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Abstract. Aerosol retrievals from multiple spaceborne sen-
sors, including MODIS (on Terra and Aqua), MISR, OMI,
POLDER, CALIOP, and SeaWiFS – altogether, a total of 11
different aerosol products – were comparatively analyzed us-
ing data collocated with ground-based aerosol observations
from the Aerosol Robotic Network (AERONET) stations
within the Multi-sensor Aerosol Products Sampling Sys-
tem (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http:
//giovanni.gsfc.nasa.gov/aerostat/). The analysis was per-
formed by comparing quality-screened satellite aerosol opti-
cal depth or thickness (AOD or AOT) retrievals during 2006–
2010 to available collocated AERONET measurements glob-
ally, regionally, and seasonally, and deriving a number of
statistical measures of accuracy. We used a robust statisti-
cal approach to detect and remove possible outliers in the
collocated data that can bias the results of the analysis. Over-
all, the proportion of outliers in each of the quality-screened
AOD products was within 7 %. Squared correlation coeffi-
cient (R2) values of the satellite AOD retrievals relative to
AERONET exceeded 0.8 for many of the analyzed prod-
ucts, while root mean square error (RMSE) values for most
of the AOD products were within 0.15 over land and 0.07
over ocean. We have been able to generate global maps show-
ing regions where the different products present advantages
over the others, as well as the relative performance of each
product over different land cover types. It was observed that
while MODIS, MISR, and SeaWiFS provide accurate re-
trievals over most of the land cover types, multi-angle capa-
bilities make MISR the only sensor to retrieve reliable AOD
over barren and snow/ice surfaces. Likewise, active sensing
enables CALIOP to retrieve aerosol properties over bright-
surface closed shrublands more accurately than the other

sensors, while POLDER, which is the only one of the sen-
sors capable of measuring polarized aerosols, outperforms
other sensors in certain smoke-dominated regions, including
broadleaf evergreens in Brazil and South-East Asia.

1 Introduction

Remote sensing of aerosols from space has been a sub-
ject of extensive research, with multiple sensors retrieving
global aerosol properties on a daily or weekly basis. Dur-
ing the past decade, the retrievals of atmospheric aerosol
parameters have been available from a multitude of space-
borne sensors (Lee et al., 2009; Yu et al., 2006). The di-
verse algorithms used for these retrievals operate on differ-
ent types of the remotely sensed signals and rely on differ-
ent assumptions about the underlying physical phenomena.
Significant effort has been made by the various aerosol algo-
rithm teams to refine progressively these assumptions, from
algorithm version to version, in order to derive and provide
the most accurate products possible. However, despite these
efforts, measurements of identical aerosol parameters from
different sensors, including the most common observable and
widely used aerosol optical depth or thickness (AOD or AOT
or τa) parameter, often disagree with each other due to a
variety of reasons including differences in the underlying
surface properties at different locations, intrinsic sensor ob-
servation characteristics and retrieval approaches (Li et al.,
2009). Therefore, it has become necessary to analyze con-
sistently the available aerosol products wherever possible in
order to establish the geographical locations where and un-
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der what circumstances each of these products provides the
greatest accuracy.

The unique attributes of a particular sensor may be ad-
vantageous for aerosol retrievals, depending on the parame-
ter(s) being retrieved, especially under favorable atmospheric
conditions. However, aerosol retrieval accuracy can also be
affected by numerous other factors, including the retrieval
algorithm’s assumptions and parameterizations, the instru-
ment characteristics (intrinsic design, calibration, and time-
dependent degradation), the measurement configurations (so-
lar and view geometry), the atmospheric conditions (cloudi-
ness, aerosol mixing, layer height, and humidity), the sur-
face background (vegetated, bare, snow-covered, inundated,
or simply just dark or bright land surface or ocean), and oth-
ers (Kokhanovsky et al., 2007).

Since the accuracy of aerosol retrieval from a sensor may
be affected positively or negatively by these factors and con-
ditions in different ways and to varying degrees, a syner-
getic use of similar aerosol parameters across the sensors is
non-trivial, and the data synergy research is instead focused
on combining orthogonal (i.e., non-conflicting) aerosol mea-
surements. For example, the aerosol layer height informa-
tion from the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) has been used to enhance aerosol retrievals
from other sensors (Oo and Holz, 2011; Torres et al., 2012;
Zhang et al., 2011), while the geometry information from
the Advanced Along Track Scanning Radiometer (AATSR)
was used to initialize the Moderate Resolution Imaging Spec-
troradiometer (MODIS) bidirectional reflection distribution
function (BRDF) in order to derive AATSR AOD (Guo et
al., 2009).

To characterize better the differences and uncertainties that
exist between the aerosol retrievals from different sensors,
several studies compared a limited number of sensors. For
example, AOD retrievals from MODIS were separately com-
pared to retrievals from the MISR Multi-angle Imaging Spec-
troradiometer (Kahn et al., 2007, 2011; Mishchenko et al.,
2010; Zhang and Reid, 2010), the POLDER – POLarization
and Directionality of the Earth’s Reflectances sensor (Gérard
et al., 2005), and CALIOP(Kittaka et al., 2011; Redemann et
al., 2012). A larger set of sensors was intercompared using
a synthetic benchmark (Kokhanovsky et al., 2010), and also
based on detailed analysis of data from limited geographi-
cal regions (Cheng et al., 2012; Yu et al., 2012). In addi-
tion, a set of 9 aerosol products was evaluated over ocean
and coastal AERONET (Aerosol Robotic Network) sites dur-
ing the period of 1997–2000, highlighting regions of high
retrieval agreement and disagreement (Myhre et al., 2005).
However, all the satellite data used in that study had already
undergone post-retrieval spatiotemporal aggregation at 1 × 1
degree grid resolution on a monthly mean basis (so-called
Level 3 products) before they were used in the comparisons.

Finally, a recent study compared AERONET retrievals
with a set of 5 spaceborne aerosol products archived at
the ICARE Data and Services Center, including POLDER,

MODIS-Aqua (Dark Target retrievals), MERIS, SEVIRI, and
CALIOP (Bréon et al., 2011). Although that study was based
on a similar collocation framework as that used in the cur-
rent study, our study focuses on a different set of sensors
that provides a more extensive set of over-land spaceborne
aerosol products. Furthermore, the presented study is based
on the analysis of the spatiotemporally averaged and outlier-
screened data, whereas that of Bréon et al. (2011) is predomi-
nantly based on the analysis of individually collocated space-
borne and ground-based data points that are the closest in
space and time that would correspond to the central values
in our collocated data subsets (we report a similar analysis in
the Supplement to this paper).

In this work, 11 retrieval-scale (Level 2) aerosol products
from multiple spaceborne sensors are intercompared dur-
ing the recent “golden” period of 2006–2010 (see Fig. 1),
when as many as seven major sensors were in operation and
measuring aerosols concurrently. Specifically, we focus on
aerosol products retrieved over land and ocean from MODIS
on Terra and Aqua, MISR on Terra, the Ozone Monitor-
ing Instrument (OMI) on Aura, POLDER on PARASOL,
CALIOP on CALIPSO, and the Sea-viewing Wide Field
of view Sensor (SeaWiFS) aboard the SeaStar spacecraft.
At the time of this study (January 2013), all of the stud-
ied sensors were still active, with the exception of SeaW-
iFS, whose operation ended in December 2010. The analy-
sis is based on the collocation of the satellite data products
using the Multi-sensor Aerosol Products Sampling System
(MAPSS) framework (Petrenko et al., 2012), which samples
these satellite products relatively uniformly over the global
AERosol Robotic NETwork (AERONET) of sun photome-
ters and other important ground-based stations both over land
and ocean.

The details of the MAPSS sampling approach are ex-
plained in Sect. 2, while the relevant characteristics of the
aerosol data products from the different sensors and the cor-
responding data quality screening techniques are described in
Sect. 3 and Sect. 4. Section 5 describes a novel statistical ap-
proach for detecting and removing possible data outliers that
can exist in the collocated data and, as a result, bias the sta-
tistical analysis of these data. Section 6 presents the detailed
analysis of the compared aerosol products, while Sect. 7 ex-
amines the accuracy of these products based on land cover
type. Conclusions are presented in Sect. 8.

2 Sampling method

The different aerosol-measuring sensors have different spa-
tial resolutions, of which some have square-shaped footprints
while others have rectangular pixel shapes. The nominal
ground pixel sizes of the analyzed aerosol products at nadir
are summarized in Table 1, and these sizes become progres-
sively larger away from nadir. To ensure a uniform and fair
sampling of the aerosol products for cross-evaluation with
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Table 1. Ground-based and spaceborne atmospheric aerosol products analyzed in the study. In the product designation titles, “O” at the end
of the title of a product signifies ocean retrievals, “L” – land retrievals, “DT” – land retrievals using the MODIS Dark Target algorithm, and
“DB” – land retrievals using the MODIS Deep Blue algorithm. The AERONET AOD retrievals were interpolated to the studied wavelengths
of the spaceborne sensors. The indicated local equatorial crossing times (LT) are based on the original orbital designs, and can change during
the lifetimes of the satellites. SeaWiFS mission has ended in December 2010. * While 388 nm was the main observational wavelength used
in the study for OMI, 500 nm was used where the collocated AERONET data were not available in the UV range.

Sensor Platform Product Designation in
the study

Study
Wave-
length

Spatial
Resolution
(km × km)

Equator
crossing
time

Data
available
from

AERONET N/A AOT AERONET Varies N/A N/A Varies
MODIS Terra MOD04 TMODIS DT 550 nm 10 × 10 10:30 a.m. Mar 2000

TMODIS DB 1:30 p.m. Jul 2002
TMODIS O

Aqua MYD04 AMODIS DT
AMODIS DB
AMODIS O

MISR Terra MIL2ASAE MISR 558 nm 17.6 × 17.6 10:30 a.m. Feb 2000
OMI Aura OMAERUV OMI 388 nm

*500 nm
13.7 × 23.7 1:38 p.m. Oct 2004

POLDER PARASOL P3L2TLGC
P3L2TOGC

POLDER3 L
POLDER3 O

865 nm
670 nm

19 × 19 1:30 p.m. Mar 2005

CALIOP CALIPSO 05kmALay CALIOP 532 nm 5 × 0.1 1:32 p.m. Jun 2006
SeaWiFS SeaStar SWDB SeaWiFS L

SeaWiFS O
550 nm 13.5 × 13.5 12:00 p.m. Sep 1997
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Fig. 1. Periods of operation of major past and current aerosol-
measuring satellite sensors. The pair of dotted vertical lines marks
the “golden” period (between the start of CALIOP in July 2006 and
the end of SeaWiFS in December 2010) when as many as seven of
these sensors were measuring aerosols concurrently. The golden pe-
riod was used as the base for the studies reported in the rest of this
paper.

AERONET and for comparison with one another, we used
the framework of Multi-sensor Aerosol Products Sampling
System (MAPSS) that was originally developed by Ichoku
et al. (2002) for validation and analysis of MODIS aerosol
products (Chu et al., 2002; Ichoku et al., 2003, 2005; Levy et
al., 2010; Remer, 2002) and later expanded to support aerosol
products retrieved by other spaceborne sensors (Petrenko et
al., 2012). MAPSS subsets the aerosol products by extracting
pixels covering approximately the same area on the ground
centered over AERONET sun photometer measurement sites
and over certain other point locations that are not addressed
in this study.

Assuming an imaginary circle of 55 km diameter whose
center coincides with each AERONET station, all space-
borne aerosol product pixels falling within the circle are ex-
tracted. An aerosol pixel is regarded as being within the circle
if the coordinates of the pixel center fall within 27.5 km from
the coordinates of the circle center, where the distance be-
tween the coordinates of the two points is determined using
the Haversine formula (Sinnott, 1984). Based on the nomi-
nal spatial resolution of the sensors in Table 1, the approxi-
mate maximum number of pixels within the 55 km diameter
sample space at nadir for the different sensors is as follows:
MODIS – 25, MISR – 9, OMI – 8, POLDER – 9, CALIOP
– 11, and SeaWiFS – 16. The actual number of pixels within
the sampling circle decreases for the aerosol retrievals away
from the nadir of the satellite scene, and can be further re-
duced in the presence of clouds or other factors preventing re-
trieval of aerosol parameters. Based on the extracted sample,
statistics of each aerosol parameter retrieved within the sam-
pling areas are calculated and include mean, median, stan-
dard deviation, as well as the value of the central point in the
sample, i.e., the pixel in the spaceborne subset that is the clos-
est (i.e., whose center has the smallest distance) to the ground
station, or the individual data point in the ground-based sub-
set that is measured the closest in time to the overpass of the
satellite.

In this paper, results are reported based on the analysis
of the mean values. Although not reported in this paper be-
cause of the space considerations, a similar analysis was per-
formed based on the central values and is reported in the
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Supplement to this paper. It is appropriate to use the mean
values in this paper, so as to maintain the uniform sampling
criterion across the different sensors and their respective re-
trieval pixel sizes to facilitate a fair intercomparison. On the
other hand, an analysis based on the central pixel values such
as that reported in the Supplement can provide further details
on the effect of difference in sampling aerosol products from
individual sensors, as well as more accurately characterize
the performance of the sensors in the presence of a strong
point source of pollutant particles. Additionally, it should be
noted that since the mean value of a sample can be computed
even if its central value is missing, the reported analysis of
the central values is based on a somewhat reduced volume
of the collocated data points when compared to the reported
analysis based on the mean values.

To collocate AERONET data in time and space with
the satellite data, AERONET measurements acquired within
±30 min of each satellite sensor overpass are also extracted
and the corresponding statistics are derived. Additionally, for
the convenience of aerosol data intercomparison and valida-
tion, AERONET AODs are interpolated to the wavelengths
of spaceborne sensors in Table 1 based on the established
wavelength dependence of AOD (Eck et al., 1999). It is per-
tinent to note that this interpolation process might introduce
an additional source of uncertainty when intercomparing the
aerosol products. Also, because of the wavelength depen-
dence of AOD, the difference in the compared wavelengths
of the spaceborne products should be considered when in-
tercomparing the relative performance of the products. Fur-
thermore, although many AERONET stations provide obser-
vations in the range of 340–1020 nm, certain stations report
AOD in the range of 440–1200 nm. For such stations that
have no measurements in the UV region, we have evaluated
OMI AOD at 500 nm instead of AOD at 388 nm, in order to
avoid additional extrapolation biases.

Each AERONET station has a different period of opera-
tion, and the quantity of available AOD data points is not
uniform across all stations; while many stations are still ac-
tive, certain stations were active in the past and only for
a short period of time. The overall availability of the col-
located data during the analysis period of 2006-06-07 to
2010-12-11 is shown in Fig. 2, where for the purposes of
this study the stations are classified as land-only, ocean-
only, or land-and-ocean. This classification is based on an-
alyzing collocated data of separate aerosol retrievals over
land and ocean from the MODIS, SeaWiFS, and POLDER
sensors and identifying stations that have AOD data points
from the land datasets, ocean datasets, or both; note that the
MISR, OMI, and CALIOP sensors provide only joint land-
and-ocean datasets.

3 Aerosol products

The key properties of the 11 analyzed aerosol products are
summarized in Table 1, while the original science dataset
(SDS) names of the spaceborne aerosol products are out-
lined in the first column of Table 2, except for the POLDER
products that do not have an established SDS product nam-
ing convention. The sampled satellite data products are de-
rived directly from the retrieval level aerosol products (Level
2) that represent the highest available spatial resolution for
each product/sensor combination and are free of aggregation
artifacts that can be present in data at Level 3 (Hyer et al.,
2011; Levy et al., 2009; Zhang and Reid, 2010).

Of the 11 sampled products, 3 are combined land-and-
ocean products, 6 land-only products, and 4 ocean-only prod-
ucts. Furthermore, 6 aerosol products are retrieved from
the twin MODIS-Terra and MODIS-Aqua sensors using the
same set of 3 algorithms: the ocean algorithm is used for the
retrievals over oceans and other large bodies of water; the
land Dark Target (DT) algorithm is used over vegetated re-
gions and other dark surfaces (Remer et al., 2005); and the
land Deep Blue (DB) algorithm is used for deserts and bar-
ren lands (Hsu et al., 2004). Although the results between
the two MODIS sensors are expected to be very close, they
might still differ due to the different times of scene observa-
tion during the day and other factors summarized in Ichoku
et al. (2005) and Remer et al. (2008).

The remainder of this section provides a brief description
of the analyzed products and highlights some of the unique
aerosol properties reported in these products. A more de-
tailed overview can be found in the theoretical and valida-
tion works of the respective science teams of the products as
cited below, while a general comparative overview of multi-
ple products and retrieval algorithms are in Kokhanovsky et
al. (2007), Lee et al. (2009), Li et al. (2009), and Yu et al.
(2006).

