013; Barr, Richardson et al., 2013). Table 1 provides tower station details
including the starting and ending years of the observational record used
here and the International Geosphere Biosphere Programme (IGBP)
vegetation type at the station. Table 1 also lists the dominant vegetation
type, according to an IGBP land cover map, corresponding to the area
over which the GOME-2 F740 data are averaged (within 1° latitude, 1°
longitude of a station location), denoted IGBPavg. Here, we combined
open and closed shrublands into a single type (shrublands), and woody
savannas and savannas into one type (savannas). Our mixed forest type
contains the IGBP type ‘grass+ mixed forest’ in addition to ‘mixed forest’.
We provide the approximate percentage (%) of the satellite-averaging
box covered by the dominant vegetation type IGBPavg in Table 1. Fig. 1
displays locations and vegetation types in a mapped format.

We compute 8-daymeans of GPP estimated from the tower data in a
manner similar to our processing of GOME-2 data. Each 8-day value is

an average over all available years for a particular tower. The 8-day
intervals match those of the MOD15 data set. We do not include
gap-filled data in our data processing. We use all available GPP data
regardless of the cloud conditions and average data over all hours. We
checked that the derived seasonal cycle of GPP does not change substan-
tially if we use only data near the satellite overpass time.

For inclusion of a site in our analysis, at least 40 quality-controlled
GOME-2 pixels must have been collected for a given 8 day period and
at least 75% of the 8-day bins within the year must be filled. Unfortu-
nately, the tower observational time records do not generally coincide
with those of GOME-2. Therefore, we must compare seasonal cycles
that have been averaged over different sets of years (for each site).
This may produce some differences between the tower and other
satellite data sets as there can be interannual variability, particularly in
the initiation of photosynthesis (e.g., Gu et al., 2008). Comparisons of
derived seasonal cycles of photosynthesis from flux towers and
GOME-2 satellite data are considered to be climatological. By using
averages over several years, wemay smooth out some of the interannual
variability.

Uncertainties in the GPP derived from flux tower measurements
have been computed for the Ameriflux sites (Schaefer et al., 2012);
total uncertainties include contributions from random errors, threshold
friction velocity uncertainty, and partitioning uncertainty (owing to
uncertainty in the estimated ecosystem respiration). The partitioning
uncertainty is based on the variance produced by different partitioning
algorithms (Desai et al., 2008). Random uncertainty is the largest
contributor to the total uncertainties (50–90%).

Using the available Ameriflux data, we find that total uncertainties in
the weekly-mean GPP (GPPweekly) varies with GPPweekly. We fit a general
exponential function to the Ameriflux data to approximate the weekly-
averaged total GPP uncertainties (σGPPtot), i.e.,

σGPPtot ¼ 0:5085 � e0:1088�GPPweekly : ð5Þ

We then apply this formulation to all tower sites to approximate
uncertainties in the derived 8-day GPP.

2.3. The MPI-BGC data-driven model of GPP

Estimates of GPP from the Max Planck Institute for Biogeochemistry
(MPI-BGC) originate from upscaling a global dataset of eddy covariance
based measurements (Jung et al., 2011). A machine learning algorithm
(Model Tree Ensembles, MTE) as described by Jung, Reichstein, &
Bondeau (2009) was trained to predict monthly observed GPP at the
tower sites based on remotely sensed fPAR, climate, and vegetation
type data. The trained model was then applied using spatial grids of
the explanatory variables to generate global monthly GPP estimates at
a 0.5° spatial resolution (see Jung et al., 2011, for details).

We averaged monthly MPI-BGC GPP estimates from Jan. 2007–Dec.
2011, the same time period used for GOME-2 data. We then averaged
all gridboxes within 1° latitude and longitude of each flux tower
location, the same spatial scale as represented by the GOME-2 data.
We may then use the upscaled MPI-BGC GPP estimates to assess the
effect of the different spatial scales of the flux tower and GOME-2
satellite data. We use Eq. (5) to estimate uncertainties in the upscaled
GPP.

2.4. GPP model ensemble

We also examine seasonal cycles (weekly output) of GPP as
produced by an ensemble of 24 models that were used in the study of
Schaefer et al. (2012). MPI-BGC is not included in the ensemble. The
models were driven with gap-filled meteorological data from each
tower site. Other input parameters and biophysical characteristics
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Fig. 1. Locations of flux towers and their designations used in this study; purple, blue, and
red indicate that the primary vegetation type (IGBP) covers approximately 75–100%,
50–75%, and 0–50%, respectively, of the surrounding satellite averaging area; symbols
show dominant vegetation type for the satellite averaging area; +: Mixed Forest
(including ‘grass + MF’); *: Croplands; ×: Grasslands; ◊: Deciduous Broadleaf Forest; △:
Evergreen Needleleaf Forest; square: Savannas (including woody); ○: Shrublands (open
and closed); ●: Evergreen Broadleaf Forest. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

379J. Joiner et al. / Remote Sensing of Environment 152 (2014) 375–391



were derived from local observations as discussed in Schaefer et al.
(2012).

The model ensemble includes 14 physically-based models that have
prognostic phenology and 10 data-driven models that use remote
sensing data to determine leaf area index (LAI) and/or GPP. Themodels
were classified in Schaefer et al. (2012) as either enzyme-kinetic (EK)
(17 models) or LUE (7) models. Both EK and LUE groupings include a
combination of data-driven and physically-based approaches to
estimate LAI and/or GPP. Because some of the models are targeted for
a particular biome (e.g., forest or agriculture), not all of the models
produced a simulation for a given site. Therefore, each site has a different
model ensemble associated with it.

