On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century

1 Institute of Environmental Physics, University of Bremen, Bremen, Germany
2 NASA/Goddard Space Flight Center, Greenbelt, MD, USA

Received: 19 March 2014 – Accepted: 7 April 2014 – Published: 17 April 2014

Correspondence to: J. Aschmann (jan.aschmann@iup.physik.uni-bremen.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Chemistry–climate models predict an acceleration of the upwelling branch of the Brewer–Dobson circulation as a consequence of increasing global surface temperatures, resulting from elevated levels of atmospheric greenhouse gases. The observed decrease of ozone in the tropical lower stratosphere during the last decades of the 20th century is consistent with the anticipated acceleration of upwelling. However, more recent satellite observations of ozone reveal that this decrease has unexpectedly stopped in the first decade of the 21st century, challenging the implicit assumption of a continuous acceleration of tropical upwelling. In this study we use three decades of chemistry-transport-model simulations (1980–2013) to investigate this phenomenon and resolve this apparent contradiction. Our model reproduces the observed tropical lower stratosphere ozone record, showing a significant decrease in the early period followed by a statistically robust trend-change after 2002. We demonstrate that this trend-change is correlated with corresponding changes in the vertical transport and conclude that a hiatus in the acceleration of tropical upwelling occurred during the last decade.

1 Introduction

The issue of whether the large-scale Brewer–Dobson Circulation (BDC) has strengthened in the recent past, as a result of anthropogenic activity, has been raised (Oman et al., 2009; Butchart et al., 2010; Randel and Jensen, 2013). Recent chemistry-climate model (CCM) simulations predict an increase of resolved wave activity and orographic gravity wave drag resulting from increasing sea surface temperatures (Garcia and Randel, 2008; Oman et al., 2009; Waugh et al., 2009; Butchart et al., 2010; Garny et al., 2011). This strengthens the upwelling branch of the BDC, commonly referred to as the tropical upwelling. In comparison, the behaviour of the observations is ambiguous. The long-term cooling of the tropical lower stratosphere (LS, about 17–21 km; Thompson and Solomon, 2005; Young et al., 2012) and the observed weakening of the strato-
spheric quasi-biennial oscillation (QBO; Kawatani and Hamilton, 2013) are consistent with the predicted increase of upwelling. On the other hand, the mean residence time of air parcels in the stratosphere (age of air) inferred from sulfur hexafluoride (SF$_6$) measurements is inconsistent with an overall acceleration of the BDC (Engel et al., 2009; Stiller et al., 2012). They indicate no significant changes or even deceleration of the vertical transport in the middle stratosphere. To reconcile the observed discrepancies it has been argued that the individual branches of the BDC are evolving differently, i.e. an increase in tropical upwelling does not necessarily imply an acceleration of the overall circulation (Bönisch et al., 2011; Diallo et al., 2012; Lin and Fu, 2013).

Ozone (O$_3$) is a sensitive proxy for vertical transport in the tropical LS (Randel et al., 2006; Waugh et al., 2009; Randel and Thompson, 2011; Polvani and Solomon, 2012). Its local mixing ratio is considered to result from a stationary state involving production by oxygen (O$_2$) photo-dissociation and a steady influx of O$_3$-poor tropospheric air from below (Avalone and Prather, 1996; Waugh et al., 2009; Meul et al., 2014). Meridional mixing from higher latitudes is a secondary effect that contributes to the seasonality in the O$_3$ mixing ratios (Ploeger et al., 2012). Several studies have reported a negative trend of O$_3$ in the tropical LS in the range of $-(3-6)$% per decade, consistent with the CCM predicted increase of tropical upwelling (Randel and Thompson, 2011; Sioris et al., 2014; Bourassa et al., 2014). In contrast, more recent O$_3$ observations from various satellite instruments indicate no statistically significant decrease of LS O$_3$ since the beginning of the 21st century (Kyrölä et al., 2013; Eckert et al., 2014; Gebhardt et al., 2014).

