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ABSTRACT

We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 μm. This extremely inflated hot
Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has
been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths,
thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined
with the planet’s previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo
and very poor day–night heat redistribution. The transit depths in the mid-infrared—(Rp/R∗)2 = 0.0123(3) and
0.0111(3) at 3.6 and 4.5 μm, respectively—indicate that the atmospheric opacity is greater at 3.6 than at 4.5 μm,
in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent
with previous studies: Fday/F∗ = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 μm, respectively. We do not detect
ellipsoidal variations at 3.6 μm, but our parameter uncertainties—estimated via prayer-bead Monte Carlo—keep
this non-detection consistent with model predictions. At 4.5 μm, on the other hand, we detect ellipsoidal variations
that are much stronger than predicted. If interpreted as a geometric effect due to the planet’s elongated shape,
these variations imply a 3:2 ratio for the planet’s longest:shortest axes and a relatively bright day–night terminator.
If we instead presume that the 4.5 μm ellipsoidal variations are due to uncorrected systematic noise and we fix
the amplitude of the variations to zero, the best-fit 4.5 μm transit depth becomes commensurate with the 3.6 μm
depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short
scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 μm eclipse depth,
consistent with a solar composition and modest temperature inversion. We suggest future observations that could
distinguish between these two scenarios.
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1. INTRODUCTION

Thermal phase variations are a powerful way to constrain
the climate on exoplanets. Such observations have been made
for non-transiting short-period planets (Cowan et al. 2007;
Crossfield et al. 2010), but are most potent when combined with
transit and eclipse observations for edge-on systems, because
of the additional knowledge of the planet’s inclination, mass,
and radius (Knutson et al. 2007, 2009a, 2009b). Secondary
eclipse depths provide a constraint on the planet’s dayside
temperature. Thermal phase variations probe the day–night
temperature contrast and hence the planet’s heat redistribution
efficiency. If the observational cadence and signal-to-noise ratio
are sufficiently high, phase variations are also sensitive to the
offset between the noon meridian and the planet’s hottest local
stellar time, hence constraining wind speed and direction.

By considering eclipse depths at a variety of wavelengths
for a sample of 24 transiting planets, Cowan & Agol (2011b)
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estimated their dayside effective temperatures, hence placing
a joint constraint on the Bond albedo and heat recirculation
efficiency of these planets. That study found that typical hot
Jupiters exhibit a variety of albedo/recirculation efficiencies,
but planets with sub-stellar equilibrium temperatures greater
than T0 ≈ 2700 K all seem to have lower albedo and/or
recirculation efficiency. In other words, the hottest transiting
giant planets have a qualitatively different climate than the
merely hot Jupiters, but it is not known whether this is due to a
difference in albedo, circulation, or both. Direct measurements
of hot Jupiter geometric albedos from optical secondary eclipse
observations span more than an order of magnitude and do not
resolve this degeneracy.

In this paper, we break the albedo-recirculation degeneracy
for WASP-12b (Hebb et al. 2009), one of the very hottest
known exoplanets, with a dayside temperature of ∼3000 K:
the amplitude of thermal phase variations is a direct measure
of the planet’s day–night temperature contrast and hence heat
transport efficiency. If the nightside temperature is high, then the
planet’s albedo must be exceedingly low to be consistent with
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its high dayside temperature. If, on the other hand, the nightside
temperature is low, then the planet has an albedo in the tens of
percent.

WASP-12b has been a fascinating planet since its discovery.
The discrepant timing of its secondary eclipse indicated that
the planet had a slight eccentricity (López-Morales et al. 2010),
but subsequent eclipse (Campo et al. 2011; Croll et al. 2011)
and radial velocity (Husnoo et al. 2011) observations have all
but ruled this out. Nevertheless, the planet’s short-period orbit
(1.1 days; just outside its star’s Roche limit) and inflated radius
(1.8 RJ) led to the prediction that it is tidally distorted (Ragozzine
& Wolf 2009; Leconte et al. 2011; Budaj 2011), and undergoing
Roche lobe overflow followed by accretion onto its host star
(Li et al. 2010; Lai et al. 2010). The putative early ingress of
an ultraviolet transit observed by Fossati et al. (2010) seems
to support this prediction, but may also be explained in terms
of a leading bow shock from material streaming off the planet
(Vidotto et al. 2010; Llama et al. 2011).

More recently, Madhusudhan et al. (2011) used the wave-
length dependance of mid-infrared eclipse depths of Croll et al.
(2011) and Campo et al. (2011) to constrain the atmospheric
composition of WASP-12b, and found it has a carbon to oxygen
ratio (C/O) greater than unity, unlike solar system planets, or
the assumed composition of extrasolar planets. Those findings
rested heavily on the relative eclipse depths at 3.6 and 4.5 μm.
Our observations of eclipses and transits at these wave bands
should be able to reinforce or rule out the high C/O scenario.