2.5. MODIS fPAR/APAR (MOD15)

We used 8-day means of the canopy fPAR derived from the Terra
MODIS collection 5 (MOD15A2) (Myneni et al., 2002) obtained from
the Oak Ridge National Laboratory's Distributed Active Archive Center
(ORNL DAAC, 2010). We used quality controlled data averaged over
approximately 7 km × 7 km regions centered on a flux tower. The
original data are produced as an 8-day maximum value composite at
1 km spatial resolution. Because the MODIS data set is produced as a
composite using maxima rather than means (as was done for the F740
and tower GPP data) and are then specified as a single value at the
midpoint of the compositing period, it should be noted that the values
may be weighted towards earlier dates in spring during the onset of
greening (by up to ~4 days or half the compositing period) and similarly
towards later dates in autumn as greenness is declining.

APAR values are computed using the MOD15A2 fPAR × cos(Θ),
where Θ is the average solar zenith angle for each time period near
the MetOp-A and Terra local overpass times; cos(Θ) is a proxy for the
seasonal cycle of potential PAR. We compute a climatological seasonal
cycle of APAR by averaging data for each 8-day interval over the time
period Feb. 2000–Oct. 2011. The averaged data are then plotted at the
midpoint of the time interval. We estimate uncertainties similar to
what was done for GOME-2 F740 as described above; for each 8-day
bin, we estimate the uncertainty as the root sum square of the standard
error of themean (for each 8-day interval) and a nominal constant error
of 0.03 intended to account for additional error sources such as cloud
contamination and compositing effects.

3. Results and discussion

3.1. Seasonal variations in tower-based and upscaled GPP, MODIS-based
APAR, and GOME-2 F740

In this section, we assess the ability of GOME-2 F740 to track the
seasonality of photosynthesis as delineated by tower-based and upscaled
GPP estimates. Figs. 2–3 show average seasonal cycles of GPP (normal-
ized to unity at the maxima) from towers along with the upscaled GPP
from MPI-BGC, GOME-2 F740, and MODIS-based estimates of APAR, for
sites representing a variety of biomes. Similar plots for the other sites
listed in Table 1 are provided in the Supplemental information (SI). All
GOME-2 pixels with centers within 1° latitude and longitude of the flux
tower site are averaged here, and similarly all MPI-BGC gridboxes
within 1° latitude and longitude of the site are averaged. The GOME-2
F740 and MPI-BGC GPP data are averaged over the same years
(2007–2011). Therefore, we expect better agreement of GOME-2 F740
withMPI-BGCGPP as comparedwith tower-basedGPP due to the closer
collocation in both time and space of GOME-2 F740 with MPI-BGC GPP.

The tower data indicate a relatively short growing season for the
agricultural Nebraska site US-Ne1 (Fig. 2a), composed of continuous
maize crops. This short duration of photosynthesis is similarly shown
by both GOME-2 F740 and the upscaled MPI-BGC GPP estimates. The
upscaled GPP and GOME-2 F740 display a slightly wider mean growing
season as compared with the tower-based GPP. This may be expected

as GOME-2 F740 and the upscaled GPP estimates are analyzed at similar
and larger spatial scales as compared with the tower measurements.
The larger footprints of GOME-2 F740 and MPI-BGC GPP likely contain
contributions from different crops such as soybeans that have
somewhat lengthier growing seasons and vegetation types other than
croplands; this may explain the more gradual increases(decreases) in
spring(autumn). It should be noted that monthly mean MPI-BGC GPP
estimates are in excellent agreement with 8-day mean GOME-2 F740;
this indicates that monthly-mean values are adequate for the present
analysis.

A significantly earlier springtime rise and later autumn decline is
seen in MODIS-based APAR as compared with GOME-2 F740 and the
GPP estimates for the US-Ne1 agricultural site and similarly for the
agricultural US-IB1 site (see SI). The later decline in autumn may be
expected asAPAR does not contain information about LUE and therefore
may remain high in the presence of green vegetation that is not
engaging in photosynthesis. However, the almost symmetrical early
rise in spring is more difficult to explain as green vegetation in spring
should be photosynthetically-active.

One explanation is that the reflectances used to generate MODIS
(MOD15) fPAR are sensitive to pigments in vegetation and soil other
than chlorophyll. It has been shown that the MOD15 estimate of fPAR
applies to the whole vegetation canopy, both photosynthetic and
nonphotosynthetic components, and does not provide consistent
relationships to photosynthetic processes at the ecosystem scale
(Turner, Ritts et al., 2003; Turner, Urbansky et al., 2003; Turner et al.,
2006; Zhang et al., 2009). Alternative methods have emerged to
improve estimates of fPAR related to only the photosynthetic component
(see Zhang, Middleton, Cheng, & Landis, 2013, and references therein).
One such approach involves the retrieval of a new fPARparameter related
only to the chlorophyll-containing foliage (called fPARchl) (Zhang et al.,
2005, 2006, 2009; Zhang, Middleton, Gao, & Cheng, 2012). This param-
eter shows a seasonal cycle more consistent with tower-based GPP for
several tower sites used in our study including the agricultural sites
US-Ne2 and US-Ne3, and a deciduous broadleaf forest site (US-Bar)
(Cheng, Zhang, Lyapustin, Wang, & Middleton, 2014).