Stimulated by the need to explain the unusual linear trends revealed from the vertical profile of O$_3$ retrieved from SCIAMACHY we use three decades of O$_3$ observations and simulations to investigate this phenomenon. Section 2 describes the observations, model and regression analysis used in this study. The results are discussed in Sect. 3.

1First reported at the Quadrennial Ozone Symposium 2012 Toronto, 27–31 August 2012 and published in Gebhardt et al. (2014).
2 Data and analysis

2.1 Observations

For a quantitative analysis of tropical upwelling, we use combined O_3 observations from satellite instruments and sondes. The earlier decades (1985–2005) are covered by the ERBS/SAGE II instrument (McCormick et al., 1989), providing O_3 profiles based on solar occultation measurements. Due to its viewing geometry, the vertical resolution of the profiles is high (1 km, range 15–50 km), although the horizontal sampling is relatively sparse (global coverage in 1 month). Here we use version 7.0 of the data (Damadeo et al., 2013), screened for cloud and aerosol contaminated profiles as suggested by Wang et al. (2002). Two years of data after June 1991 has been omitted due to contamination by the eruption of Mt. Pinatubo. For the last decade (2002–2012), we use O_3 observations from ENVISAT/SCIAMACHY (Burrows et al., 1995) based on limb geometry (retrieval version 2.9; Sonkaew et al., 2009). The vertical resolution is about 3–4 km over an altitude range of 10–75 km; global coverage is achieved every 6 days. Data from both instruments has been binned into monthly samples on a uniform horizontal and vertical grid (15° lon. × 5° lat. × 1 km). To minimise sampling issues and taking into account the differences in horizontal and vertical resolution of the instruments, any further analysis is based on partial columns of O_3 between 17–21 km and 20° N–20° S, similar to the approach of Randel and Thompson (2011).

The satellite data is augmented by an ensemble of tropical sondes measurements from the Southern Hemisphere Additional Ozonesondes network (SHADOZ; 1998–2013; Thompson et al., 2003, 2012). We use 10 sites located in the tropics with long and continuous records. The selected stations along with their temporal coverage and mean value are listed in Table 1. Typically there are 2–4 observations per month for each SHADOZ station, which provide O_3 profiles in a considerably higher vertical resolution (50–100 m) compared to the satellite instruments. As there is a high degree of longitudinal symmetry in the stratospheric ozone profiles (Thompson et al., 2003), we average the individual records to obtain a representative mean for the tropics.
2.2 Model

To obtain a consistent timeseries of LS O₃ of the last decades for direct comparison with observations, we conducted a 33-year simulation with the Bremen three-dimensional chemistry-transport-model (B3DCTM; Sinnhuber et al., 2003; Aschmann et al., 2009; Aschmann and Sinnhuber, 2013). The current version of the model has a horizontal resolution of 3.75° lon. × 2.5° lat. and covers the vertical domain from the surface up to approximately 55 km using a hybrid σ – θ coordinate system (e.g., Chipperfield, 2006). The vertical resolution in the tropical LS is about 600 m. The model is driven by 6-hourly input of European Centre for Medium-range Weather Forecast (ECMWF) Era-Interim (EI; Dee et al., 2011) reanalysis data. Vertical transport in the purely isentropic domain (above ≈ 16 km in the tropics) is prescribed by EI all-sky heating rates. The B3DCTM incorporates a comprehensive chemistry scheme originally based on the chemistry part of the SLIMCAT model (Chipperfield, 1999), covering all relevant photochemical reactions for stratospheric O₃ chemistry. Reaction rates and absorption cross sections are taken from the Jet Propulsion Laboratory recommendations (Sander et al., 2011). To avoid initialisation artefacts, the model has been run with replicated input data to reach steady state before starting the actual integration from January 1979 to October 2013.