2. OBSERVATIONS AND REDUCTION

We acquired observations of WASP-12 (spectral type F9V)
with IRAC (Fazio et al. 2004) on the Spitzer Space Telescope
(Werner et al. 2004) at 3.6 μm (2010 November 17–18) and
4.5 μm (2010 December 11–12) as part of the Warm Mission.
We used the sub-array mode and acquired images every 2 s
(1.92 s effective exposure time), observing the system for
approximately 1.3 days at each wave band, from slightly before
a secondary eclipse to shortly after the following secondary
eclipse. This yields 902 data cubes (64 frames of 32×32 pixels)
at each wave band.

Due to a scheduling error, we did not observe all of the second
eclipse’s egress at 3.6 μm. This does not severely affect our
science objectives since we simultaneously fit both eclipses at
a given wavelength; even at 3.6 μm we have nearly two full
eclipse light curves to work with.

We use the basic calibrated data files and convert MJy/str
to electron counts by multiplying the flux values by GAIN×
EXPTIME/FLUXCONV, using parameter values from the
header of the fits files. We use the BMJD_OBS and
FRAMTIME parameter values to compute the BJD time at the
middle of every exposure.

We start by considering the pixel-by-pixel time series for each
64-frame data cube, replacing NaN’s with the pixel’s median
over that data cube; if the entire time series for a given pixel is
bad, it is flagged as a bad pixel and ignored in the subsequent
analysis. At 4.5 μm, the first row of pixels (y = 0) is consistently
bad.

Deming et al. (2011) noted that Warm Spitzer sub-array data
cubes exhibit a frame-dependent background flux. At 3.6 μm,
the 1st and 58th frames are consistent background outliers (both
high), and there is a clear drop in background flux throughout
each data cube (see Figure 5 of Deming et al. 2011). At 4.5 μm,
the same two frames (1 and 58) are outliers (high and low
backgrounds, respectively), and there is a slight increase in

background flux throughout each data cube. We elect to ignore
the 1st and 58th frames of each data cube (3% of our data). To
correct for the gradual change in background flux, we perform
initial background subtraction on each frame of the data cube
using the IDL routine MMM and excluding the 16 central pixels
of the detector (those closest to the star).

We then perform a two-step sigma clipping on each pixel’s
time series, replacing 4σ outliers by the pixel’s median in that
data cube. The sigma clipping at the pixel level affects 0.028%
and 0.035% of our science time series data at 3.6 and 4.5 μm,
respectively.

To determine the centroid of our target, we first identify the
brightest of the central 16 pixels in each frame, then fit a two-
dimensional (2D) Gaussian to the 7 × 7 pixel box centered on
this brightest pixel using the IDL routine GAUSS2DFIT.11

We perform aperture photometry on the individual frames of
the data cubes using the IDL routine APER with a sky annulus of
7–12 pixels in radius (as did Campo et al. 2011, who observed
the same system with the same instrument). Since we perform
an initial background subtraction early in our reduction pipeline
(see above), our results are not very sensitive to changes in the
sky annulus. We verified that nudging the inner/outer radius
of the annulus by 1–2 pixels does not significantly affect the
goodness-of-fit or astrophysical parameters.

Bad pixels are ignored in the background estimation; images
with a bad pixel within the aperture are ignored. To determine
the optimal aperture for our analysis, we re-run our entire data
reduction and analysis pipeline for a range of apertures, from
1.5 to 5.0 pixels, in increments of 0.5 pixels. We find that for
both wave bands, the root-mean-squared scatter in the residuals
is minimized for an aperture of 2.5 pixels, which we therefore
adopt for the remainder of our study. This is smaller than the
apertures of 3.75 and 4.0 pixels (for 3.6 and 4.5 μm images,
respectively) used by Campo et al. (2011). While using a larger
aperture might reduce the photon-counting uncertainty, a small
aperture makes it easier to correct for our dominant source
of systematic uncertainty, the intra-pixel sensitivity variations
(IPSVs) described in Section 3.2. Since the Spitzer heater
cycling was different for the two observing campaigns (see
Section 3.2), it is possible that the nature of this systematic was
different for the Campo et al. (2011) observations.

Finally, we perform an iterative 4σ clipping on the flux time
series, removing any outliers. This affects 0.01% and 0.02% of
the science time series data at 3.6 and 4.5 μm, respectively. The
3.6 μm cut is more generous because of the greater systematic
flux variations, as described below.