AERONET (http://aeronet.gsfc.nasa.gov) sun photome-
ters measure aerosol properties using ground-based observa-
tions of solar direct and diffuse irradiances, where the nom-
inal accuracy of AOD measurements is within the range of
0.01–0.02. In this work, the AERONET product used is the
aerosol optical depth or thickness (AOD or AOT), which is
retrieved from the AERONET direct measurements of so-
lar irradiance. Since AERONET measurements are made
from the ground looking up, they present a distinct advan-
tage over spaceborne retrievals in that they are not affected
by uncertainties associated with the effects of surface prop-
erties as much as satellite measurements are (Dubovik et
al. 2002; Holben et al. 1998, 2001). Furthermore, the Level
2.0 AERONET data used in this work are carefully cali-
brated, cloud screened, and quality assured (Smirnov et al.,
2000) and therefore are especially suitable for use as the ref-
erence standard against which the satellite aerosol remote-
sensing data are evaluated.
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Table 2. Studied aerosol datasets, the matching data quality (QA) datasets, and the corresponding QA data screening criteria. Where provided,
numbers in parentheses in the middle column indicate the base-1 layer index, base-0 bit number, and number of bits extracted from this QA
dataset. For MODIS, MISR, OMI, and SeaWiFS, the QA values are integer numbers between 0 and 3, whereas for MODIS and SeaWiFS
larger numbers indicate a better retrieval quality, and for OMI and MISR the opposite is true. For POLDER, QA is a real number between
0 (worst) and 1 (best). For CALIOP, a column is accepted only if all layers found in this column meet all listed QA conditions. The listed
extinction QC values indicate retrievals that are unconstrained, constrained, have a reduced lidar ratio, or detected an opaque aerosol layer.
CAD score and layer type and subtype flags indicate retrievals that classified a layer with a high confidence as containing aerosol and were
able to determine the aerosol type. IAB condition is set to prevent the retrieval anomaly of overcorrecting the attenuation of overlying layers
(Kittaka et al., 2011).

AOD dataset QA dataset
(layer/starting bit/number of bits)

QA condition

MODIS
Corrected_Optical_Depth_Land Quality_Assurance_Land (1/1/3) QA=3
Deep_Blue_Aerosol_Optical_Depth_550_Land Quality_Assurance_Land (5/1/2) QA=3
Effective_Optical_Depth_Average_Ocean Quality_Assurance_Ocean (1/5/3) QA=[1,2,3]
MISR
RegBestEstimateSpectralOptDepth RegBestEstimateQA QA=[0,1]
OMI
FinalAerosolOpticalDepth FinalAlgorithmFlags QA=0
SeaWiFS
aerosol_optical_thickness_550_land aerosol_optical_thickness

_confidence_flag_land
QA=3

aerosol_optical_thickness_550_ocean
CALIOP

aerosol_optical_thickness
_confidence_flag_ocean

QA=[2,3]

Column_Optical_Depth_Aerosols_532 ExtinctionQC_[532 and 1064] QA=[0,1,2,16,18]
CAD_Score −100≤CAD<−20
Feature_Classification_Flags (1/0/3)
Feature_Classification_Flags (1/9/3)

Layer type=3
Layer subtype>0

Integrated_Attenuated
_Backscatter_[532 and 1064]

IAB≤ 0.01

POLDER
Aerosol optical thickness at 865 nm corresponding to the polarized particles Quality index for the land inversion QA≥0.5
Aerosol optical thickness at 670 nm Quality index for the ocean inversion QA≥0.2

The MODIS (http://modis.gsfc.nasa.gov) aerosol product
(MOD04 and MYD04) comprises the column aerosol optical
thickness and other physical properties of aerosols retrieved
globally over land and ocean (Chu et al., 2002; Hsu et al.,
2004; Ichoku et al., 2005; Levy et al., 2010; Remer, 2002;
Remer et al., 2005). MODIS has a swath of 2300 km.

The MISR (http://www-misr.jpl.nasa.gov) aerosol product
(MIL2ASAE) features aerosol retrievals based on observa-
tions from 9 independent camera angles. Though limited to a
swath of 563 km, its multiple viewing angles allow MISR to
measure certain aerosol properties that are not available from
the other instruments (e.g., aerosol particle size). Further-
more, MISR multiple cameras enable retrievals under con-
ditions that are unfavorable to single-view (e.g., nadir) in-
struments, such as over bright surfaces or sun glint, where
the other instruments are unable to make reliable retrievals
in the visible wavelengths (Kahn, 2005; Kahn et al., 2010;
Martonchik et al., 2009).

The OMI (http://www.knmi.nl/omi/research/instrument/
index.php) aerosol product (OMAERUV) measures the near-
UV (near ultraviolet) aerosol absorption and extinction opti-
cal depth, as well as single scattering albedo, among other
aerosol properties (Torres et al., 1998, 2007). In addition to
offering a generous swath of 2800 km, OMI is capable of
retrieving absorption optical depth in partially cloudy con-

ditions that usually pose a challenge to other aerosol instru-
ments.

The POLDER onboard PARASOL (http://www.icare.
univ-lille1.fr/parasol) aerosol land product (P3L2TLGC) and
aerosol ocean product (P3L2TOGC) are derived from mea-
suring spectral, directional, and polarized properties of re-
flected solar radiation. Also with a swath of 2800 km, one
of the main features of the POLDER instrument is its uti-
lization of polarization properties of the measured radiation
for retrieving anthropogenic aerosol optical depth (Bréon et
al., 2002; Buriez et al., 2002; Deuzé et al., 1999, 2001; Her-
man et al., 1997). It is important to note that the POLDER
operational algorithm retrieves AOD at 2 wavelengths (670
and 865 nm) over ocean and only at 1 wavelength (865 nm)
over land. Furthermore over land, the POLDER algorithm re-
trieves only AOD that corresponds to polarized particles, i.e.,
mainly fine-mode particles originating from anthropogenic
activities. However, since there are no specific recommen-
dations on the regions suitable for using the polarized AOD
retrievals either as a proxy for total AOD or as pure fine-
fraction AOD, it is beneficial to explore this dataset in rela-
tion to other available AOD products in order to identify ge-
ographical regions where the polarized AOD from POLDER
can potentially be treated as total AOD.
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Fig. 2. Distribution of AERONET stations used in the study. Green, red, and yellow colors indicate stations that can be classified as land-
only (233 sites), ocean-only (11 sites), or both land-and-ocean (149 sites), respectively. The classification was established based on data
availability in separate over-land and over-ocean datasets in MODIS, SeaWiFS, and POLDER aerosol products. Gray color indicates stations
that do not have any collocated data for the studied period of time.

The SeaWiFS (http://disc.sci.gsfc.nasa.gov/dust/) aerosol
product (SWDB) uses the Deep Blue algorithm to derive
aerosol optical thickness and Ångström exponent. Also based
on an orbital ground-coverage swath of 2800 km, the key fea-
tures of this product are the retrievals of aerosol properties
over both bright desert and vegetated surfaces, avoidance of
sun glint that improves aerosol retrievals over ocean, and a
highly precise calibration of the SeaWiFS sensor (Hsu et al.,
2004, 2012).

The CALIOP (http://www-calipso.larc.nasa.gov) aerosol
product (05kmALay) represents atmospheric curtain slices
portraying the vertical distribution of aerosols and clouds in
the atmosphere, including the density and certain properties
of individual aerosol layers (Omar et al., 2009; Winker et al.,
2007). Since CALIOP is an active lidar sensor, it can provide
both daytime and nighttime retrievals within a narrow swath
of about 70 m. Although the lack of the daytime background
solar illumination makes nighttime CALIOP retrievals more
accurate, they are not used in this study because they cannot
be intercompared with the AERONET retrievals, which are
available only during the daytime.

Since each of the foregoing datasets has a few versions be-
cause of the periodic revisions and updates of their retrieval
algorithms over time, the data versions that were current at
the time of writing this paper (January 2013) were sampled,
although the study has been designed in a highly flexible

way to enable rapid re-analysis as the new versions become
available. The respective data versions used in this paper
are AERONET AOD (Version 2), Terra and Aqua MODIS
(Collection 051), MISR (Version 002), OMI (Version 003),
POLDER (Versions L and K), SeaWiFS (Version 004), and
CALIOP (Version 3-01). Therefore, all of the illustrations
and analyses shown in this paper are based on these data ver-
sions for the respective aerosol sensors.

4 Data quality screening

While the AERONET Level-2 data are manually inspected
to be free of retrieval defects and anomalies (Smirnov et al.,
2000), such an approach is not feasible for the voluminous
spaceborne data. Instead, all Level-2 aerosol products ana-
lyzed in this paper assign to AOD pixels one or more quality
assurance (QA) flags that indicate a degree of “confidence”
of the retrieval algorithms in their results. For MODIS and
SeaWiFS, aerosol QA flags are integer numbers ranging from
0 to 3, with 3 representing the highest quality. For MISR and
OMI data, the reverse is the case (i.e., 0 is the highest qual-
ity). Finally, for POLDER and CALIOP, QA data are a com-
bination of one or more flags, most of which are real numbers
ranging between 0 and 1, where 1 indicates the highest qual-
ity. By means of these QA flags, certain aerosol retrievals
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are identified as “bad quality” and are considered to be not
trustworthy enough for certain analyses. Therefore, users of
these aerosol products have been advised to choose data cor-
responding to a range of QA values that is most appropriate
for their specific needs.

To establish similar yet valid QA thresholds for the ana-
lyzed products, we consulted science teams of the analyzed
products as well as data product validation results reported
by these teams and other research groups. Based on this in-
quiry, we chose the acceptable QA values as described in Ta-
ble 2. For the majority of the products, the thresholds are set
based on selecting a limited subset of the possible QA values.
An important exception is the POLDER aerosol products,
where the QA flags are expressed as real numbers between
0 (“bad”) and 1 (“excellent”). Since there are no formal rec-
ommendations on the acceptable range of these flag values,
we have adopted thresholds suggested for the “quality of in-
version” flag in Bréon et al. (2011), specifically 0.5 for land
retrievals and 0.2 for ocean retrievals. It is also important to
note that since the primary designation of this flag is to in-
dicate the success of the retrieval algorithm, this flag does
not always reflect the actual quality of the retrieved aerosol
parameters, especially under certain less than favorable con-
ditions (Fig. 3).

The original MAPSS framework was designed to facili-
tate data analysis experiments based on different values of
QA flags. For this, MAPSS extracts QA flags over the sam-
pling area and computes the statistical mode for integer QA
flags and mean for real QA flags. These statistical modes of
the integer QA flags and means of the real QA flags provide a
single number for the quality assessment of each sample set,
and can be used to screen the corresponding subset statistics
while providing a convenient alternative compared to screen-
ing individual pixels (e.g., see Levy et al., 2010; Remer et al.,
2008). However, it was observed that this approach has an
unequal impact on the statistical properties of the different
aerosol products (Petrenko et al., 2012).

As an example, consider Fig. 4, where the global collo-
cated subset mean AOD values from OMI and Terra MODIS
Deep Blue (TMODIS DB) are compared to the correspond-
ing subset mean AOD values from AERONET. It can be ob-
served that while filtering the mean TMODIS DB AOD val-
ues by the mode of QA flags improves the R2 and RMSE
statistics, when compared to computing the mean values
based on individually screened TMODIS DB AOD pixels,
this filtering significantly changes the distribution of the col-
located data. Specifically, compared to screening individual
pixels, QA mode filtering removes 50 % more of the collo-
cated data points and degrades the slope of the fitted regres-
sion line as a result of removing certain high-biased points.
The opposite behavior can be observed in the collocated OMI
AOD and AERONET AOD datasets, where screening by QA
mode degrades R2 of the collocated data when compared to
screening individual pixels, although RMSE is still improved
and the slope of the fitted regression line remains the same,

since both screening approaches produce approximately the
same number of the OMI subset data points.

This observation indicates a certain inhomogeneity in the
uncertainties that are present in the aerosol products, as in
some cases high biases in individual pixels might overwhelm
the statistics derived from the sample set. Therefore, to avoid
such biases and ensure a fair comparison between the an-
alyzed aerosol products, the rest of this study is based on
the QA “pre-filtering” approach, where individual pixels in a
spatial sample are screened by their QA values before com-
puting the statistics of this sample. This approach also closely
models a typical use of the spaceborne aerosol data, where
data users screen each pixel individually and do not consider
QA values of its neighboring pixels. The data quantity impact
of the described QA screening approach can be observed in
Table 3, which provides the sizes of the analyzed datasets
before and after the screening. It is noticeable that, depend-
ing on the product, the impact is quite different, with the two
MODIS ocean AOD datasets and the MISR AOD dataset re-
taining almost all of their available datasets, whereas the two
MODIS DT datasets retained only one-fourth of the complete
collocated datasets.

It is important however to keep in mind that the QA values
reported by the retrieval algorithms are to a large degree sub-
jective to these algorithms and do not always reflect the ac-
tual quality of the retrievals. For example, in the absence of a
proper aerosol or surface model, an algorithm can in certain
cases use a wrong model to retrieve aerosol properties and
mistakenly assign this retrieval a “good” QA flag (e.g., Kahn
et al., 2010; Levy et al., 2010). Furthermore, a retrieval algo-
rithm used might not have enough skill or even the possibility
to recognize correctly certain conditions that are unfavorable
for aerosol retrieval, e.g., sub-pixel cloud contamination in
OMI retrievals (Torres et al., 1998). In yet another situation,
an aerosol scene can be observed in only a portion of the
available observation modes of a sensor, e.g., in only a few
of the available observation directions in POLDER (Herman
et al., 1997), which can lead to more confident yet less reli-
able results. The opposite case can also be true where an al-
gorithm correctly retrieves aerosol properties but is not con-
fident about the retrieval. As an example, consider Fig. 5,
which explores how QA screening degrades the statistics of
OMI AOD and Aqua MODIS Deep Blue AOD datasets when
compared to AERONET AOD over Djougou, Benin, as a re-
sult of assigning a “bad” QA flag to sufficiently “good” re-
trievals.

5 Possible data outliers

Under rare circumstances, aerosol retrievals from spaceborne
observations can produce aerosol properties that do not re-
flect the actual physical state of aerosol in the atmosphere.
Some of the reasons for such retrievals were discussed in
the previous section and might include, but are not limited
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Table 3. Statistics of the studied aerosol datasets based on all AERONET stations during the period of 2006-06-07 and 2010-12-11. “Ntot”
indicates the total number of the collocated spaceborne AOD – AERONET AOD data points, while “Nfilt” indicates the number of data
points after filtering (screening) the spaceborne data by QA as described in Sect. 4 and Table 2. “Nout” is the total number of the possible
data outliers determined as explained in Sect. 5. The last 8 columns present the statistics on the collocated data based on regression fits also
plotted in Fig. 6. Please see the Supplement for a breakdown of the listed statistics based on nominal ranges of AOD loading.

Dataset Nfilt Nfilt÷ Nout Nfilt÷ Complete data Outliers removed

Ntot (%) Nout (%) R2 RMSE Slope Intercept R2 RMSE Slope Intercept

All seasons

TMODIS DT 76 781 69.5 1126 2.1 0.79 0.11 0.96 0.01 0.81 0.09 0.93 0.01
TMODIS DB 15 319 28.9 175 4.0 0.63 0.23 0.87 0.06 0.68 0.20 0.95 0.03
TMODIS O 16 399 99.6 561 3.4 0.82 0.08 1.02 0.02 0.87 0.06 0.97 0.03
AMODIS DT 75 648 64.9 1372 2.8 0.78 0.11 0.98 0.01 0.80 0.09 0.95 0.01
AMODIS DB 43 996 30.8 676 5.0 0.62 0.23 0.88 0.06 0.68 0.19 0.91 0.04
AMODIS O 17 903 99.5 638 3.6 0.80 0.08 0.94 0.03 0.85 0.06 0.90 0.03
MISR 13 673 99.8 642 4.7 0.73 0.13 0.60 0.07 0.83 0.07 0.76 0.04
OMI 56 072 94.5 1545 2.9 0.39 0.24 0.68 0.16 0.44 0.21 0.71 0.14
CALIOP 2056 91.3 130 6.9 0.35 0.22 0.51 0.06 0.55 0.15 0.63 0.03
POLDER3 L 17 288 95.5 898 5.4 0.24 0.20 0.16 0.02 0.30 0.16 0.20 0.01
POLDER3 O 9568 94.7 402 4.4 0.45 0.15 0.30 0.03 0.50 0.12 0.37 0.02
SeaWiFS L 46 546 39.6 628 3.4 0.76 0.12 0.81 0.03 0.81 0.10 0.87 0.02
SeaWiFS O 16 551 79.4 575 4.4 0.72 0.10 0.98 0.02 0.79 0.07 0.93 0.02

Fall

TMODIS DT 22 986 69.1 292 1.8 0.83 0.11 1.04 −0.02 0.85 0.08 0.97 −0.01
TMODIS DB 5229 27.2 49 3.5 0.48 0.19 0.90 0.03 0.50 0.15 0.81 0.04
TMODIS O 5198 99.5 183 3.5 0.79 0.07 0.90 0.04 0.84 0.05 0.93 0.03
AMODIS DT 20 676 62.4 366 2.8 0.82 0.11 1.05 −0.01 0.85 0.08 0.98 0.00
AMODIS DB 13 238 29.7 148 3.8 0.59 0.20 0.97 0.02 0.63 0.18 0.94 0.02
AMODIS O 5191 99.5 180 3.5 0.74 0.07 0.79 0.04 0.81 0.06 0.81 0.04
MISR 3988 99.8 185 4.6 0.68 0.14 0.54 0.07 0.84 0.07 0.71 0.05
OMI 15 140 92.7 364 2.6 0.34 0.21 0.67 0.14 0.36 0.20 0.69 0.13
CALIOP 582 91.2 40 7.5 0.35 0.21 0.61 0.05 0.38 0.17 0.56 0.05
POLDER3 L 5603 95.4 280 5.2 0.42 0.14 0.37 0.00 0.50 0.11 0.43 −0.01
POLDER3 O 2606 93.3 117 4.8 0.54 0.12 0.36 0.01 0.62 0.09 0.46 0.00
SeaWiFS L 13 357 43.8 189 3.2 0.79 0.10 0.83 0.02 0.81 0.08 0.90 0.01
SeaWiFS O 4583 79.0 200 5.5 0.70 0.09 0.93 0.02 0.77 0.06 0.88 0.02

Winter

TMODIS DT 10 324 61.1 146 2.3 0.79 0.11 0.76 0.03 0.81 0.10 0.78 0.03
TMODIS DB 2458 33.6 35 4.2 0.65 0.23 0.90 0.08 0.68 0.20 0.90 0.07
TMODIS O 3322 99.8 131 4.0 0.72 0.09 0.98 0.03 0.85 0.05 0.91 0.03
AMODIS DT 9081 54.6 150 3.0 0.78 0.13 0.77 0.03 0.79 0.12 0.78 0.03
AMODIS DB 8327 36.6 121 4.0 0.62 0.21 0.84 0.06 0.65 0.18 0.86 0.05
AMODIS O 3341 99.4 151 4.5 0.74 0.08 0.84 0.03 0.80 0.05 0.84 0.03
MISR 2373 99.8 121 5.1 0.78 0.10 0.59 0.06 0.83 0.08 0.65 0.05
OMI 9321 92.6 169 2.0 0.42 0.23 0.60 0.15 0.42 0.21 0.60 0.15
CALIOP 344 91.0 21 6.7 0.42 0.25 0.36 0.09 0.46 0.21 0.43 0.08
POLDER3 L 2106 95.6 120 6.0 0.29 0.24 0.12 0.02 0.31 0.20 0.13 0.02
POLDER3 O 1544 93.9 62 4.3 0.60 0.11 0.39 0.01 0.60 0.10 0.43 0.01
SeaWiFS L 7327 42.2 110 3.6 0.75 0.13 0.81 0.04 0.80 0.11 0.85 0.03
SeaWiFS O 2409 78.3 76 4.0 0.68 0.09 0.83 0.03 0.75 0.07 0.84 0.03
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Table 3. Continued.