2.3 Regression

The multivariate regression analysis used throughout this study is based on Reinsel et al. (2002) with Yᵢ as the monthly mean variable to be fitted:

\[Yᵢ = \mu + Sᵢ + \omega₁X₁ᵢ + \omega₂X₂ᵢ + QBOᵢ + ENSOᵢ \]
\[+ SCᵢ + Nᵢ \] (1)

Here, \(\mu \) is the baseline constant, \(Sᵢ \) a seasonal component, \(\omega₁, \omega₂ \) are the trend coefficients with \(X₁, X₂ \) as linear trend functions and \(Nᵢ \) represents the unexplained noise.
Note that in contrast to previous studies, which examined LS O₃ (Randel and Thompson, 2011; Sioris et al., 2014), our regression model assumes two linear components, which account for a possible change of trend. Here, \(\omega_1 \) is the linear trend up to a specified inflexion date \(T_0 \). After \(T_0 \), the new linear trend \(\omega \) comprises the sum of the earlier trend \(\omega_1 \) and the trend-change component \(\omega_2 \). The additional regression terms are QBO₁ for QBO, ENSO₁ for the El Niño Southern Oscillation (ENSO) and SC₁ for solar cycle. The QBO proxy consists of the QBO.U30 and QBO.U50 (zonal wind 30/50 hPa) from the NOAA Climate Prediction Center², the ENSO proxy is represented by the Multivariate ENSO Index (MEI) from the NOAA Earth System Research Laboratory³ (Wolter and Timlin, 2011) lagged by two months and the solar cycle by the Bremen composite Mg II index⁴ (Snow et al., 2014).

Assuming first order autocorrelation noise (AR(1) model), as commonly used in the regression of O₃ timeseries (e.g., Reinsel et al., 2002; Jones et al., 2009; Sioris et al., 2014), the corresponding errors for the trend components calculate as

\[
\sigma_{\omega_1} \approx \frac{\sigma_N}{n^{3/2}} \sqrt{\frac{1 + \phi}{1 - \phi}}
\]

\[
\sigma_{\omega_2} \approx \frac{\sigma_N}{2} \sqrt{\frac{1 + \phi}{1 - \phi} \left(\frac{n}{n_0 n_1} \right)^{3/2}}
\]

\[
\sigma_{\omega} \approx \frac{\sigma_N}{n_1^{3/2}} \sqrt{\frac{1 + \phi}{1 - \phi} \sqrt{\frac{n_0 + 4n_1}{4n}}}
\]

²www.cpc.ncep.noaa.gov/data/indices/
³www.esrl.noaa.gov/psd/enso/mei/
⁴www.iup.uni-bremen.de/gome/solar/MgII_composite.dat
Here, σ_N is the standard error of the fit residuals, n_0, n_1 are the numbers of years of data before and after the trend-change, respectively, with $n = n_0 + n_1$. ϕ represents the autocorrelation of the residuals with a time lag of 1 month.

The choice of the inflexion year T_0 is essentially a free parameter in the regression analysis. Figure 1 illustrates the impact of the choice of T_0 on the regression of modelled LS O$_3$ columns and EI upward mass flux (as discussed below in Sect. 3). A 2σ-significant trend-change (ω_2) is obtained for a wide range of possible inflexion years (marked by red circles). Therefore we use a χ^2 test based on the fit residuals, similar to the approach described by Jones et al. (2009), to identify the most probable inflexion year. We find a clear minimum in the χ^2 values close to 2002 and consequently select this year as the turning point in the trend analysis.

3 Results and discussion

3.1 Lower stratosphere ozone column

Figure 2 presents tropical LS O$_3$ column anomalies (20° N–20° S, 17–21 km) from measurements and the simulation. The agreement between model and observations is good, except for a small high-bias relative to the earlier SAGE II data (1985–1990) of approximately 1 DU: correlation coefficients are 0.65 between modelled and observed datasets.