The raw photometry is shown in Figure 1. (Note that we per-
form all of our analysis on the unbinned data, but we bin the data
for plotting.) The transits are easy to spot in the middle of the
observations. The eclipses and phase variations are also visible
by eye at 4.5 μm. For the 3.6 μm light curve, the first eclipse
and the phase variations are difficult to distinguish from detector
systematics by eye. We estimate the system flux in mJy by con-
verting back to MJy/str and using the pixel scale parameter val-
ues, PXSCAL1 and PXSCAL2. Our system fluxes—23.0(5) mJy
and 14.7(1) mJy, at 3.6 and 4.5 μm, respectively—are approxi-
mately 10% lower than those of Campo et al. (2011), even when
we adopt their larger apertures. Fazio et al. (2004) expected

11 We follow Agol et al. (2010), who compared many centroiding algorithms
and found this one to be optimal. Using flux-weighted centroiding instead of
PSF-fitting results in slightly worse χ2, commensurate correlated noise as
measured using β (see first Section 4.1), and consistent astrophysical
parameters.
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Figure 1. Raw photometry in electron counts at 3.6 μm (top) and 4.5 μm (bottom). The data have been binned for ease of viewing.

the absolute photometric precision of IRAC to be better than
10%.

As part of our Warm Spitzer observations, we also obtained
mapping data in sub-array mode for WASP-12, at each 3.6
and 4.5 μm, immediately following the time series described
above. For the mapping data we acquired images every 0.4 s
(0.36 s effective exposure time); we obtained 450 data cubes
in each wave band. The purpose of these data was to map the
central four pixels of the detector by scanning over them in
0.2 pixel and 0.1 pixel increments in the x- and y-directions,
respectively.

The data reduction for the mapping data is identical to that
for the science light curve, except that we stack the frames
of each data cube using a pixel-by-pixel median. Aperture
photometry is performed on these 450 stacked images rather
than on the individual frames. This is necessary because of
the shorter integration times for these data. (We also tried this
data reduction—performing photometry cube by cube rather
than frame by frame—on our phase curve data. Our best-fit
model parameters were consistent using this approach, but the
detector systematics were harder to correct for, leading to larger
parameter uncertainties.)

The pixel-level sigma clipping affects 0.01% of both the 3.6
and 4.5 μm mapping data. There are no outliers in the flux time
series for the mapping data.

3. MODEL

Our model has 9 free astrophysical parameters, plus up to
11 free parameters to characterize the detector response. The
model parameters are listed in Table 1 and described below.

Table 1
Model Variables

Name Symbol

Stellar flux F∗
Orbital perioda P
Impact parameter b
Geometric factor a/R∗
Time of transit (BMJD) t0
Area ratio (Rp/R∗)2

Mean planet flux 〈Fp/F∗〉
Thermal phase amplitude Atherm

Phase offset αmax

Ellipsoidal amplitude Aellips

t Linearb mt

x Linearc a1

y Linearc b1

x Quadraticc a2

y Quadraticc b2

x Cubicc a3

y Cubicc b3

x Quarticc a4

y Quarticc b4

x Quinticc a5

y Quinticc b5

Notes.
a We fix the orbital period to the value from Maciejewski
et al. (2011).
b This parameter is only used when fitting occultations
independently of the rest of the light curves.
c These parameters are only used in the polynomial IPSV
fits described in Section 3.2.3.
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3.1. Astrophysical Model

Occultations. Transits are modeled using the IDL implemen-
tation of Mandel & Agol (2002) with fixed nonlinear limb dark-
ening. To determine the limb darkening coefficients, we fit a
four-parameter Claret (2000) model to a Kurucz stellar model
with [Fe/H] = 0.3, Teff = 6250 K, and log g = 4.5 (Kurucz
1979, 2005). We set the eccentricity to zero and fix the orbital
period to the value from Maciejewski et al. (2011). The impact
parameter, b, and the geometrical factor, a/R∗, are allowed to
vary freely. Eclipses are modeled using the uniform-disk version
of the Mandel & Agol (2002) expressions, and both eclipses are
modeled simultaneously with the same parameters. This means
that we do not look for eclipse depth variability (searches for
such variability have so far only resulted in upper limits: Agol
et al. 2010; Knutson et al. 2011). We account for light-travel time
within the system, but this is only a matter of 22.5 s and does
not affect our analysis. By the same token, we neglect eclipse
mapping effects for the planet (Williams et al. 2006; Rauscher
et al. 2007; Agol et al. 2010), since we are insensitive to the
resulting offset in-eclipse time of less than a minute, let alone
the detailed ingress/egress morphology.