The MODIS-based APAR also shows a slightly earlier spring onset of
activity for the northern deciduous broadleaf forest (DBF) and mixed-
forest (MF) sites (US-UMB and US-Ha1) in Fig. 2b and c, respectively,
and is lagged in the autumn decline with respect to the tower GPP at
these sites.We note thatMODIS fPAR typically stays above 0.2 through-
out the year for these sites. For some sites such as US-Ha1, fPAR remains
very high (~0.5) throughout thewinter, possibly owing to contributions
from evergreen needleleaf vegetation or other pigments in the woody
parts of the vegetation. While multiplication of fPAR by the PAR-proxy
brings MODIS-based APAR to near zero in winter, GOME-2 F740
minimum winter values are at or closer to zero. MODIS-based APAR
shows a much closer relationship with tower-based GPP at the more
southern US-Dk3 site (Fig. 2d) where GPP does not drop to zero in
winter.

GOME-2 F740 tracks the sharp springtime rise and autumn drop in
GPP, as shown in the upscaled MPI-BGC GPP product, at sites composed
primarily of DBF and MF in the northeast, midwest, and southern US
shown in (US-Ha1, US-UMB, and US-Dk3 sites in Fig. 2b–d, respective-
ly). Similar results are obtained at other US DBF and MF sites in the
northeast and midwest US (see SI) such as US-Syv, US-PFa, US-WCr,
and US-MMS (stations in Wisconsin and Indiana) and New England
sites (US-Bar and US-Ho1,2). The GOME-2 F740 and MPI-BGC GPP
seasonal variations also closely follow those from the tower-based
GPP estimates at these relatively homogeneous sites.

For most forested sites, GOME-2 F740 appears to begin to decline
slightly earlier than both GPP estimates. This decline, starting near
summer solstice, is consistent with seasonal changes in leaf photosyn-
thetic capacity (Vcmax) across a variety of tree species reported by
Bauerle et al. (2012). It should be noted that the uncertainties in the
tower GPP, particularly due to partitioning, are relatively large at this
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time of year. Another explanation is that the seasonal variations in
fluorescence efficiency differ slightly from those of light use efficiency.

The Oklahoma US-Shd site shown in Fig. 2e is relatively heteroge-
neous in terms of vegetation type in the surrounding satellite averaging
area and is composed primarily of grasslands. The upscaled GPP from
MPI-BGC shows a somewhat more broad and smooth seasonal cycle
as compared with the tower-estimated GPP. GOME-2 F740 agrees to
within estimated uncertainties with the MPI-BGC GPP at this site,
while the MODIS APAR shows a more lengthy duration of activity.

GOME-2 F740 and MPI-BGC upscaled GPP compare reasonably well
with each other as well as with tower GPP at the evergreen needleleaf
forest (ENF) US-NR1 site (Fig. 2f). MODIS-based APAR does not show
a drop to near zero in winter. This is likely a result of the evergreen
vegetation or other non-photosynthetic components that are absorbing

PAR in winter but not engaging in photosynthesis. The GOME-2 F740
errors are proportionally higher for this site as comparedwith the others
owing to the overall lower observed values. Therefore, the empirically-
derived constant component of the error (0.2 mW/m2/nm/sr) produces
an effectively lower signal-to-noise ratio for sites with lower fluo-
rescence signals. Other examples are shown in the Supplemental
material for shrublands and savannas that also display low fluores-
cence values.

The seasonality of GPP and GOME-2 F740 at the savanna tower sites in
Africa and Australia (see Fig. 3a and c) shows similar patterns. In both
cases MODIS-based APAR does not display as much variability as
GOME-2 F740 or the GPP estimates. In contrast, the evergreen broadleaf
forest site in Australia (Fig. 3b) shows different seasonality of both
upscaled MPI-BGC GPP and GOME-2 F740 as compared with MODIS-
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Fig. 2. Seasonal cycle (means) of tower-based and upscaled GPP fromMPI-BGC, GOME-2 F740, andMODIS-basedAPAR for a variety of vegetation types. Curves are normalizedwith respect
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based APAR and tower GPP. This is likely due to spatial heterogeneity
around the site that is surrounded by pastures that display a peak in
GPP around day 280 similar to that shown in MPI-BGC GPP and
GOME-2 F740 (J. Beringer, private communication, 2014).

GOME-2 F740 tracks the seasonality of GPP reasonably well for
the European sites dominated by croplands and mixed-forest
within the satellite averaging area (Fig. 3d–f). It should be noted that
these sites are also relatively heterogeneous as indicated by differ-
ences shown in sites contained within approximately the same
satellite averaging area (see SI). In these cases, GOME-2 F740 is in
good agreement with the upscaled MPI-BGC GPP estimates. However,
as shown for the mixed-forest dominated US sites and discussed
above, a somewhat earlier decline at the start of senescence is shown
for GOME-2 F740 as compared with the GPP estimates for the DE-Tha
site (Fig. 3f).