A decline of O$_3$ is evident in the tropical LS during the first two decades (1980–2002), both in the observed and modelled timeseries. This is consistent with an increase of tropical upwelling during this period. However, this trend vanishes in the third decade (2002–2013). Figure 3a and b illustrates the results from the regression analysis of the modelled timeseries showing the fit function and the corresponding residuals, respectively. The linear trend amounts to -8.1 ± 0.9 % per decade (ω_1) in the pre-2002 period and 0.1 ± 3.3 % per decade (ω) for the remaining years. The resulting trend-change of
8.2 % per decade (ω_2) is statistically significant within the 95 % confidence interval (i.e. $\omega_2 > 2\sigma_\omega$).

To apply our analysis to the observational data we merge the available datasets (SAGE II–SCIAMACHY; SAGE II–SHADOZ). In either case, the correlation between LS O_3 partial columns exceeds 0.8 in the overlap period and the bias is generally lower than 2 %. Considering the good agreement between the observations it is reasonable to combine them into a continuous timeseries. We adopt the method described in Randel and Thompson (2011) and simply join the two individual timeseries and average the overlap period. When we apply the regression to the combined SAGE II–SCIAMACHY timeseries, we calculate a trend of -3.9 ± 0.5 % per decade (ω_1) for the pre-2002 period, consistent with the range of $-(3–6)$ % per decade given by earlier studies (Fig. 3c and d; Randel and Thompson, 2011; Sioris et al., 2014; Bourassa et al., 2014). The discrepancy between model and observations for the pre-2002 trend is likely caused by the O_3 high-bias between 1985–1990, mentioned above, and the possibly overestimated vertical transport velocity in the EI dataset (Ploeger et al., 2012; Diallo et al., 2012), which is discussed below in more detail. After 2002 the trend is 0.5 ± 1.5 % per decade (ω), yielding a statistically significant trend-change of 4.4 % per decade (ω_2). We obtain similar values (-3.6 ± 0.5, 0.4 ± 1.4 % per decade for ω_1, ω) if we use the SHADOZ data instead of SCIAMACHY in the combined dataset. Consequently, both observational and model data show that the decrease of LS O_3 has effectively stopped since about 2002. This is in qualitative agreement with those studies, which focus solely on the most recent observational record of O_3, although the differences in utilised regression models and timeseries length make a direct comparison difficult. Gebhardt et al. (2014) compared several satellite instruments and report consistently positive trends of tropical O_3 between 17–21 km, ranging from about 2 (OSIRIS), 4 (SCIAMACHY) up to 14 % per decade (MLS), covering the years 2004–2012. Eckert et al. (2014) find a slightly positive trend of 0–1 % per decade in the same region in MIPAS observations (2002–2012).
Local chemical effects can be largely ruled out as explanation for the detected trend-change of LS \(\text{O}_3 \). As stated above, \(\text{O}_3 \) abundance in the tropical LS is mainly determined by vertical transport and \(\text{O}_2 \) photolysis (Avalone and Prather, 1996; Waugh et al., 2009; Meul et al., 2014). \(\text{O}_3 \)-destroying catalytic species are scarce in the tropical LS, therefore the phase-out of ozone-depleting substances (ODS), and the associated recovery (e.g., World Meteorological Organization, 2011), has no direct impact on \(\text{O}_3 \) concentrations in this region. However, some studies point out a possible indirect relationship between ODS-related polar \(\text{O}_3 \) depletion and tropical LS \(\text{O}_3 \) by dynamical coupling (Waugh et al., 2009; Oman et al., 2009). Meul et al. (2014) predict an increase of photolytic \(\text{O}_3 \) production as a result from long-term changes in the overhead \(\text{O}_3 \) column. Furthermore, an increase in odd nitrogen (\(\text{NO}_x \)) might lead to additional \(\text{O}_3 \) production. However, neither process is sufficient to explain a short-term trend-change. Overall the most probable explanation of the observed behaviour is that changes in dynamics must be involved.

