# Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest

Morgan B. Elliott<sup>1,3</sup>, David S. Martin<sup>2</sup>, Christian M. Westby<sup>3</sup>, Michael B. Stenger<sup>2</sup>, Steven H. Platts<sup>4</sup> <sup>1</sup>Houston, TX, <sup>2</sup>Saint Louis University, St. Louis, MO, <sup>2</sup>Wyle Science, Technology, and Engineering Group, <sup>3</sup>Universities Space Research Association. Houston. TX. <sup>4</sup>NASA Johnson Space Center. Houston. TX.



### Cardiovascular Lab

- · Investigate how the spaceflight environment affects the cardiovascular system to aid in the improvement of astronaut health, develop countermeasures, and potentially benefit other populations on Earth
- Models of spaceflight: head-down-tilt bed rest (HDTBR), parabolic flight, and hypovolemia
- Study objective: retrospective data analysis to understand HDTBR effects on arterial mechanics as a spaceflight analog

#### HDTBR

- · Physiological deconditioning, specifically a fluid shift, similar to space
- -6° head down 24hrs/day for 60 days
- · Ground based simulation
- · Pilot data indicating carotid distensibility coefficient is lower during spaceflight similar to increased vascular age in a clinical setting



## CARDIOVASCULAR DECONDITIONING IN WEIGHTLESSNESS



# **METHODS**

Days analyzed: 5 days pre- (-5), after 60 days (60), 3 days post- (+3) HDTBR 3 arteries analyzed (healthy subjects):

- Carotid Artery 13 subjects (7M, 6F, mean age 35±8, weight 71±10 kg, and height 168±9 cm)
- Brachial and Anterior Tibial Arteries 11 different subjects (8M, 3F, mean age 34±9, weight 74±16 kg, and height 170±9 cm)

## Statistics: linear mixed model analysis



# HYPOTHESIS AND SPECIFIC AIMS

- · Hypothesis: responses of vessels will vary with physiological location and arterial mechanics will change with days of HDTBR
- Specific aim 1: describe relative difference in arterial structure and function in the upper compared to lower body as the result of HDTBR
- Specific aim 2: define changes in arterial morphology and mechanics during HDTBR due to changing load and pressure profile

# RESULTS

## **Morphological Analysis**

## Intima Media Thickness (IMT)

Measured: arterial wall thickness (IMT), systolic diameter (SD), diastolic diameter (DD), systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP = SBP-DBP)



brachial and tibial IMT (p < 0.001). The tibial IMT decreased relative to the brachial response from BR-5 to BR60 and BR+3 (p < 0.05). The tibial IMT was thinned on BR60 (p < 0.001) and did not recover by BR+3 (p = 0.02). Error bars represent 95% confidence intervals.

60 Day of Bed Rest

Figure 3. The tibial artery trended towards smaller moduli (p = 0.1) from

BR-5 to BR+3. Error bars represent 95% confidence intervals

Carotid

Brachia

Tibial

+3





# Functional Analysis Cont.



BR-5 to BR+3. Error bars represent 95% confidence intervals

### Stiffness (β)

Subclinical index of atherosclerosis



# Discussion

- Carotid, brachial, and tibial arteries reacted differently to HDTBR. Previous studies have not analyzed the mechanical properties of the human brachial or anterior tibial arteries.
- After slight variations during bed-rest, arterial mechanical properties and IMT returned to pre-bed rest values, with the exception of tibial stiffness and PSE, which continued to be reduced post-bed rest while the DC remained elevated.
- · The tibial artery remodeling was probably due to decreased pressure and volume. Resulting implications for longer duration spaceflight are unclear.
- Arterial health may be affected by microgravity, as shown by increased thoracic aorta stiffness in other ground based simulations (Aubert).

#### Limitations:

- Small n value
  - Imprecise boundary determination methods
  - · Formulas sensitive to small measurement differences
  - · Single, non-blinded analysis

# Acknowledgements

Thank you to the Minority University Research and Education Program for funding this project and the NASA Johnson Space Center Cardiovascular Lab for their guidance.

### References

Aubert, A.E. Acta Cardiol, 2005. 60(2): 129-151. Godia, E.C. J Ultras Med, 2007. 26(9):1157-1165. Haluska B. Clin Sci. 2008, 114: 441-447. Hargens, A.R. Eur J Appl Physiol, 2013. 113(9): 2183-2192. Meck, J.V. Aviat Space Envir MD, 2009. 80(5): A1-A8 Norsk, P. Eur J Appl Physiol, 2014. 114: 481-497. O'Rourke, M.F. Am J Hypertens, 2002. 15(5): 426-444. Tuday, E.C. J Appl Physiol, 2007. 102:853-858. Van Bortel, L.M. Hypertension, 1995. 26(3): 531-534.