In order to show that the displayed seasonal variability of GPP is not
driven primarily by the seasonality of PAR, we alternatively repeated
this comparison by normalizing GPP estimates and GOME-2 F740 with
respect to incoming potential PAR (results not shown). This analysis
showed that the seasonality of GPP (and GOME-2 F740) is dictated largely
by that of LUE and fPAR. Results in Cheng et al. (2014) support this
conclusion.

The general conclusions discussed above were not substantially
impacted by varying the value of the fe threshold for the GOME-2 F740
data. We also checked whether the conclusions hold if tower data are
filtered for clouds using the reported incident short-wave radiation.
While cloud filtering quantitatively affects monthly-mean GPP and to
some extent GOME-2 F740 values (changes absolute values), it does not
substantially alter the qualitative spatio-temporal variations of normal-
ized GPP.
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Fig. 3. Similar to Fig. 2 but showing sites from Australia, Africa, and Europe for a variety of vegetation types.
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3.2. Comparisons with multi-model mean weekly GPP

In this section, we examine whether GOME-2 F740 offers a means to
constrain or validate global vegetationmodels in terms of the simulated
seasonality of photosynthesis. Fig. 4 shows the multi-model weekly
mean GPP from data driven (DD) and prognostic (Prog) models along
with the tower-based GPP and GOME-2 F740 for the same sites as in
Fig. 2. The multi-model means, particularly for the DD models, show a
somewhat lengthier duration of photosynthesis for northern and
midwestern DBF andMF sites such as US-Ha1 and US-UMB, the agricul-
tural US-Ne1 site, and the grasslands US-Shd site as compared with
tower-based GPP. Like theMODIS APAR estimates, themodels, especial-
ly DD models, show better agreement of the estimated GPP seasonal
cycle with the tower data for the southern MF-dominated US-Dk3 site.

The models also generally fall within the range of observational
uncertainties for the ENF-dominated US-NR1 site.

Some of the DD models contained in the multi-model means
calculate GPP using the LUE model as in Eq. (1). Errors in these types
of models can result from errors in fPAR and/or LUE. In areas containing
dormant green vegetation, such as MF and ENF in winter, APAR may
remain high owing to the greenness of the vegetation (including
non-chlorophyll containing pigments) when solar radiation is being
absorbed but not used for photosynthesis. In this situation, models
that utilize reflectance-based parameters like fPAR must then depend
upon their LUE parameterization to control GPP.

In regions with cold winters, low winter temperatures are generally
sufficient to reduce LUE and subsequently GPP; when LUE can be
estimated reliably as near or equal to zero (e.g., temperatures near or
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Fig. 4. Similar to Fig. 2 showing seasonal variability in tower-based GPP, GOME-2 F740, and multi-model ensemble means that use data-driven (DD) and prognostic (Prog) approaches to
estimate LAI/GPP.
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below freezing), it can be assumed that GPP is likewise near or equal to
zero. Under these conditions, the GPP estimate is not influenced by any
errors in fPAR/APAR.

However, in areas where temperatures are near or above freezing
outside of the main part of growing season and fPAR remains high, it
ismore challenging to estimate the spring initiation and autumndecline
of photosynthesis through the LUE parameterization. As a result, an
incorrect GPP may be generated outside the main growing season
when fPAR is at a moderate value. This has been reported previously
for the MODIS GPP product (MOD17) (Heinsch et al., 2006; Turner,
Ritts et al., 2003; Turner et al., 2006); MOD17 is one of the models
contained in our data-driven ensemble and one that specifically uses
the MOD15 fPAR product. Improved seasonal cycles of GPP have been
obtained in an LUE model by using fPARchl as compared with MODIS
fPAR (fPARcanopy) (Cheng et al., 2014).

Our results suggest that GOME-2 F740 may provide an additional
constraint for estimating the seasonal rise and fall of GPP, particularly
for the deciduous and mixed forest sites. Given the results shown in
the previous subsection, it is suggested that F740 can offer estimates of
the seasonality of photosynthesis in areas not well covered by flux
towermeasurements that can be used for model validation. In addition,
GOME-2 F740 provides a global data set at a spatial resolution similar to
that of global models.

3.3. Timing indicators associated with different stages of photosynthetic
activity

There is no standard way to compute phenological indicators,
such as onset of greenness or photosynthetic activity in spring,
using satellite data (Fisher, Mustard, & Vadeboncoeur, 2006; Gu
et al., 2003). It has been shown for deciduous vegetation and many
crops that the spring pattern of leaf emergence, followed by rapid
growth, and then a stable period of maximum leaf area can be
represented using a logistical model (e.g., Zhang et al., 2003, and
references therein). A reverse pattern can be modeled for the transition
from senescence to dormancy.

We identify various timing indicators following the approach of
Zhang et al. (2003) as illustrated in Fig. 5 for the US-Bar site. We have
augmented the approach by computing uncertainties for the indicators
as described below. The first step is to fit either the greenup or
senescence portions of the seasonal cycle of the various parameters
(GPP, MODIS APAR, or GOME-2 F740) to a function of the form

y tð Þ ¼ c

1þ eaþbt
þ d: ð6Þ

Then, using the fitted parameters in Eq. (6), the rate of change in the
curvature can be computed analytically. Transition dates are defined for
the timeswhen the rate of change in the curvature reaches localminima
or maxima.