Dataset Nfilt Nfilt÷ Nout Nfilt÷ Complete data Outliers removed

Ntot (%) Nout (%) R2 RMSE Slope Intercept R2 RMSE Slope Intercept

Spring

TMODIS DT 15 094 70.6 207 1.9 0.80 0.11 0.92 0.03 0.81 0.10 0.94 0.02
TMODIS DB 2465 30.2 26 3.5 0.65 0.30 0.78 0.12 0.66 0.27 0.88 0.08
TMODIS O 2882 99.8 95 3.3 0.86 0.10 1.07 0.03 0.88 0.08 1.02 0.03
AMODIS DT 16 978 67.3 279 2.4 0.78 0.12 0.96 0.03 0.80 0.11 0.98 0.02
AMODIS DB 9633 32.0 88 2.9 0.63 0.27 0.83 0.09 0.66 0.25 0.89 0.07
AMODIS O 3632 99.8 142 3.9 0.81 0.09 0.99 0.03 0.86 0.07 0.94 0.04
MISR 2916 99.9 153 5.3 0.76 0.14 0.63 0.08 0.83 0.09 0.74 0.05
OMI 12 858 95.6 367 3.0 0.41 0.27 0.66 0.18 0.46 0.25 0.69 0.16
CALIOP 474 92.6 28 6.4 0.37 0.25 0.56 0.05 0.43 0.23 0.62 0.03
POLDER3 L 3766 96.3 193 5.3 0.20 0.28 0.10 0.02 0.23 0.21 0.13 0.02
POLDER3 O 2422 95.7 99 4.3 0.41 0.19 0.26 0.03 0.42 0.16 0.29 0.03
SeaWiFS L 10 512 41.7 135 3.1 0.79 0.15 0.80 0.05 0.82 0.12 0.85 0.04
SeaWiFS O 3749 79.4 118 4.0 0.73 0.12 1.04 0.01 0.78 0.08 0.97 0.02

Summer

TMODIS DT 28 377 72.3 373 1.8 0.77 0.10 1.01 0.00 0.78 0.09 1.01 0.00
TMODIS DB 5167 27.7 41 2.9 0.66 0.24 0.91 0.04 0.69 0.21 0.98 0.02
TMODIS O 4997 99.6 169 3.4 0.84 0.09 1.06 0.02 0.88 0.07 1.02 0.02
AMODIS DT 28 913 68.6 487 2.5 0.76 0.11 1.05 0.01 0.77 0.09 1.03 0.01
AMODIS DB 12 798 27.1 125 3.6 0.62 0.24 0.89 0.07 0.66 0.22 0.98 0.05
AMODIS O 5739 99.4 205 3.6 0.84 0.08 1.00 0.02 0.89 0.06 0.98 0.02
MISR 4396 99.9 219 5.0 0.72 0.13 0.62 0.08 0.82 0.08 0.79 0.04
OMI 18 753 96.1 492 2.7 0.35 0.24 0.72 0.16 0.39 0.22 0.75 0.14
CALIOP 656 90.7 30 5.0 0.34 0.18 0.54 0.05 0.49 0.14 0.64 0.02
POLDER3 L 5813 94.9 337 6.1 0.24 0.18 0.15 0.01 0.24 0.15 0.15 0.01
POLDER3 O 2996 95.5 115 4.0 0.39 0.16 0.27 0.04 0.40 0.14 0.30 0.03
SeaWiFS L 15 350 33.2 185 3.6 0.69 0.12 0.76 0.03 0.74 0.10 0.85 0.01
SeaWiFS O 5810 80.1 189 4.1 0.74 0.10 1.01 0.01 0.81 0.07 1.02 0.01

to, such factors as the lack of a proper aerosol model, in-
correct assumptions about boundary conditions, cloud con-
tamination, and several other factors. In Fig. 6, the possible
abnormal retrievals can be visually identified by observing
points that have a minimal data density and lie abnormally
far from the fitted regression lines. Even though an actual
fraction of such data points in a complete collocated dataset
can be relatively minor, the extreme deviations of such points
from the overall trend might significantly bias and misrepre-
sent the overall statistics of the data. Therefore, when com-
puting the overall statistics and inter-comparing the aerosol
products, such data points should be treated as possible out-
liers and analyzed separately from the rest of the data.

In order to identify and separate the possible data out-
liers, we analyzed AOD residuals, i.e., the difference between
spaceborne AOD and AERONET AOD observations, using
the modified Z-score test (Iglewicz and Hoaglin, 1993; Na-
tional Institute of Standards and Technology, 2012). This test
is designed for testing data for multiple outliers in approxi-
mately normal datasets and works by finding data points that

differ from the mean value by more than 5 median absolute
deviations. Unlike the standard deviation used in the tradi-
tional Z-score test, the median absolute deviation in the mod-
ified Z-score test is calculated based on the median of the
data and is less sensitive to extreme values. When applied to
the collocated AOD data, this test removes those spaceborne
retrievals that grossly overestimate or underestimate ground-
based observations as compared to the median retrieval er-
ror at a specific AERONET location. This is especially use-
ful since many spaceborne retrieval algorithms tend either to
under-estimate certain high-AOD events because of a pre-set
maximum AOD threshold, or to over-estimate AOD in the
presence of clouds as well as under very low-AOD condi-
tions. However, it should be noted that the test may not re-
move such possible outliers that have a relatively small error.

It is pertinent to note that even though AOD data are
known to follow the lognormal distribution (O’Neill et al.,
2000), the AOD residuals of the analyzed products follow
an approximately normal distribution as shown in Fig. 7 and
Fig. 8, with the exception of the POLDER products that
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Fig. 3. The total quantities of POLDER3 land (“L”) and ocean (“O”) pixels based on different values of “quality of inversion” flag during
the analyzed period of July 2006–December 2010. The “POLDER3 O (extended)” histogram is based on those pixels in ocean retrievals,
where the retrieval algorithm considered the sensor viewing geometry conditions to be especially “favorable” and produced a set of additional
aerosol parameters, such as spherical large-mode AOD, refractive index of fine mode, and others. The quality flag values are binned into
0.01 intervals, and the red lines indicate the 0.5 (land) and 0.2 (ocean) QA thresholds used in this study. Please note that even though certain
retrievals can have a very high value of inversion QA (e.g., QA > 0.9 in ocean retrievals), if they were retrieved under less than favorable
conditions, they may not necessarily be high-quality aerosol data, as there are almost no extended ocean retrievals with QA > 0.9.

mostly underestimate AOD, because their retrievals focus on
anthropogenic fine-mode aerosols, and thus represent only
the negative portion of the distribution. In the figures, it can
be seen that the distributions have long tails, strongly indicat-
ing the presence of outliers. Furthermore, it can be observed
that the slopes of the fitted lines are different from the slope
of the 1 : 1 line. This indicates that the standard deviation of
the analyzed residuals is different from 1, showing that these
data do not follow the standard normal distribution, although
this difference does not affect the test since the modified Z-
score test normalizes residuals by the median absolute devi-
ation of the data.

The overall effect of removing the possible outliers can
be observed in the bottom-right sub-plots of Fig. 6, Fig. 7,
and Fig. 8, as highlighted by the green frames, showing that
575 (4.4 %) outliers are removed from the SeaWiFS ocean
AOD dataset. The total numbers of the removed outliers are
provided in Table 3 and do not exceed 7 % of the total QA-
screened data for any of the datasets when considering the
all-season data. The global distribution of the possible data
outliers is depicted in Fig. 9 and generally corresponds to the
outlier locations reported by the science teams of the aerosol
products, e.g., outliers around the coastal areas where the
significant subpixel surface variations, shallow waters, sed-
iments, and complex marine/inland aerosol mixtures com-
plicate the retrievals, and also data outliers associated with
uncertain retrievals by the MODIS and MISR algorithms in
Amazon Basin and near the Sahara desert (Kahn et al., 2010;
Levy et al., 2010), although a more detailed study is needed
to determine the specific factors that lead to these outliers
and their spatiotemporal distributions. Since the Z-score test

requires the use of a reference dataset (i.e., AERONET in
our case), it cannot be directly applied to remove outliers in
spaceborne data in an independent and systematic fashion.
However, the results of this study could possibly be used to
develop appropriate mitigation measures in the retrieval al-
gorithms or to design specific data screening strategies for
each of the products.

In the remainder of this paper, the reported results are
based on the QA-screened data with the outliers removed.

6 Analysis

The overall data distribution for the analyzed spaceborne
aerosol products is presented in Fig. 6, whereas the detailed
linear regression fit statistics (Fox, 1997) for the products
based on the treatment of the possible data outliers and the
nominal delimiters of the four boreal seasons, namely, spring
(March–May), summer (June–August), autumn (September–
November), and winter (December to February), are listed
in Table 3. The statistics are presented based on seasonal
time frames rather than monthly or shorter time periods
because there may not be sufficient coincident data for a
scatterplot over such shorter time periods, due to the infre-
quency of satellite aerosol retrieval caused by cloud cover
and other issues. Fortunately, many climatic events that are
relevant to aerosol emission, transport, and distribution are
often roughly aligned with these seasons.

The second column of Table 3 (Nfilt) outlines the total
volume of the collocated quality-filtered data available for
each of the sensors depending on the boreal season. Although
sensor swath width (Sect. 3) and data quality (Sect. 4) are

Atmos. Chem. Phys., 13, 6777–6805, 2013 www.atmos-chem-phys.net/13/6777/2013/



M. Petrenko and C. Ichoku: Analysis of aerosol measurements from multiple satellite sensors 6787

Fig. 4. Effects of two different data QA filtering schemes on the accuracy of the global collocated spaceborne AOD, as discussed in Sect. 4.
AERONET AOD data are shown on the x axes, while AODs measured by spaceborne sensors are on the y axes. Density plots bin data into
0.1 AOD (0.05 AOD in magnified insets) intervals, where the color of each bin indicates the percentage of all data points that fall into this bin.
Left column displays the original unfiltered data with all QA values. Middle column displays the data pre-filtered by QA, where individual
pixels in each data sample were filtered based on their QA values before calculating the mean value of the sample. Right column shows the
data post-filtered by QA, where the mean of each sample was calculated based on all pixels in the sample; after this, the whole sample was
rejected if at least half of the pixels in the sample had QA values below the specified threshold. Note that OMI data have somewhat better
properties when pre-filtered, while Terra MODIS–Deep Blue data are in a better agreement with AERONET AOD when post-filtered. The
insets (0–0.5 AOD range magnified) are intended to enhance the visualization of the linear regression fits near the origin.

among the main factors that determine the available vol-
ume of the data (e.g., MODIS has approximately 4 times
the swath width and 4 times the data volume of MISR), it
can be seen that the seasonal changes in retrieval conditions
also have a very considerable impact on the data. Thus, sum-
mer retrievals can have 2–4 times as much collocated data
points as winter retrievals. The relative data volume differ-
ences between the studied data products should be carefully
considered when interpreting the statistics discussed in the
remainder of this paper.

In the presented statistics of Table 3, the slope value in-
dicates by how much the satellite retrieval for the parameter
under consideration is relatively underestimated or overes-
timated across different magnitudes, depending on whether
the slope value is less than or greater than unity. The offset
parameter indicates the extent to which the satellite retrieval

is biased. The squared linear correlation coefficient (R2) in-
dicates how consistent the parameter retrieval is across its
magnitude range, that is how tightly the points are aligned
close to the 1-to-1 line. Finally, the root mean square error
(RMSE) indicates the accuracy of the retrievals measured as
the average error in the spaceborne retrievals as compared to
the ground-based AERONET retrievals.

In Table 3, it can be seen that all MODIS, MISR, and Sea-
WiFS aerosol products correlate with AERONET observa-
tions with R2 ≥ 0.6. Furthermore, MISR, SeaWiFS land, and
MODIS Dark Target products have R2 ≥ 0.7, and MODIS
ocean products have R2 ≥ 0.8. Also, once the possible out-
liers are removed, the SeaWiFS, MISR, and MODIS Dark
Target products reach R2 ≈ 0.8, while the MODIS Deep
Blue products have R2 ≈ 0.7. All the best-performing land
products have RMSE values of about 0.15 (measured in the
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Fig. 5. Impact of QA screening on the statistical properties of AOD retrieved by the different sensors over Djougou, Benin. The top part of the
figure shows scatterplots of 2 yr of data that are unfiltered (left) or pre-filtered (right) by QA. It can be observed that while filtering improved
the properties of certain datasets, it degraded the properties of the others, particularly Aqua MODIS Deep Blue and OMI. This effect can be
partially explained by observing that the retrieval algorithms can mistakenly assign bad QA to pixels with good retrievals, as demonstrated
in a high-AOD event in the bottom part of the picture. In this figure, the magenta line indicates daily means of AERONET AOD at 440 nm,
while bar heights reflect the number of all-QA (top half of the figure) and best-QA (bottom half) data pixels in each spaceborne sample,
and error bars represent the mean relative accuracy of each sample computed based on its pixels. As an example, consider AMODIS DB
(turquoise) retrieval on 13 December. Even though the mean AOD based on 22 pixels in this retrieval was within 10 % of the corresponding
AERONET AOD, all these 22 pixels were marked as having a bad QA.
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Fig. 6. Regression fits of AERONET AOD (x axes) to AOD measured by spaceborne sensors (y axes). Satellite data were pre-screened
by QA as explained in Sect. 4. Density plots bin data into 0.1 AOD (0.05 AOD in magnified insets) intervals, where the color of each bin
indicates the percentage of all data points that fall into this bin. Density plot in the bottom right corner (green frame) demonstrates the results
of the possible data outlier detection and removal procedure described in Sect. 5, compared to the bottom middle plot. The insets (0–0.5
AOD range magnified) are intended to enhance the visualization of the linear regression fits near the origin.
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Fig. 7. Distribution of the difference (residuals) between spaceborne AOD and AERONET AOD. Satellite data were pre-screened by QA as
explained in Sect. 4. In each histogram, the data are split into equal-length bins of 0.05 AOD. The red vertical line indicates the residual of
0 AOD, while the blue lines mark minimum and maximum residuals of each distribution. Histogram in the green frame demonstrates the
results of the possible data outlier detection and removal procedure described in Sect. 5.

same units as AOD), with the exception of MODIS Deep
Blue products that have RMSE of 0.23. Removing possible
outliers improves (reduces) the RMSE of all products by 13–
50 %. This indicates an opportunity for improvement of the
aerosol data products by adjusting the retrieval algorithms in

the areas with the highest concentrations of the possible out-
liers.

For most of the sensors in Table 3 and Fig. 5, the slope
of the fitted regression line is below 1.0 and the intercept is
slightly above 0. This can be explained by the limitations of
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Fig. 8. Normality of the difference between spaceborne AOD and AERONET AOD. In each plot, points closely following the blue fitted line
indicate the data that are approximately normally distributed. Curvatures around the center of the straight line represent the departure from
the normality and indicate a presence of possible outliers, particularly at the tails of the distributions. The difference in the slope and offset of
the fitted blue line from the gray 1 : 1 line indicates a deviation from the standard location (i.e., mean = 0) and scale (i.e., standard deviation
= 1) of the normal distribution. Satellite data were pre-screened by QA as explained in Sect. 4. Plot in the green frame demonstrates the
results of the possible data outlier detection and removal procedure described in Sect. 5.
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Fig. 9. Distribution of the possible data outliers for the studied spaceborne aerosol datasets. Displayed values are percentages from all outliers
detected for each of the datasets as listed in the fourth column of Table 3. Stations with less than 1 % from the total number of outliers are
not shown. The statistical technique for detection and removal of the possible data outliers is described in Sect. 5.

the spaceborne retrieval algorithms that tend to (1) overes-
timate low-AOD events when the AOD signal is very weak
and almost indiscernible from the surface signal, resulting in
a portion of the surface signal being mistaken for an AOD
signal; and (2) underestimate high-AOD events because of
the very weak surface signal, where a portion of the AOD
signal might be mistaken for a surface signal. Furthermore,
certain algorithms have pre-set limits on the highest possi-
ble retrieved value of AOD (e.g., 3.0 in MISR), which may
further affect the reported statistics. Finally, certain censors

have peculiar features that impact the overall characteristics
of their data. Among such features are sensitivity to sub-pixel
cloud contamination in OMI retrievals that leads to an over-
estimation of AOD (Torres et al., 1998), sensitivity to fine
particles in POLDER land retrievals that leads to underesti-
mation of AOD in coarse-mode-dominated regions (Herman
et al., 1997), and also frequent under-estimation of AOD by
daytime CALIOP retrievals (Kacenelenbogen et al., 2011).
Since without a ground reference it is near impossible to
recognize an underestimation of high-AOD events or over-
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Fig. 10. Seasonal dependence of squared linear fit correlation coefficient (R2) and root mean square error (RMSE) statistics between the
collocated spaceborne and ground-based (AERONET) observations of AOD, based on the data in Table 3.

estimation of low-AOD events in the original Level 2 space-
borne data, even when considering the associated QA infor-
mation, it is especially important to explore the behavior of
each product across the complete range of AOD values.

