
Cardiovascular Lab
• Investigate how the spaceflight environment affects the cardiovascular 

system to aid in the improvement of astronaut health, develop 
countermeasures, and potentially benefit other populations on Earth

• Models of spaceflight: head-down-tilt bed rest (HDTBR), parabolic flight, and 
hypovolemia

• Study objective: retrospective data analysis to understand HDTBR effects on 
arterial mechanics as a spaceflight analog

HDTBR
• Physiological deconditioning, specifically a fluid shift, similar to space
• -6° head down 24hrs/day for 60 days
• Ground based simulation
• Pilot data indicating carotid distensibility coefficient is lower during 

spaceflight similar to increased vascular age in a clinical setting

Days analyzed: 5 days pre- (-5), after 60 days (60), 3 days post- (+3) HDTBR
3 arteries analyzed (healthy subjects):
• Carotid Artery – 13 subjects (7M, 6F, mean age 35±8, weight 71±10 kg, and 

height 168±9 cm)
• Brachial and Anterior Tibial Arteries – 11 different subjects (8M, 3F, mean 

age 34±9, weight 74±16 kg, and height 170±9 cm) 
Statistics: linear mixed model analysis
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HYPOTHESIS AND SPECIFIC AIMS

Strain (ε)

• Arterial deformation

References

Intima Media Thickness (IMT)

• Measured: arterial wall thickness (IMT), systolic diameter (SD), diastolic diameter (DD), 
systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP = 
SBP-DBP)

Distensibility Coefficient (DC)

• Elasticity

Pressure-Strain Elastic Modulus (PSE)

• Stress-to-strain ratio

Stiffness (β)

• Subclinical index of atherosclerosis

Morphological Analysis

Functional Analysis

CARDIOVASCULAR DECONDITIONING IN WEIGHTLESSNESS
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• Hypothesis: responses of vessels will vary with physiological location and arterial 
mechanics will change with days of HDTBR

• Specific aim 1: describe relative difference in arterial structure and function in the upper 
compared to lower body as the result of HDTBR

• Specific aim 2: define changes in arterial morphology and mechanics during HDTBR 
due to changing load and pressure profile

METHODS
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Figure 2. Strain margins are not significantly different between days of
bed rest within vessels. Error bars represent 95% confidence intervals.
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Figure 3. The tibial artery trended towards smaller moduli (p = 0.1) from 
BR-5 to BR+3. Error bars represent 95% confidence intervals.
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Figure 4. The tibial artery trended towards increased DC (p = 0.1) from 
BR-5 to BR+3.  Error bars represent 95% confidence intervals

• Carotid, brachial, and tibial arteries reacted differently to HDTBR. 
Previous studies have not analyzed the mechanical properties of the 
human brachial or anterior tibial arteries.

• After slight variations during bed-rest, arterial mechanical properties and 
IMT returned to pre-bed rest values, with the exception of tibial stiffness 
and PSE, which continued to be reduced post-bed rest while the DC 
remained elevated.

• The tibial artery remodeling was probably due to decreased pressure and 
volume. Resulting implications for longer duration spaceflight are unclear.

• Arterial health may be affected by microgravity, as shown by increased 
thoracic aorta stiffness in other ground based simulations (Aubert).

Limitations:
• Small n value
• Imprecise boundary determination methods
• Formulas sensitive to small measurement differences
• Single, non-blinded analysis
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Figure 1. Carotid IMT margins were significantly thicker than the 
brachial and tibial IMT (p < 0.001). The tibial IMT decreased relative 
to the brachial response from BR-5 to BR60 and BR+3 (p < 0.05). 
The tibial IMT was thinned on BR60 (p < 0.001) and did not recover 
by BR+3 (p = 0.02). Error bars represent 95% confidence intervals.

Figure 5. The tibial artery trended towards decreased stiffness (p = 0.06) 
from BR-5 to BR+3. Error bars represent 95% confidence intervals.