3.2 Tropical upwelling

Some studies point out that the increase of tropical upwelling may be compensated by an, as yet, unexplained weakening or shifting of tropical mixing barriers (Stiller et al., 2012; Eckert et al., 2014). However, it is also possible that the increase of tropical upwelling itself has ceased. To investigate this hypothesis, we analyse tropical upwelling in the EI reanalysis that drives our model. A typical representative quantity for the tropical upwelling is the upward mass flux at 70 hPa (\(\approx 18.5 \text{ km in the tropics; Butchart et al., 2010; Seviour et al., 2012} \)). A recent study assessing the upward mass flux in EI found a negative trend of \(-5 \% \) per decade for the years 1989–2009, based on EI kinematic vertical winds (Seviour et al., 2012). This is in contradiction with the results of current CCM, which predict an increase of upwelling of about 2.0 \% per decade (ensemble mean; Butchart et al., 2010). The quality of stratospheric vertical transport in EI improves considerably, when diabatic heating rates are used instead of the kinematic wind. Although tending to overestimate the tropical ascent (Ploeger et al., 2012), the
diabatic representation of vertical transport yields more realistic estimates of stratospheric age of air in comparison to the kinematic approach (Diallo et al., 2012) and is also less dispersive (Ploeger et al., 2011).

Figure 4 shows the tropical LS EI all-sky heating rates (20° N–20° S, 17–21 km; panel a), which are used to drive the vertical transport in our isentropic model, and the corresponding EI upward mass flux at 70 hPa (panel c). The upward mass flux is the integral of the residual vertical velocity \(w^* \) between turnaround latitudes as described in Seviour et al. (2012). In turn, \(w^* \) is calculated from the EI heating rates using the iterative algorithm described by Solomon et al. (1986). Applying the regression analysis to the upward mass flux yields a positive trend of 3.3 ± 0.7 % per decade for the pre-2002 period (Fig. 4d). This value is consistent with the CCM results (2.0 % per decade) although somewhat high-biased, reflecting the overestimation of vertical transport mentioned above. After 2002, however, there is a statistically significant trend-change around 2002 leading to a negative trend of −2.3 ± 2.5 % per decade mirroring the trend-change in the LS O\(_3\) timeseries. We find significant anti-correlation between LS O\(_3\) anomalies with either heating rates (−0.83), or upward mass flux anomalies (−0.55). Taking into account the known sensitivity of LS O\(_3\) to vertical transport, we conclude that the observed trend-change in O\(_3\) is primarily a consequence of the simultaneous trend-change in tropical upwelling.

4 Conclusions

In summary, we find a negative trend of tropical LS O\(_3\) in observations and model before 2002, associated with a positive trend in tropical upwelling from the EI dataset based upon diabatic heating calculation. This finding is consistent with earlier studies (Butchart et al., 2010; Randel and Thompson, 2011). We also find an unexpected hiatus of the negative trend in LS O\(_3\) during the last decade. We explain this behaviour by the change of tropical upwelling evident in the EI dataset. This change may be a consequence of the unexpected La-Niña-like cooling of the equatorial Eastern Pa-
cific since the beginning of the 21st century (Meehl et al., 2011). The latter has a sign-
ificant impact on global surface temperatures (Kosaka and Xie, 2013) and ultimately,
by dynamical coupling, on tropical upwelling (Oman et al., 2009; Butchart et al., 2010;
Garny et al., 2011). Recent studies describe the associated circulation changes (Eng-
land et al., 2014) and their impact on tropospheric O$_3$ (Lin et al., 2014). In contrast to
current unconstrained CCM, which generally do not predict this exceptional heat up-
take by the equatorial Eastern Pacific (Kosaka and Xie, 2013; England et al., 2014), this
feature can be clearly observed in the data-assimilated EI dataset (Fig. 5). In conclu-
sion the accuracy of our predictions of future BDC development and its consequences
for stratospheric O$_3$ critically depends on our understanding of the ocean-atmosphere
interaction.