In the greenup (or declining) portion of the seasonal cycle, the
photosynthetic (or senescence) onset is defined as the first peak/valley
in the curvature-change rate. The next large peak is known as the
inflection or stability point where GPP or satellite parameters are
changing at a large rate. The last peak occurs at the onset of maximum
photosynthetic activity in the greenup portion or at the onset of dormancy
in the declining phase.

Here, we focus exclusively on forested and cropland sites in North
America for which this fitting approach works well. We inspected the
results for each site and discarded a few sites (e.g., US-Bkg, US-MOz,
US-SP1–3) where the fitting procedure was not well behaved
(e.g., owing to a too narrowly peaked maximum, multiple peaks, or
incomplete dormancy).

To compute the uncertainties in the timing indicators, we use a
Monte Carlo approach centered about the initial fit with 1000 perturba-
tions. To illustrate the range of uncertainties for the rate of change in

curvature shown in Fig. 5, we use standard linear error analysis to
propagate observation errors through the fitting procedure. Specifically,
we compute the Jacobian of Eq. (6), K, and assume that the observation
error covariance matrix, Sy is a diagonal matrix (i.e., errors are assumed

Fig. 5. Example of how timing indicators are computed at US-Bar tower; black solid line
with gray shading: Normalized curves corresponding to left axes with associated
uncertainties; blue solid with vertical bar shading: computed rate of change in the curva-
ture from the fitting logistical function with computed error standard deviations along
with timing indicators (symbols) and corresponding uncertainties (1σ, horizontal line)
from the Monte Carlo simulation corresponding to right-side axes. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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to be unbiased and uncorrelated with respect to each other). The
estimated error covariance for the fitted parameters in Eq. (6), Sf, is
given by

Sf ¼ Kt Sy
� �−1

K
� �−1

: ð7Þ

Sf is then further propagated linearly using Eq. (7) with the analyti-
cally computed Jacobian of the rate of change of curvature function (see
Zhang et al., 2003, for formulation of the rate of change of curvature).
This provides a full error covariance for the rate of change of curvature.
We show the error standard deviations for reference in Fig. 5 (note that
errors are correlated with respect to each other). The errors from the
Monte Carlo simulation for the timing parameters are also shown in
Fig. 5.

The computed timing indicators and associated uncertainties are
shown in Figs. 6–7 for tower and upscaled GPP, GOME-2 F740, MODIS
APAR, and the multi-model mean (results from both DD and Prog
models are averaged together here). Note that the indicators for the
multi-model means are available only for Ameriflux sites. Bias and χ2

statistics with respect to the tower GPP (considered as the standard)
are computed and averaged for each vegetation type and summarized
in Table 2. Again, note that the multi-model mean uses only the
available Ameriflux sites to compute these statistics.

Fig. 6 shows the duration of photosynthesis (similar to the carbon
uptake period), from the onset of photosynthesis (the left edge of the
various colored bars with corresponding uncertainties) to the onset of
dormancy on the right edge of the bars. For MF and DBF sites in the
northeast and northern midwest US, the photosynthesis onset accord-
ing to the tower-based data occurs between about days 70 and 130.
For these sites, both the MPI-BGC GPP and GOME-2 F740 track the
tower onset reasonably well, while MODIS-based APAR shows a
substantially earlier rise ranging from ~days 60–90. The multi-model
mean shows a similar early onset of photosynthesis for many of these
sites. Photosynthetic onset from MODIS APAR compares better with
the tower data for the ENF-dominated sites.

For the midwest cropland sites, the onset of photosynthesis occurs
much later, generally around day 150 according to the tower estimates.
The larger scale GOME-2 F740 and MPI-BGC GPP detects photosynthetic
onset somewhat earlier, arounddays 110–135, likely due to amixture of
other vegetation types within their averaging area. Despite the fact that
the MODIS data are averaged over a much smaller area near the tower
site, the MODIS APAR results again show a substantially earlier photo-
synthesis onset between days 50 and 80 for all agricultural sites except
US-Bo1where the onsetwas near day 115. Themulti-modelmeanonset
of photosynthesis is generally comparable to the MPI-BGC GPP results
for the US-NE1–3 cropland sites.

Similarly, for the onset of dormancy in Fig. 6 (the end of the colored
bars), MODIS APAR is somewhat late with respect to the tower data for
croplands. The MPI-BGC GPP and GOME-2 F740 dormancy onset
estimates are closer to the tower data and also closer to each other for
croplands. For most of the MF and DBF sites, GOME-2 F740 provides

Fig. 6. Summary of the duration of photosynthesis from the photosynthetic onset (left end
of horizontal bars with uncertainties indicated) to the dormancy onset (right end of
horizontal bars) (see text for details) for various forest and cropland sites and data sets.
The site name and majority IGBP vegetation type are indicated on the left. Timing
indicators derived from the multi-model mean data are only available for Ameriflux
sites. (For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)

Fig. 7. Similar to Fig. 6 but showing the duration of maximum photosynthesis from onset
of maximum photosynthesis (left end of horizontal bars) to the senescence onset (right
end of horizontal bars).
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dormancy onset estimates that are generally within uncertainty ranges
of both MPI-BGC and tower-based GPP. The MODIS APAR and multi-
model mean dormancy onset results are somewhat late with respect
to the tower data for several sites but still fall within the uncertainty
ranges for other sites. The dormancy onset results for the ENF sites
from all estimates agree relatively well with each other to within the
uncertainties.