Figure 10 charts the seasonal dependence of R2 and
RMSE of the spaceborne products based on the data in Ta-
ble 3. While all of the products demonstrate the high seasonal
variations in the statistical parameters, the OMI, CALIOP,
POLDER, and MODIS Deep Blue are the most sensitive to
the seasonal changes in the retrieval conditions, perhaps be-
cause of the uncertainties associated with cloud screening
(Li et al., 2009), although collocating spaceborne observa-
tions with AERONET introduces certain bias towards cloud-
free scenes because of the comprehensive AERONET cloud
screening procedures (Smirnov et al., 2000). Furthermore, it
can be seen that while removing the data outliers reduces
the RMSE and sensitivity to the seasonal changes in the an-
alyzed products, this reduction is not significant, indicating
that the retrieval errors reflected by the RMSE of these prod-
ucts likely stem from the regular retrievals rather than the
anomalous retrievals.

The accuracy of the spaceborne aerosol products might
vary with the location of the retrieval and, depending on the
location, some products might be significantly more accurate
than others. The spatial dependence of the accuracy of the
analyzed products is explored in Fig. 11 and Fig. 12, where
it can be observed that no single sensor provides the best re-
trievals at all sites. Additionally, as indicated by the smaller
relative sizes of certain markers in Fig. 11 and Fig. 12, al-

though some locations might be covered by highly accu-
rate spaceborne retrievals from certain sensors, if such sen-
sors offer limited coverage and data availability, their accu-
racy advantage may ultimately produce only limited impact,
highlighting the auxiliary but still important role of the less
precise but more spatially extensive products. Furthermore,
as depicted by the lighter shading in Fig. 11 (e.g., south-
ern Australia) and also in the histogram of R2 inset in this
figure, some sites are not covered by high-correlation (i.e.,
R2 ≥ 0.75) retrievals at all or have no collocated retrievals
from the most accurate of the products.

Moreover, it can be observed that the best-performing
aerosol products differ between Fig. 11 and Fig. 12, and the
products providing the best RMSE are oftentimes those with
the lower R2. Therefore, when choosing an aerosol product
for a specific analysis goal and at a specific region, it is nec-
essary to consider a balance between a variety of seasonal,
statistical, and spatial factors.

7 Accuracy of aerosol data products based on land
cover type

Aerosol properties are derived from satellite observations
based on a set of assumptions about the type and the optical
properties of the underlying terrestrial surfaces. Therefore, it
can be beneficial to compare the accuracy of the considered
aerosol data products based on the land cover types of the
sites over which the data subsets were extracted. As a refer-
ence for land cover types and their spatial extent, we used the
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Fig. 11. Spaceborne datasets with the best correlation (R2) of the retrieved AOD with the AOD measured by each individual inland (top)
and coastal or island-based (bottom) AERONET site. The intensity of marker shading indicates the degree of correlation. Marker shape
indicates the range of root mean square error (RMSE) associated with the displayed best R2. Finally, marker size corresponds to the number
of collocated data points used to compute the displayed statistics. Histograms in the bottom insets highlight the distribution of these statistics
over all sites based on bins of 0.05 AOD. The statistics were calculated based on the data that were pre-filtered by QA and screened of
outliers as described in Sects. 4 and 5.

global dataset that is based on the International Geosphere-
Biosphere Programme (IGBP) classification scheme and is
available from the suite of MODIS products (Friedl et al.,
2002). For each land cover type, we identified coincident
AERONET stations and averaged their corresponding statis-
tical results from Sect. 6. Tables 4 and 5 list the results of this
aggregation, while Fig. 13 and Fig. 14 outline these results on
a geographical map.

Generally, these aggregated results corroborate the find-
ings of Sect. 6, and the aerosol products from MODIS and
MISR sensors produce the most accurate results for the ma-

jority of the land cover types, although there are some pecu-
liarities that should be discussed in greater detail in order to
understand better the best areas of application of the analyzed
aerosol products.

Specifically, IGBP water surface locations include 31
AERONET stations out of 160 stations with collocated
ocean retrievals identified in Fig. 2. At these 31 locations,
MODIS, MISR, and SeaWiFS demonstrate the best results
with R2 ≈ 0.7. Furthermore, POLDER ocean dataset has a
good RMSE = 0.07 (Deuzé et al., 1999) that is compara-
ble to the best performing sensors in this region, albeit it
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Fig. 12. Spaceborne datasets with the best root mean square error (RMSE) of the retrieved AOD to the AOD measured by each individual
inland (top) and coastal or island-based (bottom) AERONET site. The symbols used are the same as the symbols in Fig. 11. The statistics
were calculated based on the data that were pre-filtered by QA and screened of outliers as described in Sects. 4 and 5.

has a somewhat lower squared correlation coefficient value
of R2 = 0.62; note that these statistics are different from
POLDER ocean statistics in Fig. 6, which analyzes a more
complete set of AERONET stations. It is interesting to note
that the correlation between AERONET and Aqua MODIS
AOD with R2 = 0.8 is higher than the correlation between
AERONET and Terra MODIS AOD with R2 = 0.72. A de-
tailed inspection of the data showed that this difference stems
from several AERONET sites with relatively small numbers
of collocated data points (N < 35) and the average AOD be-
low 0.2. Under such low-AOD conditions, MODIS ocean al-
gorithm has difficulty in retrieving the precise AOD values
and, as a result, is subject to an increased rate of errors (Klei-
dman et al., 2005; Remer, 2002).

Evergreen broadleaf forest regions provide conditions
that are favorable for retrieving AOD, and multiple sensors
demonstrate the high correlation with AERONET, including
MODIS Dark Target with R2 = 0.84, MISR with R2 = 0.90,
and POLDER with R2 = 0.98. However, since these regions
are also susceptible to complex smoke events (e.g., Ji Parana,
Brazil), sometimes combined with dust and pollution events
(e.g., Anmyon, South Korea; Hong Kong, China), most of
the sensors demonstrate a rather poor RMSE (Hyer et al.,
2011). The important exception is POLDER dataset that has
RMSE = 0.07, possibly because POLDER is especially sen-
sitive to small particles produced by biomass burning and an-
thropogenic pollution sources (Fan et al., 2008), thereby re-
trieving fairly accurate AOD values at Ji Parana, Brazil, and
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Fig. 13. Land cover type dependence of squared linear fit correlation coefficient (R2) between the collocated spaceborne and ground-based
(AERONET) observations of AOD. Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on the average
of the data from those AERONET sites that reside in these areas. The statistics were calculated based on data that were pre-filtered by QA
and screened of outliers as described in Sects. 4 and 5.

Lulin, Taiwan. It should be also noted that together with de-
ciduous broadleaf forests and savannas, evergreen broadleaf
forest is one of the three land cover types where POLDER
demonstrates good results with R2 ≈ 0.98, indicating the ad-
vantage of polarization measurements for aerosol retrievals
over these regions.

For mixed forests, MODIS Dark Target products provide
the highest retrieval accuracy with R2 = 0.78 for Terra and
0.82 for Aqua, while MISR data are somewhat less ac-

curate with R2 = 0.72 as a result of underestimating high
AODs during summertime biomass burning events (Kahn et
al., 2010), although RMSE = 0.04 of MISR is better than
RMSE = 0.05 of Terra MODIS and RMSE = 0.06 of Aqua
MODIS. Sufficiently reliable aerosol data are also retrieved
by SeaWiFS with R2 = 0.64, by POLDER with R2 = 0.62,
and CALIOP with R2 = 0.61.

For closed shrubland, MISR with R2 = 0.90, CALIOP
with R2 = 0.88, and MODIS Deep Blue with R2 =0.74 for
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Fig. 14. Land cover type dependence of root mean square error (RMSE) between the collocated spaceborne and ground-based (AERONET)
observations of AOD. Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on the average of the data
from those AERONET sites that reside in these areas. The statistics were calculated based on the data that were pre-filtered by QA and
screened of outliers as described in Sects. 4 and 5.

Terra and R2 = 0.84 for Aqua produce the best results. Al-
though MODIS Deep Blue shows a better performance than
MODIS Dark Target for this land cover type, the Deep
Blue products are retrieved only over a single Lake Argyle
AERONET site in northern Australia, whereas Dark Tar-
get products are retrieved over 7 sites and have a signifi-
cantly larger number of data points. Likewise, the good result
demonstrated by CALIOP also originates exclusively from
the Lake Argyle retrievals. The difference of 0.1 in R2 be-
tween MODIS Terra Deep Blue and MODIS Aqua Deep

Blue can be partly explained by the difference in the data
availability of these two datasets, as MODIS Terra Deep Blue
at the time of this work was available only through 2007;
this effect can be also observed for several other land cover
types, where MODIS Aqua Deep Blue tends to have a lower
correlation with AERONET and produces results that are
closer to the results of SeaWiFS, probably because the lat-
ter is also based on the Deep Blue retrieval algorithm (Hsu et
al., 2006). It should be noted that closed shrubland is the only
area where CALIOP produces some of the best retrievals,
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Fig. 15. Land cover type dependence of bias between the collocated spaceborne and ground-based (AERONET) observations of AOD. Areas
corresponding to each IGBP land cover type (bottom right inset) are colored based on the average of the data from those AERONET sites
that reside in these areas. The statistics were calculated based on the data that were pre-filtered by QA and screened of outliers as described
in Sects. 4 and 5.

possibly indicating the advantage of active aerosol sensing
over this bright-surface region.

Over wooded savannas, both Dark Target and Deep Blue
products from MODIS show very good results with R2 val-
ues between 0.80 and 0.90. MISR with R2 = 0.79 and SeaW-
iFS with R2 = 0.77 produce lower but still reasonably good
results. The reduced performance of MISR in this region can
be explained by the lack of region-specific aerosol mixtures
in its retrieval algorithm, a situation that is expected to be im-
proved in future revisions of the product (Kahn et al., 2009).

It should be also noted that this region enables one of the two
highest correlations between OMI and AERONET observa-
tions, probably as a result of favorable cloud-free conditions
in sub-Saharan Africa (Ahn et al., 2008; Torres et al., 2007).

Open shrublands are very dry and sparsely vegetated re-
gions that are characterized by bright surfaces. Such regions
present a great challenge for remote retrieval of aerosol prop-
erties (Kahn et al., 2009), and none of the analyzed products
exceeded the correlation coefficient of 0.7. Among the best-
performing products are MODIS Dark Target with R2 = 0.68
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Fig. 16. Land cover type dependence of variance between the collocated spaceborne and ground-based (AERONET) observations of AOD.
Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on the average of the data from those AERONET
sites that reside in these areas. The statistics were calculated based on the data that were pre-filtered by QA and screened of outliers as
described in Sects. 4 and 5.

for Terra and R2 = 0.61 for Aqua, MISR with R2 = 0.65,
and MODIS Deep Blue with R2 = 0.52 for Terra and R2 =
0.61 for Aqua, as well as CALIOP with R2 = 0.59.

Similar to open shrublands, grasslands were challenging
to all of the sensors, where Terra MODIS Deep Blue, Aqua
MODIS Dark Target, and MISR demonstrated the best re-
sults with R2 values between 0.65 and 0.67. Even more
challenging were snow and ice and also barren or sparsely
vegetated areas, where MISR was the only highly accurate

aerosol product with R2 = 0.78 for both land cover types,
thanks to its multi-angle measurement capabilities that allow
retrieving aerosol properties over bright surfaces and enable
the advanced cloud and ice detection capabilities (Kahn et
al., 2009).
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Table 4. Linear fit correlation coefficient (R2) between the collocated spaceborne and ground-based observations of AOD estimated at the
stations that coincide with different IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over
a specific land cover type. No AERONET stations are available at the areas occupied by deciduous needleleaf forest. The statistics were
calculated based on the data that were pre-filtered by QA and screened of outliers as described in Sects. 4 and 5. A graphical representation
of this table is in Fig. 13. Please see the Supplement for a breakdown of the listed statistics based on the nominal boreal seasons.

TM
O

D
IS

D
T

TM
O

D
IS

D
B

TM
O

D
IS

O

A
M

O
D

IS
D

T

A
M

O
D

IS
D

B

A
M

O
D

IS
O

M
IS

R

O
M

I

C
A

LI
O

P

PO
LD

ER
3

L

PO
LD

ER
3

O

Se
aW

iF
S

L

Se
aW

iF
S

O

Water 0.72 0.80 0.78 0.41 0.59 0.62 0.72
Evergreen needleleaf forest 0.79 0.78 0.71 0.74 0.34 0.54 0.51 0.67
Evergreen broadleaf forest 0.84 1.00 0.84 0.90 0.60 0.14 0.98
Deciduous broadleaf forest 0.84 0.88 0.82 0.56 0.27 0.74 0.83
Mixed forests 0.78 0.82 0.72 0.39 0.61 0.62 0.64
Closed shrubland 0.51 0.74 0.64 0.84 0.90 0.50 0.88 0.55 0.60
Open shrublands 0.68 0.52 0.61 0.61 0.65 0.31 0.59 0.31 0.53
Woody savannas 0.80 0.91 0.85 0.86 0.79 0.59 0.34 0.42 0.77
Savannas 0.76 0.56 0.82 0.67 0.78 0.55 0.63 0.73 0.80
Grasslands 0.57 0.65 0.67 0.43 0.68 0.49 0.40 0.43 0.52
Permanent wetlands 0.75 0.76 0.77 0.32 0.62 0.54 0.02
Croplands 0.79 0.72 0.78 0.64 0.78 0.46 0.57 0.55 0.69
Urban and built-up 0.69 0.65 0.70 0.57 0.76 0.43 0.51 0.46 0.63
Cropland/natural veget. mosaic 0.75 0.79 0.50 0.72 0.54 0.46 0.52 0.72
Snow and ice 0.26 0.27 0.78 0.03 0.22
Barren or sparsely vegetated 0.60 0.56 0.62 0.34 0.78 0.30 0.58 0.22 0.37

Table 5. Root mean square error (RMSE) between the collocated spaceborne and ground-based observations of AOD estimated at the stations
that coincide with different IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over a specific
land cover type. No AERONET stations are available at the areas occupied by deciduous needleleaf forest. The statistics were calculated
based on the data that were pre-filtered by QA and screened of outliers as described in Sects. 4 and 5. A graphical representation of this table
is in Fig. 14. Please see the Supplement for a breakdown of the listed statistics based on the nominal boreal seasons.
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Mixed forests 0.05 0.06 0.04 0.13 0.13 0.06 0.05
Closed shrubland 0.09 0.06 0.08 0.04 0.06 0.19 0.04 0.11 0.06
Open shrublands 0.10 0.10 0.10 0.13 0.08 0.22 0.06 0.13 0.09
Woody savannas 0.08 0.27 0.09 0.23 0.13 0.21 0.18 0.24 0.11
Savannas 0.10 0.15 0.09 0.14 0.07 0.22 0.11 0.13 0.09
Grasslands 0.09 0.18 0.09 0.16 0.05 0.19 0.11 0.13 0.08
Permanent wetlands 0.06 0.06 0.05 0.14 0.11 0.06 0.13
Croplands 0.09 0.16 0.09 0.17 0.07 0.16 0.14 0.11 0.09
Urban and built-up 0.09 0.14 0.09 0.15 0.07 0.20 0.13 0.10 0.10
Cropland/natural veget. mosaic 0.07 0.08 0.13 0.06 0.15 0.22 0.08 0.11
Snow and ice 0.11 0.14 0.02 0.10 0.01
Barren or sparsely vegetated 0.12 0.17 0.13 0.13 0.06 0.37 0.10 0.14 0.13
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Table 6. Bias between the collocated spaceborne and ground-based observations of AOD estimated at the stations that coincide with different
IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over a specific land cover type. No AERONET
stations are available at the areas occupied by Deciduous needleleaf forest. The statistics were calculated based on the data that were pre-
filtered by QA and screened of outliers as described in Sects. 4 and 5. A graphical representation of this table is in Fig. 14. Please see the
Supplement for a breakdown of the listed statistics based on the nominal boreal seasons.
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Evergreen broadleaf forest −0.03 0.73 0.02 −0.04 0.18 −0.47 −0.04
Deciduous broadleaf forest −0.03 −0.03 −0.01 0.02 −0.04 −0.05 −0.02
Mixed forests −0.02 0.00 0.01 0.06 0.03 −0.05 −0.02
Closed shrubland −0.01 0.00 0.02 0.02 0.03 0.11 −0.03 −0.09 −0.03
Open shrublands 0.05 0.02 0.05 0.01 0.03 0.14 −0.02 −0.11 −0.02
Woody savannas −0.04 −0.23 −0.03 −0.19 −0.08 0.03 −0.12 −0.20 −0.03
Savannas −0.05 −0.10 −0.04 −0.08 −0.02 0.08 −0.04 −0.11 −0.02
Grasslands 0.01 −0.02 0.02 0.03 0.01 0.11 −0.06 −0.11 −0.01
Permanent wetlands −0.02 0.01 0.01 0.05 −0.09 −0.05 −0.01
Croplands 0.00 0.04 0.01 −0.02 −0.03 −0.01 −0.07 −0.09 −0.04
Urban and built-up −0.01 −0.04 0.00 −0.02 −0.03 0.03 −0.05 −0.09 −0.03
Cropland/natural veget. mosaic −0.02 −0.03 0.00 −0.02 0.00 −0.02 −0.07 −0.07
Snow and ice 0.10 0.13 0.02 −0.07 0.00
Barren or sparsely vegetated 0.07 0.08 0.09 0.00 0.04 0.29 −0.01 −0.11 0.00