Acknowledgements. This study has been funded in part by the University and State of Bremen, the DFG Research Unit 1095 Stratospheric Change and its Role for Climate Prediction, SHARP, and the German Federal Ministry of Education and Research, research project Role of the middle atmosphere in climate (ROMIC). SHADOZ, the Southern Hemisphere Additional Ozonesondes network, is funded by NASA’s Upper Atmosphere Research Program.

References

Aschmann, J. and Sinnhuber, B.-M.: Contribution of very short-lived substances to strato-
spheric bromine loading: uncertainties and constraints, Atmos. Chem. Phys., 13, 1203–1219,
doi:10.5194/acp-13-1203-2013, 2013. 9955

of very short-lived substances into the tropical upper troposphere and lower stratosphere,

Avallone, L. M. and Prather, M. J.: Photochemical evolution of ozone in the lower tropical strato-

9962

9964

Thompson, D. and Solomon, S.: Recent stratospheric climate trends as evidenced in radiosonde data: global structure and tropospheric linkages, J. Climate, 18, 4785–4795, doi:10.1175/JCLI3585.1, 2005. 9952

9966

Table 1. Geolocation, temporal coverage and average LS O$_3$ column of utilised SHADOZ sites.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Coverage</th>
<th>Average [DU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>84.0° W</td>
<td>9.9° N Jul 2005–Dec 2012</td>
<td>30.66</td>
</tr>
<tr>
<td>Hilo</td>
<td>155.0° W</td>
<td>19.4° N Jan 1998–Feb 2013</td>
<td>36.97</td>
</tr>
<tr>
<td>Watukosek-Java</td>
<td>112.6° E</td>
<td>7.5° S Jan 1998–Jun 2013</td>
<td>27.06</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>101.7° E</td>
<td>2.7° N Jan 1998–Dec 2011</td>
<td>30.26</td>
</tr>
<tr>
<td>Nairobi</td>
<td>36.8° E</td>
<td>1.3° S Jan 1998–Jun 2013</td>
<td>30.66</td>
</tr>
<tr>
<td>Natal</td>
<td>35.3° W</td>
<td>5.5° S Jan 1998–May 2011</td>
<td>29.74</td>
</tr>
<tr>
<td>Paramaribo</td>
<td>55.2° W</td>
<td>5.8° N Sep 1999–Dec 2011</td>
<td>31.53</td>
</tr>
<tr>
<td>Samoa</td>
<td>170.6° W</td>
<td>14.2° S Jan 1998–Dec 2012</td>
<td>30.91</td>
</tr>
<tr>
<td>San Cristobal</td>
<td>89.6° W</td>
<td>0.9° S Mar 1998–Oct 2008</td>
<td>29.26</td>
</tr>
</tbody>
</table>
Fig. 1. The dependence of the linear fit parameters ω_1, ω_2 and $\omega (\omega_1 + \omega_2)$ on the inflexion year T_0 is shown for the regression of modelled tropical LS O_3 column (a) and EI upward mass flux at 70 hPa (b). Red circles denote the years where the trend-change (ω_2) exceeds the 95 % confidence threshold. The black lines are the normalised χ^2 values of the fit residuals.
Fig. 2. Observed and simulated tropical (20° N–20° S) LS O₃ partial columns (17–21 km). Anomalies are deviations from the modelled 1980–2013 averages.
Fig. 3. Regression analysis of observed and simulated O₃ partial columns. Model and combined SAGE II/SCIAMACHY LS O₃ with regression function (a, c). Corresponding fit residuals excluding the linear terms (b, d). The dashed red lines depict the resulting linear trends before and after 2002.
Fig. 4. Regression analysis of EI LS heating rate (17–21 km; a, b) and upwelling mass flux (70 hPa; c, d). Setup identical to Fig. 3 otherwise.
Fig. 5. Linear trends of EI surface temperature from 2002–2013. Stippling indicates where the trend exceeds the 95% confidence threshold. Setup adapted from Kosaka and Xie (2013).