Fig. 7 shows the duration of maximum photosynthesis from the
onset of maximum photosynthesis and senescence onset; uncertainties
tend to be larger for these estimates. The onset of maximum photosyn-
thesis derived from the various datasets is in general agreement to
within the relatively large uncertainties.

In contrast with the onset of dormancy, GOME-2 F740 shows consis-
tently early onset of senescence forMF andDBF sites, although the error
bars are quite large for some sites. This was similarly shown in
Section 3.1 in the seasonal plots for representative sites. Again, this
could be an indication that ΘF starts to decline slightly earlier than
LUE, although errors bars for GOME-2 F740 and MPI-BGC generally
overlap. Additional ground-based fluorescence and other measurements
would be helpful to sort out this issue.

Table 2 highlights the cases of statistically significant differences
in the timing indicators with respect to the tower GPP (considered
to be the standard) and reinforces conclusions drawn from the
barplots. For example, MODIS-based APAR and the multi-model
mean show an early onset of photosynthesis for croplands, DBF,
and MF in general as compared with the tower estimates. This
early onset is also reflected in the multi-model mean for the same
IGBP types. The early rise in MODIS APAR continues to the spring
inflection point for these biomes which is not the case for the
multi-model mean.

GOME-2 F740 andMPI-BGC GPP show an early onset of photosynthe-
sis for croplands; this could be related to their larger spatial footprints.
GOME-2 F740 has a significant early bias in the onset of senescence for
croplands, DBF, and MF sites even with the relatively large error bars.
MODIS APAR also shows later dates for dormancy onset and the autumn
inflection point for some vegetation types. GOME-2 F740 shows a late
bias in dormancy onset in croplands that again could be related to the
spatial footprint. MPI-BGC GPP similarly shows a late bias, but it is not
statistically significant given the estimated errors. Both MPI-BGC GPP

and GOME-2 F740 show early biases in the autumn inflection point for
DBF and MF sites, though the biases are significant only for GOME-2 F740.

Tables 3–5 summarize the results of the timing indicators for
representative cropland and forested sites. The results are divided by
majority biome type within the satellite averaging area and are ordered

Table 2
Statistics for various timing indicators versus the standard (tower GPP). Significant differences in terms of the χ2 statistic (N2.0) are shown in bold. The units of bias are days.

Type Onset Onset Inflection Inflection Onset max. Onset

Photosyn. Dormancy Spring Autumn Photosyn. Senesce.

χ2 Bias χ2 Bias χ2 Bias χ2 Bias χ2 Bias χ2 Bias

MODIS APAR vs. tower GPP
CRO 71.9 −78.8 30.3 35.8 60.9 −38.0 16.7 18.6 2.3 2.6 0.6 0.6
DBF 21.0 −43.0 2.0 13.0 22.0 −26.3 5.1 12.7 0.7 −10.0 1.0 13.0
ENF 1.1 −17.0 1.1 18.5 1.4 −13.0 0.3 8.0 3.3 −9.0 0.4 −1.5
MF 21.2 −33.2 7.5 15.1 20.1 −17.1 11.5 12.9 0.8 −1.4 2.2 10.8

MPI BGC GPP vs. tower GPP
CRO 3.9 −29.2 0.5 9.2 1.1 −11.0 0.1 2.6 0.3 6.6 0.1 −3.8
DBF 0.9 5.7 0.2 −6.3 0.2 −2.3 0.3 −6.7 0.4 −10.7 0.2 −6.7
ENF 0.3 −17.5 0.0 −2.0 0.7 −15.0 0.1 −3.0 0.5 −13.0 0.0 −2.5
MF 0.5 −5.9 0.7 −1.9 0.6 3.9 0.4 −5.3 0.6 13.3 0.1 −8.8

GOME-2 F740 vs. tower GPP
CRO 19.6 −22.0 5.9 11.6 3.2 −8.0 0.9 1.0 1.0 5.6 2.1 −9.4
DBF 0.5 8.7 0.4 1.3 1.4 −3.7 3.7 −14.3 1.5 −16.3 3.9 −29.7
ENF 0.0 −2.0 0.1 5.5 0.1 0.5 0.3 11.0 0.3 3.5 0.1 −12.5
MF 2.6 7.9 1.6 1.7 5.3 7.7 5.7 −16.4 2.4 7.1 3.5 −34.9

Multi-model mean vs. tower GPP
CRO 47.3 −33.5 1.5 21.7 0.6 −6.2 0.2 3.0 3.0 16.8 1.2 −15.3
DBF 11.9 −29.5 1.2 23.9 14.5 −20.5 1.0 13.9 1.1 −13.5 0.1 3.9
ENF 1.2 −14.5 0.1 −9.0 0.5 4.5 0.4 −8.0 2.2 23.5 0.2 −7.0
MF 19.9 −27.6 2.1 18.6 9.7 −13.3 1.5 7.2 0.4 0.8 0.3 −4.5

Table 3
Summary of duration of photosynthesis, growing season (length between inflection
points), and duration of maximum photosynthesis as described in the text with
uncertainties in parentheses for majority agricultural sites.

Estimate Duration of photosyn. Duration of
growing season

Duration of
max. photosyn.