Table 7. Variance between the collocated spaceborne and ground-based observations of AOD estimated at the stations that coincide with
different IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over a specific land cover type. No
AERONET stations are available at the areas occupied by Deciduous needleleaf forest. The statistics were calculated based on the data that
were pre-filtered by QA and screened of outliers as described in Sects. 4 and 5. A graphical representation of this table is in Fig. 14. Please
see the Supplement for a breakdown of the listed statistics based on the nominal boreal seasons.
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Permanent wetlands 0.003 0.004 0.002 0.018 0.004 0.001 0.016
Croplands 0.006 0.027 0.007 0.028 0.005 0.021 0.022 0.005 0.006
Urban and built-up 0.006 0.015 0.007 0.016 0.004 0.030 0.011 0.004 0.007
Cropland/natural veget. mosaic 0.004 0.004 0.019 0.002 0.021 0.042 0.003 0.008
Snow and ice 0.002 0.003 0.000 0.005 0.000
Barren or sparsely vegetated 0.004 0.019 0.004 0.014 0.002 0.054 0.007 0.011 0.015
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8 Conclusions

In this paper, we analyzed and intercompared 11 space-
borne aerosol products from MODIS, MISR, OMI, SeaW-
iFS, POLDER, and CALIOP sensors, which were sampled
fairly uniformly based on the MAPSS framework that was
used to collocate these spaceborne observations with ground-
based AERONET observations during the period of 2006-06-
07 and 2010-12-11, when all the sensors were operational.
Based on this analysis, for each of the AERONET stations,
we identified products providing the best correlation coeffi-
cient (R2) and root mean square error (RMSE). It was found
that no single product provides the best retrieval over all sites,
and certain sites are not covered by accurate retrievals at all.
Furthermore, it was observed that a product providing the
best R2 at a certain location does not always provide the best
RMSE at the same location. Therefore, to facilitate the mul-
tivariate analysis that is necessary when choosing the most
suitable spaceborne aerosol product at a specific region, we
plan to develop an interactive tool that would allow explo-
ration of the multi-sensor collocated data on an interactive
map.

Further, a statistical approach based on the statistical mod-
ified Z-score test has been used to identify automatically pos-
sible data outliers in the collocated datasets. The reported
analysis shows that even though such atypical data points
constitute a relatively minor portion (2–7 %) of the analyzed
datasets, they can significantly bias the results of the statis-
tical analysis. For this reason, it is suggested that such data
points be set aside when analyzing collocated datasets and in-
spected separately, in order to develop appropriate mitigation
measures in the retrieval algorithms or to design specific data
screening strategies that could be used to identify outliers in
spaceborne datasets independently and systematically.

Finally, we assessed the accuracy of the spaceborne
aerosol products based on their spatial distribution relative to
different surface types derived from MODIS using the IGBP
land cover classification scheme. This analysis identified sen-
sors that retrieve the most accurate aerosol properties over
each of the defined land cover types and highlighted the dif-
ferences that exist between the sensors, providing an advan-
tage or disadvantage in retrieving AOD over a particular land
cover type. Notably, some of the land cover types, including
open shrublands and grasslands, had only moderately accu-
rate retrievals, indicating the need for improved spaceborne
aerosol remote sensing instrumentation/approaches and/or
retrieval algorithms.

Supplementary material related to this article is
available online at: http://www.atmos-chem-phys.net/13/
6777/2013/acp-13-6777-2013-supplement.pdf.
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Abstract 10 

Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), 11 

MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol 12 

products – were comparatively analyzed using data collocated with ground-based aerosol 13 

observations from the Aerosol Robotic Network (AERONET) stations within the Multi-14 

sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and 15 

http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-16 

screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-17 

2010 to available collocated AERONET measurements globally, regionally, and seasonally, 18 

and deriving a number of statistical measures of accuracy. We used a robust statistical 19 

approach to detect and remove possible outliers in the collocated data that can bias the results 20 

of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD 21 

products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD 22 

retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 23 

over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD 24 

products were within 0.15 over land and 0.09 over ocean. We have been able to generate 25 

global maps showing regions where the different products present advantages over the others, 26 

as well as the relative performance of each product over different landcover types. It was 27 

observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of 28 

the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable 29 

AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to 30 
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retrieve aerosol properties over bright-surface shrublands more accurately than the other 1 

sensors, while POLDER, which is the only one of the sensors capable of measuring polarized 2 

aerosols, outperforms other sensors in certain smoke-dominated regions, including broadleaf 3 

evergreens in Brazil and South-East Asia. 4 

 5 

1 Introduction 6 

Remote sensing of aerosols from space has been a subject of extensive research, with multiple 7 

sensors retrieving global aerosol properties on a daily or weekly basis. During the past 8 

decade, the retrievals of atmospheric aerosol parameters have been available from a multitude 9 

of spaceborne sensors (Lee et al., 2009; Yu et al., 2006). The diverse algorithms used for 10 

these retrievals operate on different types of the remotely-sensed signals and rely on different 11 

assumptions about the underlying physical phenomena. Significant effort has been made by 12 

the various aerosol algorithm teams to progressively refine these assumptions, from algorithm 13 

version to version, in order to derive and provide the most accurate products possible. 14 

However despite these efforts, measurements of identical aerosol parameters from different 15 

sensors, including the most common observable and widely used aerosol optical depth or 16 

thickness (AOD or AOT or τa) parameter, often disagree with each other due to a variety of 17 

reasons including differences in the underlying surface properties at different locations, 18 

intrinsic sensor observation characteristics and retrieval approaches (Li et al., 2009). 19 

Therefore, it has become necessary to consistently analyze the available aerosol products 20 

wherever possible in order to establish the geographical locations where and under what 21 

circumstances each of these products provide the greatest accuracy. 22 

The unique attributes of a particular sensor may be advantageous for aerosol retrievals, 23 

depending on the parameter(s) being retrieved, especially under favorable atmospheric 24 

conditions. However, aerosol retrieval accuracy can also be affected by numerous other 25 

factors, including the retrieval algorithm’s assumptions and parameterizations, the instrument 26 

characteristics (intrinsic design, calibration, and time-dependent degradation), the 27 

measurement configurations (solar and view geometry), the atmospheric conditions 28 

(cloudiness, aerosol mixing, layer height, and humidity), the surface background (vegetated, 29 

bare, snow-covered, inundated, or simply just dark or bright land surface or ocean), and others 30 

(Kokhanovsky et al., 2007).  31 
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Since the accuracy of aerosol retrieval from a sensor may be affected positively or negatively 1 

by these factors and conditions in different ways and to varying degrees, a synergetic use of 2 

similar aerosol parameters across the sensors is non-trivial and the data synergy research is 3 

instead focused on combining orthogonal (i.e., non-conflicting) aerosol measurements. For 4 

example, the aerosol layer height information from the Cloud-Aerosol Lidar with Orthogonal 5 

Polarization (CALIOP) has been used to enhance aerosol retrievals from other sensors (Oo 6 

and Holz, 2011; Torres et al., 2012; Zhang et al., 2011), while the geometry information from 7 

the Advanced Along Track Scanning Radiometer (AATSR) was used to initialize the 8 

Moderate Resolution Imaging Spectroradiometer (MODIS) Bi-Directional Reflection 9 

Distribution Function (BRDF) in order to derive AATSR AOD (Guo et al., 2009). 10 

To better characterize the differences and uncertainties that exist between the aerosol 11 

retrievals from different sensors, several studies compared a limited number of sensors, e.g., 12 

AOD retrievals from MODIS were separately compared to retrievals from the MISR Multi-13 

angle Imaging Spectroradiometer (Kahn et al., 2007, 2011; Mishchenko et al., 2010; Zhang 14 

and Reid, 2010), the POLDER POLarization and Directionality of the Earth's Reflectances 15 

sensor (Gérard et al., 2005), and CALIOP (Kittaka et al., 2011; Redemann et al., 2011). A 16 

larger set of sensors was intercompared using a synthetic benchmark (Kokhanovsky et al., 17 

2010), and also based on a detailed analysis of limited geographical regions (Cheng et al., 18 

2012; Yu et al., 2012). In addition, a set of 9 aerosol products was evaluated over ocean and 19 

coastal AERONET sites during the period of 1997-2000, highlighting regions of the high 20 

retrieval agreement and disagreement (Myhre et al., 2005). However, all the satellite data used 21 

in that study had already undergone post-retrieval spatio-temporal aggregation at 1×1 degree 22 

grid resolution on a monthly mean basis (so-called Level 3 products) before they were used in 23 

the comparisons. 24 

In this work, eleven retrieval-scale (Level 2) aerosol products from multiple spaceborne 25 

sensors are intercompared during the recent ‘golden’ period of 2006-2010 (see Fig. 1), when 26 

as many as seven major sensors were in operation and measuring aerosols concurrently. 27 

Specifically, we focus on aerosol products retrieved over land and ocean from MODIS on 28 

Terra and Aqua, MISR on Terra, the Ozone Monitoring Instrument (OMI) on Aura, POLDER 29 

on PARASOL, CALIOP on CALIPSO, and the Sea-viewing Wide Field of view Sensor 30 

(SeaWiFS) aboard the SeaStar spacecraft. At the time of this study (January 2013), all of the 31 

studied sensors are still active, with the exception of SeaWiFS, whose operation ended in 32 
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December 2010. The analysis is based on the collocation of the satellite data products using 1 

the Multi-sensor Aerosol Products Sampling System (MAPSS) framework (Petrenko et al., 2 

2012) that samples these satellite products relatively uniformly over the global AERosol 3 

Robotic NETwork (AERONET) of sun-photometers and other important ground-based 4 

stations both over land and ocean. 5 

The details of the MAPSS sampling approach are explained in Sect. 2, while the relevant 6 

characteristics of the aerosol data products from the different sensors and the corresponding 7 

data quality screening techniques are described in Sect. 3 and Sect. 4. Section 5 describes a 8 

novel statistical approach for detecting and removing possible data outliers that can exist in 9 

the collocated data and, as a result, bias the statistical analysis of these data. Section 6 10 

presents the detailed analysis of the compared aerosol products, while Sect. 7 examines the 11 

accuracy of these products based on land cover type. Conclusions are presented in Sect. 8.  12 

 13 

2 Sampling Method  14 

The different aerosol-measuring sensors have different spatial resolutions, of which some 15 

have square-shaped footprints while others have rectangular pixel shapes. The nominal 16 

ground pixel sizes of the analyzed aerosol products at nadir are summarized in Table 1 and 17 

these sizes become progressively larger away from nadir. To ensure a uniform and fair 18 

sampling of the aerosol products for cross-evaluation with AERONET and for comparison 19 

with one another, we used the framework of Multi-sensor Aerosol Products Sampling System 20 

(MAPSS) that was originally developed by Ichoku et al. (Ichoku et al., 2002) for validation 21 

and analysis of MODIS aerosol products (Chu et al., 2002; Ichoku et al., 2003, 2005; Levy et 22 

al., 2010; Remer, 2002) and later expanded to support aerosol products retrieved by other 23 

spaceborne sensors (Petrenko et al., 2012).  MAPSS subsets the aerosol products by 24 

extracting pixels covering approximately the same area on the ground centered over 25 

AERONET sun photometer measurement sites and over certain other point locations that are 26 

not addressed in this study.  27 

Assuming an imaginary circle of 55-km diameter whose center coincides with each 28 

AERONET station, all spaceborne aerosol product pixels falling within the circle are 29 

extracted. An aerosol pixel is regarded as being within the circle if the coordinates of the pixel 30 

center fall within 27.5km from the coordinates of the circle center, where the distance 31 

between the coordinates of the two points is determined using the Haversine formula (Sinnott, 32 
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1984). Based on the nominal spatial resolution of the sensors in Table 1, the approximate 1 

maximum number of pixels within the 55-km diameter sample space at nadir for the different 2 

sensors is as follows: MODIS - 25, MISR - 9, OMI - 8, POLDER - 9, CALIOP - 11, and 3 

SeaWiFS - 16. The actual number of pixels within the sampling circle decreases for the 4 

aerosol retrievals away from the nadir of the satellite scene, and can be further reduced in the 5 

presence of clouds or other factors preventing retrieval of aerosol parameters. Based on the 6 

extracted sample, statistics of each aerosol parameter retrieved within the sampling areas are 7 

calculated and include mean, median, standard deviation, as well as the value of the central 8 

pixel over the ground station. In this paper, results are reported based on the analysis of the 9 

mean values; although not reported in this paper because of the space considerations, a similar 10 

analysis was performed based on the central values and is reported in the digital supplement 11 

to this paper. It is appropriate to use the mean values in this paper, so as to maintain the 12 

uniform sampling criterion across the different sensors to facilitate a fair intercomparison. 13 

Analysis based on central pixel values can provide further details on the effect of difference in 14 

sampling aerosol products from individual sensors. 15 

To collocate AERONET data in time and space with the satellite data, AERONET 16 

measurements acquired within ±30-min of each satellite sensor overpass are also extracted 17 

and the corresponding statistics are derived. Additionally, for the convenience of aerosol data 18 

intercomparison and validation, AERONET AOD are interpolated or (where necessary) 19 

extrapolated to the wavelengths of spaceborne sensors in Table 1 based on the established 20 

wavelength dependence of AOD (Eck et al., 1999). It is pertinent to note that this 21 

interpolation (and particularly) extrapolation process might introduce an additional source of 22 

uncertainty when intercomparing the aerosol products, especially for certain stations, where 23 

AERONET AOD observations in the range of 440nm-1200nm have to be extrapolated by 24 

52nm to match OMI AOD at 388nm. 25 

Each AERONET station has a different period of operation and the quantity of available AOD 26 

data points is not uniform across all stations; while many stations are still active, certain 27 

stations were active in the past and only for a short period of time. The overall availability of 28 

the collocated data during the analysis period of 2006-06-07 to 2010-12-11 is shown in Fig. 2, 29 

where for the purposes of this study the stations are classified as land-only, ocean-only, or 30 

land-and-ocean. This classification is based on analyzing collocated data of separate aerosol 31 

retrievals over land and ocean from the MODIS, SeaWiFS, and POLDER sensors and 32 
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identifying stations that have AOD data points from the land datasets, ocean datasets, or both; 1 

note that the MISR, OMI, and CALIOP sensors provide only joint land-and-ocean datasets. 2 

 3 

3 Aerosol Products 4 

The key properties of the 11 analyzed aerosol products are summarized in Table 1, while the 5 

original science data set (SDS) names of the spaceborne aerosol products are outlined in the 6 

first column of Table 2, except for the POLDER products that do not have an established SDS 7 

product naming convention. The sampled satellite data products are derived directly from the 8 

retrieval level aerosol products (Level 2) that represent the highest available spatial resolution 9 

for each product/sensor combination and are free of aggregation artifacts that can be present 10 

in data at Level 3 (Hyer, 2011; Levy et al., 2009; Zhang and Reid, 2010).  11 

Of the 11 sampled products, 3 are combined land-and-ocean products, 6 are land-only 12 

products, and 4 are ocean-only products. Furthermore, 6 aerosol products are retrieved from 13 

the twin MODIS-Terra and MODIS-Aqua sensors using the same set of 3 algorithms: the 14 

ocean algorithm is used for the retrievals over oceans and other large bodies of water, the land 15 

Dark Target (DT) algorithm is used over vegetated regions and other dark surfaces (Remer et 16 

al., 2005), and the land Deep Blue (DB) algorithm is used for deserts and barren lands (Hsu et 17 

al., 2004). Although the results between the two MODIS sensors are expected to be very 18 

close, they might still differ due to the different times of scene observation during the day and 19 

other factors summarized in (Ichoku et al., 2005; Remer et al., 2008). 20 

The remainder of this section provides a brief description of the analyzed products and 21 

highlights some of the unique aerosol properties reported in these products. A more detailed 22 

overview can be found in the theoretical and validation works of the respective science teams 23 

of the products as cited below, while a general comparative overview of multiple products 24 

and retrieval algorithms are in (Kokhanovsky et al., 2007; Lee et al., 2009; Li et al., 2009; Yu 25 

et al., 2006). 26 

AERONET (http://aeronet.gsfc.nasa.gov) sun-photometers measure aerosol properties using 27 

ground-based observations of solar direct and diffuse irradiances. In this work, the 28 