US-Bo1 40.01°N −88.29°E
MODIS 171 (4.0) 97 (2.1) 22 (5.7)
Tower 104 (2.5) 76 (2.3) 49 (4.3)
MPI-BGC 145 (11.4) 83 (10.9) 21 (17.5)
GOME-2 144 (3.3) 85 (1.8) 26 (4.5)

US-Ne1 41.17°N −96.48°E
MODIS 246 (7.9) 142 (3.0) 36 (7.8)
Tower 117 (2.5) 73 (3.5) 28 (6.5)
MPI-BGC 147 (12.0) 88 (9.0) 30 (17.6)
GOME-2 143 (3.8) 82 (2.0) 22 (5.0)
Multi-model 165 (18.9) 85 (9.7) 6 (15.0)

US-Ne2 41.16°N −96.47°E
MODIS 247 (7.9) 142 (3.0) 37 (7.9)
Tower 121 (2.5) 80 (3.0) 40 (6.0)
MPI-BGC 147 (12.0) 88 (9.0) 30 (17.6)
GOME-2 144 (3.5) 83 (2.0) 22 (5.0)
Multi-model 169 (11.6) 90 (5.8) 11 (11.8)

US-Ne3 41.18°N −96.44°E
MODIS 222 (6.4) 122 (3.2) 21 (7.8)
Tower 110 (2.3) 75 (2.3) 39 (5.5)
MPI-BGC 147 (12.0) 88 (9.0) 30 (17.6)
GOME-2 144 (3.5) 83 (2.0) 22 (5.0)
Multi-model 181 (9.7) 82 (7.2) 6 (9.5)

US-IB1 41.86°N −88.22°E
MODIS 256 (7.5) 160 (3.0) 64 (7.0)
Tower 117 (2.9) 76 (4.0) 34 (7.0)
MPI-BGC 175 (17.8) 101 (13.8) 27 (21.3)
GOME-2 162 (5.0) 92 (2.5) 23 (7.1)
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by latitude. These tables highlight that there is significantly more
variability in the timing indicators for the ENF and MF sites that cover
a larger range of latitudes. For example, the southern-most MF site
(US-WBW) has a significantly longer duration of photosynthesis than
most of themore northern sites as determined from tower and upscaled
GPP as well as GOME-2 F740. Some of the MF sites at similar latitudes
also show significant differences; the northern midwestern sites,
US-UMB and US-WCr (as well as other sites located nearby and not
shown in the table), have significantly shorter durations of photosyn-
thesis as compared with the US-Ho1 site located in the northeast US
at a similar latitude, and US-UMB has a longer duration of photosynthe-
sis as compared with US-WCr. Again, this is shown by tower and
upscaled GPP as well as GOME-2 F740. While MODIS and multi-model
mean data produce significantly larger estimates of duration of photo-
synthesis, they generally show the same spatial variability.

We attempted to compare individual yearly estimates of the timing
parameters from GOME-2 F740, MPI-BGC GPP, and available flux tower
measurements. In general, the interannual variability is smaller than
the estimated uncertainties. To reduce uncertainties in the current
data sets, we would need to average data over larger (regional) scales.
We intend to pursue this in more detail in future studies.

4. Conclusions and ongoing work

Our direct comparisons of GOME-2 F740 with tower-based and
upscaled GPP indicate that GOME-2 F740 tracks the spring onset and
autumn decline of photosynthesis for several different biomes.
Moderate to high values of MODIS-derived fPAR (N0.2–0.5) are
maintained throughout the year at many sites for which green
vegetationmay absorb light but not utilize the energy for photosynthe-
sis, particularly in winter. Our study suggests that GOME-2 F740 may be
used to better constrain this aspect of GPP simulated by data-driven
models and improve parameterizations in process-based models. We
acknowledge the inherent difficulties in comparing the relatively
small spatial scale tower-based GPP estimates with those of the

larger-footprint GOME-2 data that were produced for different sets of
years. The use of the MPI-BGC upscaled GPP estimates for the same
time periods as the GOME-2 data has provided a means of assessing
potential differences arising from the differing spatial scales and
temporal periods of tower- and satellite-based data.

Ecosystem models and reflectance-based data products from Earth-
orbiting satellites (e.g., NDVI, EVI, LAI) are currently used to predict or
monitor the seasonal dynamics of vegetated ecosystems that
correspondwith the growing season and carbon uptake period. Howev-
er, as noted above, these models and satellite observations often do a
poor job of describing the length of the growing season, as found in
our current study and by others (e.g., Garrity et al., 2011; Richardson
et al., 2012). Over- and under-estimation of the growing season and
related carbon uptake period can lead to errors in predicting interannual
variability in ecosystem–atmosphere carbon exchange and can
negatively impact our ability to assess long term trends in ecosystem
response to climate change (Garrity et al., 2011). Reflectance-based
satellite products are typically linked to seasonal morphological
development of plant canopies (e.g., LAI). Time lags between morpho-
logical and physiological development can lead to significant error in
estimating seasonal carbon flux (Morecroft, Stokes, & Morison, 2003;
Richardson et al., 2009, 2010). In contrast, our results show very good
agreement betweenGPP andfluorescence for several important vegeta-
tion types (croplands and several forest types); this suggests that
GOME-2 F740 may better capture seasonal dynamics of canopy physiol-
ogy relevant to carbon flux in some ecosystems as compared with
existing models and satellite data products.