AERONET product used is the aerosol optical depth or thickness (AOD or AOT), which is 29 

retrieved from the AERONET direct measurements of solar irradiance. Since AERONET 30 

measurements are made from the ground looking up, they present a distinct advantage over 31 
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spaceborne retrievals in that they are not affected by uncertainties associated with the effects 1 

of surface properties as much as satellite measurements are (Dubovik et al., 2002; Holben et 2 

al., 1998, 2001). Furthermore, the Level 2.0 AERONET data used in this work are carefully 3 

calibrated, cloud screened, and quality assured (Smirnov et al., 2000) and therefore are 4 

especially suitable for use as the reference standard against which the satellite aerosol remote-5 

sensing data are evaluated. 6 

The MODIS (http://modis.gsfc.nasa.gov) aerosol product (MOD04 and MYD04) comprises 7 

the column aerosol optical thickness and other physical properties of aerosols retrieved 8 

globally over land and ocean (Chu et al., 2002; Hsu et al., 2004; Ichoku et al., 2005; Levy et 9 

al., 2010; Remer, 2002; Remer et al., 2005). 10 

The MISR (http://www-misr.jpl.nasa.gov) aerosol product (MIL2ASAE) features aerosol 11 

retrievals based on observations from 9 independent camera angles. Multiple viewing angles 12 

allow MISR to measure certain aerosol properties that are not available from the other 13 

instruments (e.g., aerosol particle size). Furthermore, MISR multiple cameras enable 14 

retrievals under conditions that are unfavorable to single-view (e.g., nadir) instruments, such 15 

as over bright surfaces or sun glint, where the other instruments are unable to make reliable 16 

retrievals in the visible wavelengths (Kahn, 2005; Kahn et al., 2010a; Martonchik et al., 17 

2009).  18 

The OMI (http://www.knmi.nl/omi/research/instrument/index.php) aerosol product 19 

(OMAERUV) measures the near-UV (near ultraviolet) aerosol absorption and extinction 20 

optical depth, as well as single scattering albedo, among other aerosol properties (Torres et 21 

al., 1998, 2007).  Moreover, OMI is capable of retrieving absorption optical depth in partially 22 

cloudy conditions that usually pose a challenge to other aerosol instruments. 23 

The POLDER onboard PARASOL (http://www.icare.univ-lille1.fr/parasol) aerosol land 24 

product (P3L2TLGC) and aerosol ocean product (P3L2TOGC) are derived from measuring 25 

spectral, directional, and polarized properties of reflected solar radiation. One of the main 26 

features of the POLDER instrument is its utilization of polarization properties of the 27 

measured radiation for retrieving anthropogenic aerosol optical depth (Bréon et al., 2002; 28 

Buriez et al., 2002; Deuzé et al., 1999, 2001; Herman et al., 1997). It is important to note that 29 

the POLDER operational algorithm retrieves AOD at 2 wavelengths (670 and 865 nm) over 30 

ocean and only at 1 wavelength (865 nm) over land. Furthermore over land, the POLDER 31 
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algorithm retrieves only AOD that corresponds to polarized particles, i.e., mainly fine mode 1 

particles originating from anthropogenic activities. 2 

The CALIOP (http://www-calipso.larc.nasa.gov) aerosol product (05kmALay) represents 3 

daytime and nighttime atmospheric curtain slices portraying the vertical distribution of 4 

aerosols and clouds in the atmosphere, including the density and certain properties of 5 

individual aerosol layers (Omar et al., 2009; Winker et al., 2007). 6 

The SeaWiFS (http://disc.sci.gsfc.nasa.gov/dust/) aerosol product (SWDB) uses the Deep 7 

Blue algorithm to derive aerosol optical thickness and Ångström exponent. The key features 8 

of this product are the retrievals of aerosol properties over both bright desert and vegetated 9 

surfaces, avoidance of sun glint that improves aerosol retrievals over ocean, and a highly 10 

precise calibration of the SeaWiFS sensor (Hsu et al., 2004, 2012). 11 

Since each of the foregoing data sets has a few versions because of the periodic revisions and 12 

updates of their retrieval algorithms over time, the data versions that were current at the time 13 

of writing this paper (January 2013) were sampled, although the study has been designed in a 14 

highly flexible way to enable rapid re-analysis as the new versions become available. The 15 

respective data versions used in this paper are: Terra and Aqua MODIS (Collection 051), 16 

MISR (Version 002), OMI (Version 003), CALIOP (Version 3-01), POLDER (Versions L 17 

and K), SeaWiFS (Version 003), and AERONET AOD (Version 2). Therefore, all of the 18 

illustrations and analyses shown in this paper are based on these data versions for the 19 

respective aerosol sensors. 20 

 21 

4 Data Quality Screening 22 

While the AERONET Level-2 data are manually inspected to be free of retrieval defects and 23 

anomalies (Smirnov et al., 2000), such approach is not feasible for the voluminous spaceborne 24 

data. Instead, all Level-2 aerosol products analyzed in this paper assign to AOD pixels one or 25 

more quality assurance (QA) flags that indicate a degree of ‘confidence’ of the retrieval 26 

algorithms in their results. For MODIS and SeaWiFS, aerosol QA flags are integer numbers 27 

ranging from 0 to 3, with 3 representing the highest quality. For MISR and OMI data, the 28 

reverse is the case (i.e., 0 is the highest quality). Finally, for POLDER and CALIOP, QA data 29 

are a combination of one or more flags, most of which are real numbers ranging between 0 30 

and 1, where 1 indicates the highest quality.  By means of these QA flags, certain aerosol 31 
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retrievals are identified as ‘bad quality’ and are considered to be not trustworthy enough for 1 

certain analyses. Therefore, users of these aerosol products have been advised to choose data 2 

corresponding to a range of QA values that is most appropriate for their specific needs.  3 

To establish similar yet valid QA thresholds for the analyzed products, we consulted science 4 

teams of the analyzed products as well as data product validation results reported by these 5 

teams and other research groups. Based on this inquiry, we chose the acceptable QA values as 6 

described in Table 2. For the majority of the products, the thresholds are set based on 7 

selecting a limited subset of the possible QA values. An important exception is the POLDER 8 

aerosol products, where the QA flags are expressed as real numbers between 0 (‘bad 9 

retrieval’) and 1 (‘excellent retrieval’). Since there are no formal recommendations on the 10 

acceptable range of the flag values, we empirically set its threshold to ≥0.7, which selects data 11 

of a reasonable quality yet discards the minimal number of data pixels (see Fig. 3). 12 

The original MAPSS framework was designed to facilitate data analysis experiments based on 13 

different values of QA flags. For this, MAPSS extracts QA flags over the sampling area and 14 

computes the statistical mode for integer QA flags and mean for real QA flags. These 15 

statistical modes of the integer QA flags and means of the real QA flags provide a single 16 

number for the quality assessment of each sample set, and can be used to screen the 17 

corresponding subset statistics while providing a convenient alternative compared to 18 

screening individual pixels, e.g., see (Levy et al., 2010; Remer et al., 2008). However, it was 19 

observed that this approach has an unequal impact on the statistical properties of the different 20 

aerosol products (Petrenko et al., 2012).  21 

As an example, consider Fig. 4, where the global collocated subset mean AOD values from 22 

OMI and Terra MODIS Deep Blue (TMODIS DB) are compared to the corresponding subset 23 

mean AOD values from AERONET. It can be observed that while filtering the mean 24 

TMODIS DB AOD values by the mode of QA flags improves the R2 and RMSE statistics, 25 

when compared to computing the mean values based on individually screened TMODIS DB 26 

AOD pixels, this filtering significantly changes the distribution of the collocated data. 27 

Specifically, compared to screening individual pixels, QA mode filtering removes 50% more 28 

of the collocated data points and degrades the slope of the fitted regression line as a result of 29 

removing certain high-biased points. The opposite behavior can be observed in the collocated 30 

OMI AOD and AERONET AOD datasets, where screening by QA mode degrades R2 of the 31 

collocated data when compared to screening individual pixels, although RMSE is still 32 
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improved and the slope of the fitted regression line remains the same, since both screening 1 

approaches produce approximately the same number of the OMI subset data points.  2 

This observation indicates a certain inhomogeneity in the uncertainties that are present in the 3 

aerosol products, as in some cases high biases in individual pixels might overwhelm the 4 

statistics derived from the sample set. Therefore, to avoid such biases and ensure a fair 5 

comparison between the analyzed aerosol products, the rest of this study is based on the QA 6 

‘pre-filtering’ approach, where individual pixels in a spatial sample are screened by their QA 7 

values before computing the statistics of this sample. This approach also closely models a 8 

typical use of the spaceborne aerosol data, where data users screen each pixel individually and 9 

do not consider QA values of its neighboring pixels. The data quantity impact of the described 10 

QA screening approach can be observed in Table 3 that provides the sizes of the analyzed 11 

datasets before and after the screening. It is noticeable that, depending on the product, the 12 

impact is quite different, with the two MODIS ocean AOD datasets and the MISR AOD 13 

dataset retaining almost all of their available datasets whereas the two MODIS DT datasets 14 

retained only one-fourth of the complete collocated datasets. 15 

It is important however to keep in mind that the QA values reported by the retrieval 16 

algorithms are to a large degree subjective to these algorithms and do not always reflect the 17 

actual quality of the retrievals. For example, in an absence of a proper aerosol or surface 18 

model, an algorithm can in certain cases use a wrong model to retrieve aerosol properties and 19 

mistakenly assign this retrieval a ‘good’ QA flag, e.g., (Kahn et al., 2010a; Levy et al., 2010). 20 

Furthermore, a retrieval algorithm used might not have enough skill or even the possibility to 21 

correctly recognize certain conditions that are unfavorable for aerosol retrieval, e.g., sub-pixel 22 

cloud contamination in OMI retrievals (Torres et al., 1998). In yet another situation, an 23 

aerosol scene can be observed in only a portion of the available observation modes of a 24 

sensor, e.g., in only a few of the available observation directions in POLDER (Herman et al., 25 

1997), which can lead to more confident yet less reliable results. The opposite case can also 26 

be true, where an algorithm correctly retrieves aerosol properties but is not confident about 27 

the retrieval. As an example, consider Fig. 5 that explores how QA screening degrades the 28 

statistics of OMI AOD and Aqua MODIS Deep Blue AOD datasets when compared to 29 

AERONET AOD over Djougou, Benin, as a result of assigning a ‘bad’ QA flag to sufficiently 30 

‘good’ retrievals. 31 

 32 
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5 Possible Data Outliers 1 

Under rare circumstances, aerosol retrievals from spaceborne observations can produce 2 

aerosol properties that do not reflect the actual physical state of aerosol in the atmosphere. 3 

Some of the reasons for such retrievals were discussed in the previous section and might 4 

include, but are not limited to, such factors as the lack of a proper aerosol model, incorrect 5 

assumptions about boundary conditions, cloud contamination, and several other factors. In 6 

Fig. 6, the possible abnormal retrievals can be visually identified by observing points that 7 

have a minimal data density and lie abnormally far from the fitted regression lines. Even 8 

though an actual fraction of such data points in a complete collocated data set can be 9 

relatively minor, the extreme deviations of such points from the overall trend might 10 

significantly bias and misrepresent the overall statistics of the data. Therefore, when 11 

computing the overall statistics and inter-comparing the aerosol products, such data points 12 

should be treated as possible outliers and analyzed separately from the rest of the data. 13 

In order to identify and separate the possible data outliers, we analyzed AOD residuals, i.e., 14 

the difference between spaceborne AOD and AERONET AOD observations, using the 15 

Modified Z-Score test (Iglewicz and Hoaglin, 1993; National Institute of Standards and 16 

Technology, 2012). This test is designed for testing data for multiple outliers in 17 

approximately normal data sets and works by finding data points that differ from the mean 18 

value by more than 5 median absolute deviations. Unlike the standard deviation used in the 19 

traditional Z-Score test, the median absolute deviation in the Modified Z-Score test is 20 

calculated based on the median of the data and is less sensitive to extreme values.  21 

It is pertinent to note that even though AOD data are known to follow the lognormal 22 

distribution (O’Neill et al., 2000), the AOD residuals of the analyzed products follow an 23 

approximately normal distribution as shown in Fig. 7 and Fig. 8, with the exception of the 24 

POLDER products that mostly underestimate AOD, because their retrievals focus on 25 

anthropogenic aerosols, and thus represent only the negative portion of the distribution. In the 26 

figures, it can be seen that the distributions have long tails, strongly indicating a presence of 27 

outliers. Furthermore, it can be observed that the slopes of the fitted lines are different from 28 

the slope of the 1:1 line. This indicates that the standard deviation of the analyzed residuals is 29 

different from 1, showing that these data do not follow the standard normal distribution, 30 

although this difference does not affect the test since the Modified Z-Score test normalizes 31 

residuals by the median absolute deviation of the data. 32 
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The overall effect of removing the possible outliers can be observed in the bottom-right sub-1 

plots of Fig. 6, Fig. 7, and Fig. 8, as highlighted by the green frames, showing that 926 (6.9%) 2 

outliers are removed from the SeaWiFS Ocean AOD dataset. The total numbers of the 3 

removed outliers are provided in Table 3 and do not exceed 12% of the total QA-screened 4 

data for any of the datasets when considering the all-season data. The global distribution of 5 

the possible data outliers is depicted in Fig. 9 and generally corresponds to the outlier 6 

locations reported by the science teams of the aerosol products, e.g., outliers around the 7 

coastal areas where the significant subpixel surface variations, shallow waters, sediments, and 8 

complex marine / inland aerosol mixtures complicate the retrievals, and also data outliers 9 

associated with uncertain retrievals by the MODIS and MISR algorithms in Amazon basin 10 

and near the Sahara desert (Kahn et al., 2010a; Levy et al., 2010), although a more detailed 11 

study is needed to determine the specific factors that lead to these outliers and their spatio-12 

temporal distributions, in order to develop appropriate mitigation measures in the retrieval 13 

algorithms for each of the products. In the remainder of this paper, the reported results are 14 

based on the QA-screened data with the outliers removed. 15 

 16 

6 Analysis 17 

The overall data distribution for the analyzed spaceborne aerosol products is presented in Fig. 18 

6, whereas the detailed linear regression fit statistics (Fox, 1997) for the products based on the 19 

treatment of the possible data outliers and the nominal delimiters of the four boreal seasons, 20 

namely, spring (March-May), summer (June-August), autumn (September-November), and 21 

winter (December to February), are listed in Table 3. The statistics are presented based on a 22 

seasonal timeframes rather than monthly or shorter time periods because there may not be 23 

sufficient coincident data for a scatter plot over such shorter time periods, due to the 24 

infrequency of satellite aerosol retrieval caused by cloud cover and other issues. Fortunately, 25 

many climatic events that are relevant to aerosol emission, transport, and distribution are 26 

often roughly aligned with these seasons.  27 

In the presented statistics, the slope value indicates by how much the satellite retrieval for the 28 

parameter under consideration is relatively underestimated or overestimated across different 29 

magnitudes, depending on whether the slope value is less than or greater than unity. The 30 

offset parameter indicates the extent to which the satellite retrieval is biased. The squared 31 

linear correlation coefficient (R2) indicates how consistent the parameter retrieval is across its 32 
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magnitude range, that is how tightly the points are aligned close to the 1-to-1 line. Finally, the 1 

root mean square error (RMSE) indicates the accuracy of the retrievals measured as the 2 

average error in the spaceborne retrievals as compared to the ground-based AERONET 3 

retrievals. 4 

In Table 3, it can be seen that all MODIS, MISR, and SeaWiFS aerosol products correlate to 5 

AERONET observations with R2≥0.6. Furthermore, MISR, SeaWiFS Land, and MODIS Dark 6 

Target products have R2≥0.7 and MODIS Ocean products have R2≥0.8. Also, once the 7 

possible outliers are removed, the SeaWiFS, MISR, and MODIS Dark Target products reach 8 

R2≥0.8, while the MODIS Deep Blue products exceed R2≥0.7. All the best-performing Land 9 

products have RMSE values of about 0.15 (measured in the same units as AOD), with the 10 

exception of MODIS Deep Blue products that have RMSE of 0.23. Removing possible 11 

outliers improves (reduces) the RMSE of all products by 25%-50%, with the exception of 12 

OMI for which the improvement is the smallest. This indicates an opportunity for 13 

improvement of the aerosol data products by adjusting the retrieval algorithms in the areas 14 

with the highest concentrations of the possible outliers. 15 

Fig. 10 charts the seasonal dependence of R2 and RMSE of the spaceborne products based on 16 

the data in Table 3. While all of the products demonstrate the high seasonal variations in the 17 

statistical parameters, the OMI, CALIOP, POLDER, SeaWiFS, and MODIS Deep Blue are 18 

the most sensitive to the seasonal changes in the retrieval conditions, perhaps because of the 19 

uncertainties associated with cloud screening (Li et al., 2009), although collocating 20 

spaceborne observations with AERONET introduces certain bias towards cloud-free scenes 21 

because of the comprehensive AERONET cloud screening procedures (Smirnov et al., 2000). 22 

Furthermore, it can be seen that while removing the data outliers greatly reduces the RMSE 23 

and removes sensitivity to the seasonal changes in CALIOP, POLDER, and SeaWiFS, the 24 

sensitivity remains the same for OMI and MODIS Deep Blue indicating that the retrieval 25 

errors reflected by the RMSE of these products likely stem from the regular retrievals rather 26 

than the anomalous retrievals. 27 

The accuracy of the spaceborne aerosol products might vary with the location of the retrieval 28 

and, depending on the location, some products might be significantly more accurate than 29 

others. The spatial dependence of the accuracy of the analyzed products is explored in Fig. 11 30 

and Fig. 12, where it can be observed that no single sensor provides the best retrievals at all 31 

sites. Furthermore, as indicated by the lighter shading in Fig. 11 (e.g., Southern Australia) and 32 
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also in the histogram of R2 inset in this figure, some sites are not covered by high-correlation 1 

(i.e., R2≥0.75) retrievals at all or have no collocated retrievals from the most accurate of the 2 

products. 3 

Furthermore, it can be observed that the best-performing aerosol products differ between Fig. 4 

11 and Fig. 12 and the products providing the best RMSE are oftentimes those with the lower 5 

R2. Therefore, when choosing an aerosol product for a specific analysis goal and at a specific 6 

region, it is necessary to consider a balance between a variety of seasonal, statistical, and 7 

spatial factors. 8 

 9 

7 Accuracy of aerosol data products based on land cover type 10 

Aerosol properties are derived from satellite observations based on a set of assumptions about 11 

the type and the optical properties of the underlying terrestrial surfaces. Therefore, it can be 12 

beneficial to compare the accuracy of the considered aerosol data products based on the land 13 

cover types of the sites over which the data subsets were extracted. As a reference for land 14 

cover types and their spatial extent, we used the global data set that is based on the 15 

International Geosphere-Biosphere Programme (IGBP) classification scheme and is available 16 

from the suite of MODIS products (Friedl et al., 2002). For each land cover type, we 17 

identified coincident AERONET stations and averaged their corresponding statistical results 18 

from Section 6. Tables 4 and 5 list the results of this aggregation, while Fig. 13 and Fig. 14 19 

outline these results on a geographical map.  20 

Generally, these aggregated results corroborate the findings of Section 6 and the aerosol 21 

products from MODIS and MISR sensors produce the most accurate results for the majority 22 

of the land cover types, although there are some peculiarities that should be discussed in 23 

greater detail in order to better understand the best areas of application of the analyzed aerosol 24 

products.  25 

Specifically, IGBP water surface locations include 36 AERONET stations out of 154 stations 26 

with collocated ocean retrievals identified in Fig. 2. At these 36 locations, MODIS, MISR, 27 

and SeaWiFS demonstrate the best results with R2≈0.7. Furthermore, POLDER Ocean data 28 

set has a good RMSE=0.08 (Deuzé et al., 1999) that is comparable to the best performing 29 

sensors in this region, albeit it has a relatively low squared correlation coefficient value of 30 

R2=0.55; note that these statistics are different from POLDER Ocean statistics in Fig. 6 that 31 
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analyzes a more complete set of AERONET stations. It is interesting to note that the 1 

correlation between AERONET and Aqua MODIS AOD with R2=0.8 is higher than the 2 

correlation between AERONET and Terra MODIS AOD with R2=0.74. A detailed inspection 3 

of the data showed that this difference stems from several AERONET sites with relatively 4 

small numbers of collocated data points (N<35) and the average AOD below 0.2. Under such 5 

low-AOD conditions, MODIS Ocean algorithm has difficulty in retrieving the precise AOD 6 

values and, as a result, is subject to an increased rate of errors (Kleidman et al., 2005; Remer, 7 

2002). 8 

Evergreen broadleaf forest regions provide conditions that are favorable for retrieving AOD 9 

and multiple sensors demonstrate the high correlation with AERONET, including MODIS 10 

Dark Target with R2=0.85, MISR with R2=0.89, SeaWiFS with R2=0.94, and POLDER with 11 

R2=0.7. However, since these regions are also susceptible to complex smoke events (e.g., Ji 12 

Parana, Brazil), sometimes combined with dust and pollution events (e.g., Anmyon, S. Korea, 13 

Hong Kong, China), most of the sensors demonstrate a rather poor RMSE (Hyer et al., 2011). 14 

The important exception is POLDER dataset that has RMSE=0.07, possibly because 15 

POLDER is especially sensitive to small particles produced by biomass burning and 16 

anthropogenic pollution sources (Fan et al., 2008), thereby retrieving fairly accurate AOD 17 

values at Ji Parana and Lulin, Taiwan. It should be also noted that together with deciduous 18 

broadleaf forests and savannas, evergreen broadleaf forest is one of the 3 land cover types 19 

where POLDER demonstrates very good results with R2≈0.7, indicating the advantage of 20 

polarization measurements for aerosol retrievals over these regions.  21 

For mixed forests, MODIS Dark Target products provide the highest retrieval accuracy with 22 

R2=0.78 for Terra and 0.82 for Aqua, while MISR data is somewhat less accurate with R2=0.7 23 

as a result of underestimating high AODs during summertime biomass burning events (Kahn 24 

et al., 2010b), although RMSE=0.04 of MISR is almost a factor of two better than 25 

RMSE=0.08 of Terra MODIS and RMSE=0.07 of Aqua MODIS. Sufficiently reliable aerosol 26 

data are also retrieved by SeaWiFS with R2=0.69 and by POLDER with R2=0.65. 27 

For closed shrubland, CALIOP with R2=0.88 MISR with R2=0.81, and MODIS Deep Blue 28 

with R2=0.74 for Terra and R2=0.85 for Aqua produce the best results. Although MODIS 29 

Deep Blue shows a better performance than MODIS Dark Target for this land-cover type, the 30 

Deep Blue products are retrieved only over a single Lake Argyle AERONET site in northern 31 

Australia, whereas Dark Target products are retrieved over 7 sites and have a significantly 32 
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larger number of data points. Likewise, the best result demonstrated by CALIOP also 1 

originates exclusively from the Lake Argyle retrievals. The difference of 0.1 in R2 between 2 

MODIS Terra Deep Blue and MODIS Aqua Deep Blue can be partly explained by the 3 

difference in the data availability of these two data sets, as MODIS Terra Deep Blue at the 4 

time of this work is availably only through 2007; this effect can be also observed for several 5 

other land cover types, where MODIS Aqua Deep Blue tends to have a lower correlation to 6 

AERONET and produces results that are closer to the results of SeaWiFS, probably because 7 

the latter is also based on the Deep Blue retrieval algorithm (Hsu et al., 2006). 8 

Over wooded savannas, both Dark Target and Deep Blue products from MODIS, and 9 

SeaWiFS produce very good results with R2≈0.85. MISR with R2=0.63 and OMI with 10 

R2=0.66 produce lower, but still reasonable results. The reduced performance of MISR in this 11 

region can be explained by the lack of region-specific aerosol mixtures in its retrieval 12 

algorithm, a situation that is expected to be improved in future revisions of the product (Kahn 13 

et al., 2009). It should be also noted that this region enables the highest correlation between 14 

OMI and AERONET observations, probably as a result of favorable cloud-free conditions in 15 

sub-Saharan Africa (Ahn et al., 2008; Torres et al., 2007). 16 

Open shrublands are very dry and sparsely vegetated regions that are characterized by bright 17 

surfaces. Such regions present a great challenge for remote retrieval of aerosol properties 18 

(Kahn et al., 2009) and none of the analyzed products exceeded the correlation coefficient of 19 

0.7. Among the best-performing products, CALIOP produced the best results with R2=0.68, 20 

closely followed by MODIS Dark Target with R2=0.67 for Terra and R2=0.62 for Aqua, 21 

MISR with R2=0.64, and MODIS Deep Blue with R2=0.52 for Terra and R2=0.65 for Aqua. It 22 

should be noted that open shrublands and closed shrublands are the two areas where CALIOP 23 

outperforms other sensors, possibly indicating the advantage of active aerosol sensing over 24 

these bright-surface regions. 25 

Similar to open shrublands, grasslands were challenging to all of the sensors, where Terra 26 

MODIS Deep Blue with R2=0.73 and MISR with R2=0.7 demonstrated the best results. Even 27 

more challenging were snow and ice and also barren or sparsely vegetated areas, where 28 

MISR was the only highly accurate aerosol product with R2=0.83 for snow / ice and R2=0.78 29 

for barren lands, thanks to its multi-angle measurement capabilities that allow retrieving 30 

aerosol properties over bright surfaces and enable the advanced cloud and ice detection 31 

capabilities (Kahn et al., 2009).  32 
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 1 

8 Conclusions 2 

In this paper, we analyzed and intercompared 11 spaceborne aerosol products from MODIS, 3 

MISR, OMI, SeaWiFS, POLDER, and CALIOP sensors, which were sampled fairly 4 

uniformly based on the MAPSS framework that was used to collocate these spaceborne 5 

observations with ground-based AERONET observations during the period of 2006-06-07 6 

and 2010-12-11, when all the sensors were operational. Based on this analysis, for each of the 7 

AERONET stations, we identified products providing the best correlation coefficient (R2) and 8 

root mean square error (RMSE). It was found that no single product provides the best retrieval 9 

over all sites, and certain sites are not covered by accurate retrievals at all. Furthermore, it was 10 

observed that a product providing the best R2 at a certain location does not always provide the 11 

best RMSE at the same location. Therefore, to facilitate the multivariate analysis that is 12 

necessary when choosing the most suitable spaceborne aerosol product at a specific region, 13 

we plan to develop an interactive tool that would allow exploration of the multi-sensor 14 

collocated data on an interactive map. 15 

Further, a statistical approach based on the statistical Modified Z-Score test has been used to 16 

automatically identify possible data outliers in collocated data sets. The reported analysis 17 

shows that even though such atypical data points constitute a relatively minor portion (3%-18 

12%) of the analyzed data sets, they can significantly bias the results of the statistical 19 

analysis. For this reason, it is suggested that such data points be set aside when analyzing 20 

collocated data sets and inspected separately. 21 

Finally, we assessed the accuracy of the spaceborne aerosol products based on IGBP land 22 

cover classification scheme. This analysis identified sensors that retrieve the most accurate 23 

aerosol properties over each of the defined land cover types and highlighted the differences 24 

that exists between the sensors, providing an advantage or disadvantage in retrieving AOD 25 

over the areas of a particular land cover type. Notably, some of the land cover types, 26 

including open shrublands and grasslands, had only moderately accurate retrievals, indicating 27 

the need for improved spaceborne aerosol remote sensing instrumentation/approaches and/or 28 

retrieval algorithms. 29 
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Table 1. Ground-based and spaceborne atmospheric aerosol products analyzed in the study. In 1 

the product designation titles, ‘O’ at the end of the title of a product signifies ocean retrievals, 2 

‘L’ – land retrievals, ‘DT’ – land retrievals using the MODIS Dark Target algorithm, and 3 

‘DB’ – land retrievals using the MODIS Deep Blue algorithm. The AERONET AOD 4 

retrievals were interpolated or extrapolated to the studied wavelengths of the spaceborne 5 

sensors. The indicated local equatorial crossing times are based on the original orbital 6 

designs, and can change during the lifetimes of the satellites. SeaWiFS mission has ended in 7 

December 2010. 8 

Sensor Platform Product Designation in 
the study 

Study 
Wave- 
length 

Spatial 
Resolution 
(km x km) 

Equator 
crossing 
time 

Launch 
date 

AERONET N/A AOT AERONET Varies N/A N/AVaries 
MODIS Terra 

 
 
Aqua 

MOD04 
 
 
MYD04 

TMODIS DT 
TMODIS DB 
TMODIS O 
AMODIS DT 
AMODIS DB 
AMODIS O 

550nm 10x10 10:30 am

1:30 pm

Jan’00 
 
 
Jul’02 

MISR Terra MIL2ASAE MISR 558nm 17.6x17.6 10:30 amJan’00 
OMI Aura OMAERUV OMI 388nm 13.7x23.7 1:38 pmOct’04 
POLDER PARASOL P3L2TLGC  

P3L2TOGC 
POLDER3 L 
POLDER3 O 

865nm 
670nm 

19x19 1:30 pmMar’05 

CALIOP CALIPSO 05kmALay CALIOP 532nm 5x0.1 1:32 pmJun’06 
SeaWiFS SeaStar SWDB SeaWiFS L 

SeaWiFS O 
550nm 13.5x13.5 12:00 pmJan’98 

 9 
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Table 2. Studied aerosol data sets, the matching data quality (QA) data sets, and the 1 

corresponding QA data screening criteria. Where provided, numbers in parenthesis in the 2 

middle column indicate the base-1 layer index, base-0 bit number, and number of bits 3 

extracted from this QA data set. For MODIS, MISR, OMI, and SeaWiFS the QA values are 4 

integer numbers between 0 and 3, where for MODIS and SeaWiFS larger numbers indicate a 5 

better retrieval quality and for OMI and MISR the opposite is true. For POLDER, QA is real 6 

number between 0 (worst) and 1 (best). For CALIOP, the QA condition is applied to all layers 7 

found in a column; the whole column is rejected if at least one layer fails the test. The listed 8 

extinction QC values indicate retrievals that are unconstrained, constrained, have a reduced 9 

lidar ratio, or detected an opaque aerosol layer. CAD score and layer type and subtype flags 10 

indicate retrievals that classified a layer with a high confidence as containing aerosol and 11 

were able to determine the aerosol type. IAB condition is set to prevent the retrieval anomaly 12 

of overcorrecting the attenuation of overlaying layers (Kittaka et al., 2011). 13 

AOD data set QA data set  
(layer / starting bit /number of bits) QA condition 

MODIS   
Corrected_Optical_Depth_Land Quality_Assurance_Land  (1/1/3) QA=3  
Deep_Blue_Aerosol_Optical 
                _Depth_550_Land 

Quality_Assurance_Land  (5/1/2) QA=3  

Effective_Optical_Depth 
             _Average_Ocean 

Quality_Assurance_Ocean (1/5/3) QA=[1,2,3]  

MISR   
RegBestEstimateSpectralOptDepth RegBestEstimateQA QA=[0,1] 
OMI   
FinalAerosolOpticalDepth FinalAlgorithmFlags QA=0 
SeaWiFS   
aerosol_optical_thickness_550_land aerosol_optical_thickness 

     _confidence_flag_land 
QA=3 

aerosol_optical_thickness_550_ocean 
CALIOP 

aerosol_optical_thickness 
   _confidence_flag_ocean 

QA=[2,3] 

Column_Optical_Depth_Aerosols_532 ExtinctionQC_[532 and 1064] QA=[0,1,2,16,18] 
 CAD_Score -100≤CAD<-20 
 Feature_Classification_Flags (1/0/3) 

Feature_Classification_Flags (1/9/3) 
Layer type=3 
Layer subtype>0 

 Integrated_Attenuated 
        _Backscatter_[532 and 1064] 

IAB<=0.01 

POLDER   
Aerosol optical thickness at 865nm 
corresponding to the polarized particles 

Quality index for the inversion QA≥0.7 

Aerosol Optical Thickness at 670 nm Quality index for the inversion QA≥0.7 
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Table 3. Statistics of the studied aerosol data sets based on all AERONET stations during the 1 

period of 2006-06-07 and 2010-12-11. ‘Ntot’ indicates the total number of the collocated 2 

Spaceborne AOD - AERONET AOD data points, while ‘Nfilt’ indicates the number of data 3 

points after filtering (screening) the spaceborne data by QA as described in Section 4 and 4 

Table 2. ‘Nout’ is the total number of the possible data outliers determined as explained in 5 

Section 5. The last 8 columns present the statistics on the collocated data based on regression 6 

fits also plotted in Fig. 6. 7 

Complete data Outliers removed Dataset Nfilt Nfilt
/Ntot 
(%) 

Nout Nfilt/ 
Nout 
(%) R2 RMSE Slope Intercept R2 RMSE Slope Intercept 

All seasons 
TMODIS DT 56803 72.9 1711 3.0 0.79 0.11 0.96 0.01 0.83 0.08 0.95 0.00 
TMODIS DB 4431 32.2 274 6.2 0.63 0.23 0.87 0.06 0.73 0.14 0.88 0.04 
TMODIS O 17243 99.7 703 4.1 0.82 0.08 1.02 0.03 0.88 0.05 0.96 0.03 
AMODIS DT 48555 68.6 1880 3.9 0.78 0.11 0.97 0.01 0.83 0.08 0.97 0.01 
AMODIS DB 13544 33.9 973 7.2 0.63 0.23 0.88 0.06 0.77 0.14 0.9 0.03 
AMODIS O 17790 99.6 844 4.7 0.8 0.08 0.94 0.03 0.87 0.05 0.93 0.03 
MISR 16561 99.9 959 5.8 0.73 0.13 0.61 0.07 0.84 0.06 0.85 0.03 
OMI 52498 95.6 2009 3.8 0.4 0.25 0.72 0.17 0.51 0.19 0.76 0.14 
CALIOP 1885 92.4 158 8.4 0.34 0.23 0.49 0.07 0.66 0.11 0.78 0.00 
POLDER3 L 31874 86.4 3837 12 0.27 0.21 0.17 0.02 0.57 0.08 0.5 -0.01 
POLDER3 O 5400 59.8 518 9.6 0.39 0.16 0.25 0.03 0.6 0.07 0.57 0.00 
SeaWiFS L 18305 43.3 1038 5.7 0.75 0.13 0.74 0.04 0.82 0.08 0.88 0.01 
SeaWiFS O 13333 82.6 926 6.9 0.65 0.12 0.99 0.03 0.81 0.06 0.92 0.02 