Following the recent launch of a second GOME-2 instrument on the
MetOp-B platform, the MetOp-A GOME-2 is now operating in a smaller
pixel mode (since day 196 of 2013); ground pixels are now 40× 40 km2

with a 960 kmwide swath. TheMetOp-B operates in the standardwider
swathmode as described above. This enables smaller pixel fluorescence
observations of similar quality although with less frequent overpasses.
Use of the two GOME-2 instruments should lead to improved

Table 4
Similar to Table 3 but for deciduous broadleaf forest (DBF) and evergreen needleleaf forest
(ENF) sites as indicated.

Estimate Duration of photosyn. Duration of
growing season

Duration of
max. photosyn.

US-Ha1 (DBF) 42.54°N −72.17°E
MODIS 256 (7.1) 170 (3.0) 84 (6.7)
Tower 188 (5.9) 119 (3.8) 49 (9.6)
MPI-BGC 198 (14.4) 125 (10.3) 52 (20.0)
GOME-2 197 (9.2) 117 (3.7) 37 (9.2)
Multi-model 241 (13.2) 153 (8.2) 66 (4.9)

US-Bar (DBF) 44.06°N −71.29°E
MODIS 245 (6.4) 166 (2.9) 87 (5.9)
Tower 176 (4.6) 129 (2.8) 80 (6.8)
MPI-BGC 183 (13.8) 120 (8.1) 56 (19.8)
GOME-2 184 (8.6) 113 (3.4) 41 (8.9)

CA-Mer (DBF) 45.41°N −75.52°E
MODIS 249 (5.8) 158 (2.5) 67 (5.5)
Tower 218 (17.3) 129 (9.8) 40 (20.3)
MPI-BGC 165 (12.6) 119 (6.9) 73 (18.1)
GOME-2 179 (8.3) 115 (3.2) 51 (7.4)

US-NR1 (ENF) 40.03°N −105.55°E
MODIS 255 (11.9) 149 (5.9) 43 (12.4)
Tower 209 (10.5) 148 (4.5) 85 (11.7)
MPI-BGC 218 (33.0) 141 (29.6) 66 (36.3)
GOME-2 216 (28.8) 132 (19.8) 48 (27.5)
Multi-model 215 (13.9) 136 (7.2) 55 (6.2)

CA-Qcu (ENF) 49.27°N −74.04°E
MODIS 213 (7.3) 147 (3.5) 81 (5.6)
Tower 188 (20.8) 106 (16.3) 24 (21.6)
MPI-BGC 210 (22.3) 137 (14.9) 64 (26.0)
GOME-2 196 (26.8) 143 (23.2) 29 (27.2)

Table 5
Similar to Table 3 but for representative mixed forest sites.

Estimate Duration of photosyn. Duration of
growing season

Duration of
max. photosyn.

US-WBW 35.96°N −84.29°E
MODIS 258 (5.6) 189 (2.3) 121 (4.8)
Tower 220 (7.5) 158 (3.2) 95 (8.5)
MPI-BGC 238 (15.5) 159 (11.3) 81 (25.5)
GOME-2 228 (9.6) 134 (3.7) 39 (10.0)

US-MMS 39.32°N −86.41°E
MODIS 243 (4.3) 184 (1.8) 125 (4.0)
Tower 200 (5.2) 145 (3.0) 91 (7.0)
MPI-BGC 191 (15.3) 110 (12.3) 29 (19.8)
GOME-2 190 (4.8) 103 (2.5) 18 (6.8)
Multi-model 260 (16.5) 165 (10.7) 70 (7.9)

US-Ho1 45.20°N −68.74°E
MODIS 287 (10.7) 177 (4.1) 69 (8.6)
Tower 245 (9.0) 162 (4.3) 79 (10.9)
MPI-BGC 223 (19.0) 133 (13.8) 43 (24.3)
GOME-2 192 (10.8) 111 (5.9) 31 (11.8)
Multi-model 261 (14.2) 168 (9.6) 76 (4.7)

US-UMB 45.56°N −84.71°E
MODIS 236 (4.3) 157 (2.0) 80 (4.3)
Tower 172 (4.3) 118 (3.3) 64 (7.8)
MPI-BGC 205 (18.0) 127 (12.3) 48 (23.1)
GOME-2 201 (19.1) 112 (14.4) 19 (14.1)
Multi-model 223 (10.7) 144 (5.1) 64 (4.6)

US-WCr 45.81°N −90.08°E
MODIS 210 (3.5) 149 (1.8) 87 (3.8)
Tower 150 (4.0) 111 (2.5) 70 (6.1)
MPI-BGC 179 (14.1) 116 (8.3) 54 (20.3)
GOME-2 176 (8.7) 105 (3.8) 33 (8.9)
Multi-model 202 (5.9) 134 (2.4) 65 (4.5)
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fluorescence data sets for further studies in the future. In addition, the
upcoming launches of the Orbiting Carbon Observatory-2 (OCO-2)
(Frankenberg, Butz, & Toon, 2011; Frankenberg et al., 2014) and the
Sentinel-5 precursor TROPOMI (Veefkind et al., 2012) will enable
additional measurements near the O2-A band at higher spatial
resolution. The FLuorescence EXplorer (FLEX) (Rascher, 2007), an ESA
Explorer 8 Mission selected for Phase A/B1 in early 2011, is designed
specifically to make chlorophyll fluorescence measurements (Guanter
et al., 2010) and would provide additional spectral information across
the visible-NIR spectrum.
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