Fall 
TMODIS DT 15586 72.2 466 3.0 0.83 0.11 1.02 -0.01 0.86 0.07 0.94 0.00 
TMODIS DB 1422 29.6 60 4.2 0.48 0.19 0.91 0.03 0.58 0.13 0.86 0.03 
TMODIS O 5120 99.6 184 3.6 0.79 0.07 0.91 0.03 0.86 0.05 0.95 0.03 
AMODIS DT 12659 65.9 494 3.9 0.82 0.1 1.03 -0.01 0.86 0.07 0.96 0.00 
AMODIS DB 3927 32.4 258 6.6 0.59 0.2 0.97 0.02 0.74 0.12 0.9 0.01 
AMODIS O 5135 99.6 271 5.3 0.74 0.07 0.79 0.04 0.86 0.04 0.9 0.02 
MISR 4466 99.8 286 6.4 0.7 0.14 0.54 0.07 0.84 0.05 0.83 0.03 
OMI 13909 94.1 661 4.8 0.33 0.22 0.65 0.15 0.48 0.16 0.72 0.11 
CALIOP 529 92.6 44 8.3 0.32 0.24 0.51 0.08 0.66 0.10 0.79 0.00 
POLDER3 L 9926 86.3 1050 10.6 0.43 0.14 0.33 0.00 0.67 0.07 0.62 -0.02 
POLDER3 O 1393 56.8 99 7.1 0.48 0.12 0.31 0.02 0.6 0.07 0.57 -0.01 
SeaWiFS L 5795 47.5 306 5.3 0.81 0.1 0.79 0.02 0.85 0.07 0.89 0.01 
SeaWiFS O 3665 82.4 277 7.6 0.61 0.12 0.94 0.03 0.81 0.06 0.89 0.02 
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Table 3 (continued)  1 

Complete data Outliers removed Dataset Nfilt Nfilt
/Ntot 
(%) 

Nout Nfilt/ 
Nout 
(%) 

R2 RMSE Slope Intercept R2 RMSE Slope Intercept 

Winter 
TMODIS DT 6229 64.4 253 4.1 0.79 0.11 0.76 0.03 0.84 0.08 0.86 0.02 
TMODIS DB 826 37.0 82 9.9 0.65 0.23 0.9 0.08 0.81 0.13 0.9 0.05 
TMODIS O 3297 99.8 140 4.2 0.72 0.09 0.98 0.03 0.87 0.05 0.93 0.03 
AMODIS DT 4945 58.6 238 4.8 0.78 0.13 0.77 0.03 0.83 0.09 0.88 0.02 
AMODIS DB 3052 39.9 278 9.1 0.62 0.21 0.84 0.06 0.81 0.12 0.91 0.02 
AMODIS O 3319 99.5 183 5.5 0.74 0.08 0.84 0.03 0.84 0.04 0.92 0.02 
MISR 2701 99.9 179 6.6 0.75 0.11 0.54 0.06 0.82 0.05 0.77 0.04 
OMI 8569 93.9 279 3.3 0.44 0.24 0.63 0.17 0.53 0.19 0.69 0.14 
CALIOP 313 91.3 29 9.3 0.43 0.25 0.37 0.09 0.71 0.10 0.72 0.02 
POLDER3 L 4954 87.1 488 9.9 0.35 0.21 0.15 0.02 0.56 0.08 0.4 0.00 
POLDER3 O 792 57.4 45 5.7 0.54 0.11 0.39 0.01 0.59 0.08 0.54 -0.01 
SeaWiFS L 3063 46.1 163 5.3 0.69 0.15 0.65 0.05 0.76 0.1 0.8 0.03 
SeaWiFS O 1917 81.6 137 7.1 0.57 0.12 0.89 0.05 0.75 0.07 0.84 0.03 

Spring 
TMODIS DT 12990 74.0 505 3.9 0.79 0.11 0.92 0.03 0.85 0.08 0.96 0.01 
TMODIS DB 746 34.4 33 4.4 0.65 0.3 0.78 0.12 0.69 0.21 0.84 0.07 
TMODIS O 3464 99.7 130 3.8 0.85 0.09 1.05 0.03 0.88 0.06 0.97 0.04 
AMODIS DT 11266 70.7 511 4.5 0.78 0.12 0.96 0.03 0.84 0.08 0.97 0.02 
AMODIS DB 3079 35.6 163 5.3 0.63 0.27 0.83 0.09 0.73 0.19 0.86 0.06 
AMODIS O 3625 99.8 160 4.4 0.81 0.09 0.99 0.03 0.87 0.06 0.92 0.04 
MISR 4016 99.9 260 6.5 0.76 0.13 0.64 0.08 0.86 0.06 0.86 0.04 
OMI 12170 96.5 446 3.7 0.45 0.29 0.77 0.18 0.55 0.22 0.79 0.15 
CALIOP 439 93.2 41 9.3 0.37 0.25 0.56 0.05 0.71 0.12 0.81 -0.02 
POLDER3 L 7809 87.9 1170 15 0.25 0.27 0.11 0.02 0.52 0.10 0.4 -0.01 
POLDER3 O 1443 61.7 162 11.2 0.38 0.18 0.24 0.04 0.56 0.09 0.52 0.00 
SeaWiFS L 4345 45.4 306 7.0 0.78 0.15 0.76 0.05 0.87 0.09 0.91 0.02 
SeaWiFS O 3038 82.2 221 7.3 0.68 0.15 1.05 0.02 0.83 0.07 0.95 0.02 

Summer 
TMODIS DT 21998 75.6 519 2.4 0.76 0.1 1.01 0.00 0.78 0.08 0.98 0.00 
TMODIS DB 1437 31.5 91 6.3 0.65 0.24 0.91 0.04 0.77 0.14 0.90 0.02 
TMODIS O 5362 99.6 247 4.6 0.84 0.09 1.06 0.02 0.89 0.06 0.98 0.03 
AMODIS DT 19685 72.3 551 2.8 0.76 0.1 1.05 0.01 0.79 0.08 1.00 0.01 
AMODIS DB 3486 30.1 228 6.5 0.62 0.24 0.90 0.06 0.74 0.15 0.91 0.04 
AMODIS O 5711 99.5 276 4.8 0.84 0.08 1.00 0.02 0.88 0.05 0.95 0.02 
MISR 5378 99.9 222 4.1 0.73 0.13 0.64 0.07 0.83 0.06 0.86 0.03 
OMI 17850 97.1 542 3.0 0.35 0.25 0.73 0.18 0.45 0.2 0.76 0.15 
CALIOP 604 92.1 40 6.6 0.33 0.18 0.52 0.05 0.6 0.11 0.76 0.00 
POLDER3 L 9185 84.9 1125 12.2 0.22 0.19 0.15 0.02 0.53 0.07 0.52 -0.01 
POLDER3 O 1772 62.0 192 10.8 0.32 0.17 0.20 0.04 0.6 0.07 0.59 0.00 
SeaWiFS L 5102 36.9 243 4.8 0.67 0.13 0.70 0.04 0.75 0.08 0.85 0.01 
SeaWiFS O 4713 83.4 286 6.1 0.68 0.11 1.00 0.03 0.82 0.06 0.93 0.02 
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Table 4. Linear fit correlation coefficient (R2) between the collocated spaceborne and ground-1 

based observations of AOD estimated at the stations that coincide with different IGBP land 2 

cover types. Empty cells indicate no collocated data available from a specific sensor over a 3 

specific land cover type. No AERONET stations are available at the areas occupied by 4 

Deciduous needleleaf forest. The statistics were calculated based on the data that was pre-5 

filtered by QA and screened of outliers as described in Sections 4 and Section 5. A graphical 6 

representation of this table is in Figure 13. 7 
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Water   0.74   0.80 0.72 0.39 0.59  0.55  0.68 
Evergreen 
needleleaf 
forest 

0.78    0.79 0.71   0.74 0.33 0.59 0.55   0.66  

Evergreen 
broadleaf 
forest 

0.85 1.00   0.85    0.89 0.53 0.17 0.70   0.94  

Deciduous 
broadleaf 
forest 

0.84    0.87    0.84 0.55 0.27 0.70   0.84  

Mixed forests 0.78    0.82    0.70 0.42 0.61 0.65   0.69  
Closed 
shrubland 

0.51 0.74   0.63 0.85   0.81 0.50 0.88 0.33   0.65  

Open 
shrublands 

0.67 0.52  0.62 0.65  0.64 0.31 0.68 0.32  0.54  

Woody 
savannas 

0.83 0.91   0.86 0.86   0.63 0.66 0.34 0.54   0.79  

Savannas 0.73 0.69   0.80 0.67   0.75 0.53 0.59 0.67   0.78  
Grasslands 0.56 0.73   0.67 0.43   0.70 0.48 0.40 0.44   0.55  
Permanent 
wetlands 

0.74    0.76    0.77 0.31 0.54 0.39   0.02  

Croplands 0.78 0.72   0.78 0.62   0.80 0.47 0.56 0.49   0.68  
Urban and 
built-up 

0.70 0.64   0.70 0.59   0.76 0.43 0.51 0.44   0.62  

Cropland / 
natural veget. 
mosaic 

0.77    0.79 0.49   0.83 0.54 0.46 0.56   0.72  

Snow and ice 0.26    0.27    0.83  0.03 0.53     
Barren or 
sparsely 
vegetated 

0.60 0.57   0.62 0.34   0.78 0.29 0.58 0.33   0.36  
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Table 5. Root mean square error (RMSE) between the collocated spaceborne and ground-1 

based observations of AOD estimated at the stations that coincide with different IGBP land 2 

cover types. Empty cells indicate no collocated data available from a specific sensor over a 3 

specific land cover type. No AERONET stations are available at the areas occupied by 4 

Deciduous needleleaf forest. The statistics were calculated based on the data that was pre-5 

filtered by QA and screened of outliers as described in Sections 4 and Section 5. A graphical 6 

representation of this table is in Figure 14. 7 
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Closed 
shrubland 

0.09 0.05   0.08 0.05   0.06 0.18 0.04 0.09   0.06  
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shrublands 

0.10 0.10   0.09 0.14   0.08 0.23 0.11 0.13   0.08  
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savannas 

0.08 0.27   0.09 0.23   0.09 0.24 0.18 0.15   0.08  

Savannas 0.11 0.17   0.10 0.17   0.08 0.27 0.12 0.12   0.14  
Grasslands 0.10 0.18   0.09 0.15   0.05 0.20 0.12 0.10   0.08  
Permanent 
wetlands 

0.07    0.06    0.06 0.17 0.11 0.09   0.13  

Croplands 0.08 0.16   0.09 0.22   0.08 0.19 0.16 0.11   0.09  
Urban and 
built-up 

0.09 0.13   0.09 0.16   0.07 0.21 0.13 0.10   0.10  

Cropland / 
natural veget. 
mosaic 

0.07    0.08 0.19   0.10 0.14 0.20 0.09   0.11  

Snow and ice 0.11    0.14    0.02  0.10 0.02     
Barren or 
sparsely 
vegetated 

0.11 0.16   0.12 0.11   0.06 0.39 0.11 0.12   0.11  

 8 
9 
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 1 
Figure 1. Periods of operation of major past and current aerosol-measuring satellite sensors. 2 

The pair of dotted vertical lines marks the ‘golden’ period (between the start of CALIOP in 3 

July 2006 and the end of SeaWiFS in December 2010) when as many as seven of these 4 

sensors were measuring aerosols concurrently. The golden period was used as the base for the 5 

studies reported in the rest of this paper. 6 

7 
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Figure 2. Distribution of AERONET stations used in the study. Green, red, and yellow colors 2 

indicate stations that can be classified as land only (226 sites), ocean only (12 sites), or both 3 

land and ocean (142 sites), respectively. The classification was established based on data 4 

availability in separate over-land and over-ocean datasets in MODIS, SeaWiFS, and 5 

POLDER aerosol products. Gray color indicates stations that do not have any collocated data 6 

for the studied period of time. 7 

8 
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Figure 3. The total quantities of POLDER3 Land (‘L’) and Ocean (‘O’) pixels based on 3 

different values of ‘Quality of Inversion’ flag during the analyzed period of July 2006 -4

December 2010. The ‘POLDER3 O (extended)’ histogram is based on those pixels in Ocean 5 

retrievals, where the retrieval algorithm considered the sensor viewing geometry conditions to 6 

be especially ‘favorable’ and produced a set of additional aerosol parameters, such as 7 

spherical large-mode AOD, Refractive Index of fine mode, and others. The quality flag values 8 

are binned into 0.01 intervals and the red line indicate the 0.7 QA threshold used in this study. 9 

10 
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Figure 4. Effects of two different data QA filtering schemes on the accuracy of the global 3 

collocated spaceborne AOD, as discussed in Section 4. AERONET AOD data are shown on 4 

the X-axes, while AOD measured by spaceborne sensors are on the Y-axes. Color of each 5 

data point indicates the percentage of all data points that fall within 0.05 AOD of this point (in 6 

Cartesian coordinates). Left column displays the original unfiltered data with all QA values. 7 

Middle column displays the data pre-filtered by QA, where individual pixels in each data 8 

sample were filtered based on their QA values before calculating the mean value of the 9 

sample. Right column shows the data post-filtered by QA, where the mean of each sample 10 

was calculated based on all pixels in the sample; after this, the whole sample was rejected if at 11 

least half of the pixels in the sample had QA values below the specified threshold. Note that 12 

OMI data have better properties when pre-filtered, while Terra MODIS – Deep Blue data are 13 

in a better agreement with AERONET AOD when pos-filtered. 14 

15 
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Figure 5. Impact of QA screening on the statistical properties of AOD retrieved by different 1 

sensors over Djougou, Benin. The top part of the figure shows scatter plots of 2 years of data 2 

that is unfiltered (left) or pre-filtered (right) by QA. It can be observed that while filtering 3 

improved the properties of certain datasets, it degraded the properties of the others, 4 

particularly Aqua MODIS Deep Blue and OMI. This effect can be partially explained by 5 

observing that the retrieval algorithms can mistakenly assign bad QA to pixels with good 6 

retrievals, as demonstrated in a high-AOD event in the bottom part of the picture, e.g., see 7 

AMODIS DB on Dec. 11 and Dec 19.  8 
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Figure 6. Regression fits of AERONET AOD (x-axes) to AOD measured by spaceborne 2 

sensors (y-axes). Satellite data were pre-screened by QA as explained in Section 4. The color 3 

of each data point indicates the percentage of all data points on the plot that fall within 0.05 4 

AOD of this point (in Cartesian coordinates). Scatter plot in the green frame demonstrates the 5 

results of the possible data outlier detection and removal procedure described in Section 5. 6 



 39 

 1 

Figure 7. Distribution of the difference (residuals) between Spaceborne AOD and AERONET 2 

AOD. Satellite data were pre-screened by QA as explained in Section 4. In each histogram, 3 

the data are split into equal-length bins of 0.05 AOD. The red vertical line indicates the 4 

residual of 0 AOD, while the blue lines mark minimum and maximum residuals of each 5 

distribution. Histogram in the green frame demonstrates the results of the possible data outlier 6 

detection and removal procedure described in Section 5. 7 

8 
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 1 
Figure 8. Normality of the difference between Spaceborne AOD and AERONET AOD. In 2 

each plot, points closely following the blue fitted line indicate the data that are approximately 3 

normally distributed. Curvatures around the center of the straight line represent the departure 4 

from the normality and indicate a presence of possible outliers, particularly at the tails of the 5 

distributions. The difference in the slope and offset of the fitted blue line from the gray 1:1 6 

line indicates a deviation from the standard location (i.e., mean=0) and scale (i.e., standard 7 

deviation=1) of the normal distribution. Satellite data were pre-screened by QA as explained 8 

in Section 4. Plot in the green frame demonstrates the results of the possible data outlier 9 

detection and removal procedure described in Section 5. 10 

11 
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Figure 9. Distribution of the possible data outliers for the studied spaceborne aerosol data sets. 3 

Displayed values are percentages from all outliers detected for each of the data sets as listed 4 

in the 4th column of Table 3. Stations with less than 1% from the total number of outliers are 5 

not shown. The statistical technique for detection and removal of the possible data outliers is 6 

described in Section 5. 7 

8 
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Figure 10. Seasonal dependence of squared linear fit correlation coefficient (R2) and root 1 

mean square error (RMSE) statistics between the collocated spaceborne and ground-based 2 

(AERONET) observations of AOD, based on the data in Table 3. 3 
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Figure 11. Spaceborne datasets with the best correlation (R2) of the retrieved AOD to the 3 

AOD measured by inland (top) and coastal or island-based (bottom) AERONET sites. The 4 

intensity of marker shading indicates the degree of correlation. Marker shape indicates the 5 

range of root mean square error (RMSE) associated with the displayed best R2. Finally, 6 

marker size corresponds to the number of collocated data points used to compute the 7 

displayed statistics. Histograms in the bottom insets highlight the distribution of these 8 

statistics over all sites based on bins of 0.05 AOD. The statistics were calculated based on the 9 

data that were pre-filtered by QA and screened of outliers as described in Sections 4 and 10 

Section 5. 11 
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Figure 12. Spaceborne datasets with the best root mean square error (RMSE) of the retrieved 3 

AOD to the AOD measured by inland (top) and coastal or island-based (bottom) AERONET 4 

sites. The symbols used are the same as the symbols in Figure 7. The statistics were calculated 5 

based on the data that were pre-filtered by QA and screened of outliers as described in 6 

Sections 4 and Section 5. 7 

8 
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Figure 13. Land cover type dependence of squared linear fit correlation coefficient (R2) 2 

between the collocated spaceborne and ground-based (AERONET) observations of AOD. 3 

Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on 4 

the average of the data from those AERONET sites that reside in these areas. The statistics 5 

were calculated based on data that were pre-filtered by QA and screened of outliers as 6 

described in Sections 4 and Section 5. 7 

8 
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Figure 14. Land cover type dependence of root mean square error (RMSE) between the 3 

collocated spaceborne and ground-based (AERONET) observations of AOD. Areas 4 

corresponding to each IGBP land cover type (bottom right inset) are colored based on the 5 

average of the data from those AERONET sites that reside in these areas. The statistics were 6 

calculated based on the data that were pre-filtered by QA and screened of outliers as described 7 

in Sections 4 and Section 5. 8 