Diurnal phases. The planet’s temperature and hence bright-
ness vary as a function of local stellar time. This inhomogeneous
intensity is modeled with three parameters: the orbit-averaged
planet/star flux ratio, 〈Fp/F∗〉, the semi-amplitude of thermal
phase variations, Atherm, and the offset of the phase peak from su-
perior conjunction, αmax (αmax < 0 corresponds to a peak prior
to superior conjunction and therefore to an eastward-advected
hot spot and super-rotating winds). The phase variations have
a sinusoidal shape, corresponding to a sinusoidal longitudinal
brightness profile for the planet (Cowan & Agol 2008).12 Note
that in the limit of poor recirculation, the longitudinal tempera-
ture profile should be more akin to a half-sine (uniformly dark
on the night side), leading to thermal phase variations similar
to the Lambert phase function: broader minimum, briefer max-
imum. We neglect reflected starlight, which does not contribute
appreciably at these wavelengths.

Ellipsoidal variations. Because of the planet’s small semi-
major axis and inflated radius, it is likely that it—and possibly
its host star—is ellipsoidal in shape rather than spherical. This
leads to changes in cross-sectional area throughout the planet’s
orbit. To a good approximation, these variations are sinusoidal
with a period half of the orbital period; the maxima occur at
quadrature, when we are seeing the long axes of the star and
planet, and minima at superior and inferior conjunction, when
we are seeing the short axes of the two bodies.13

Li et al. (2010), Leconte et al. (2011), and Budaj (2011) all
predict that the projected area of WASP-12b should vary by
approximately 10% (peak to trough) due to its prolate shape,
whether it is modeled as a prolate ellipsoid or a partially filled
Roche lobe. Given the mid-infrared planet/star flux ratio of
Fp/F∗ ≈ 4 × 10−3 (Campo et al. 2011), we expect to see
ellipsoidal variations in the planet at the level of ΔF/F∗ ≈
4 × 10−4 (or a semi-amplitude of 2 × 10−4).

12 In general, the offset between thermal phase maximum and superior
conjunction is not the same as the offset of the hottest longitude of the planet
with respect to the sub-stellar meridian. For realistic longitudinal temperature
profiles, the observed offset in the light curve is significantly greater than the
hot spot offset (Cowan & Agol 2011a). In the case of a first-order sinusoidal
phase curve, however, the two offsets are one and the same.
13 This is a common approximation for ellipsoidal variations (e.g., Faigler &
Mazeh 2011), but we discuss the exact expression in Section 5.3.1.

The presence of a massive companion should also produce
ellipsoidal variations in the star, as seen at optical wavelengths in
the system HAT-P-7 (Welsh et al. 2010). Using the expressions
given in Faigler & Mazeh (2011), we estimate the semi-
amplitude of these variations to be ∼4×10−5 at all wavelengths.
We therefore expect that at thermal wavelengths, the ellipsoidal
variations of the system should be dominated by the shape of
the planet and not that of its host star.

We experimented with different functional forms for the
planet’s phase variations in an effort to reduce correlations
between astrophysical variables. Our best model in this regard
is

Fp

F∗
=

〈
Fp

F∗

〉
+ Atherm cos(α − αmax) − Aellips cos(2α), (1)

where Atherm and Aellips are the semi-amplitudes of diurnal and
ellipsoidal phase variations, respectively, and α is the phase
angle (α = 0 at superior conjunction, α = π at inferior
conjunction).

The secondary eclipse depth is related to the model variables
by

Fday

F∗
=

〈
Fp

F∗

〉
+ Atherm cos αmax − Aellips, (2)

and to first order the associated uncertainties can be propagated
as

σ 2
Fday/F∗ = σ 2〈Fp/F∗〉 + cos2 αmaxσ

2
Atherm

+ A2
therm sin2 αmaxσ

2
αmax

+ σ 2
Aellips

. (3)

In practice, this is an overestimate of uncertainty, because〈
Fp/F∗

〉
and Atherm are anti-correlated.

3.2. Detector Response Model

IRAC channels 1 and 2 exhibit well-known IPSVs: photons
hitting certain parts of a pixel lead to more electron counts than
photons hitting other parts of the same pixel (e.g., Charbonneau
et al. 2005; Morales-Calderón et al. 2006).14 In general, the
sensitivity to photons is lowest near the edges of a pixel and
greatest near its center (see bottom panels of Figure 2). On its
own, IPSV would not be a problem for precision time-resolved
relative photometry. But over the course of observations, the
point-spread function (PSF) of the target star moves on the
detector. Even though the PSF spans many pixels, the IPSVs do
not average out, because most of the flux falls in the PSF core.

Since they are ultimately caused by changes in the PSF posi-
tion, attempts to correct for IPSVs rely on accurate centroiding,
described in Section 2. The centroiding is shown in Figure 2
for 3.6 μm (left) and 4.5 μm (right). The top panels show the
centroid jitter and drift over the course of the observations; the
second panels show the 2D path of the centroid; the bottom
panels show the intra-pixel sensitivity map of the four central
pixels of the detector, constructed by applying the Ballard et al.
(2010) point-by-point decorrelation to our mapping data (see
Section 3.2.2).

Both x and y centroids exhibit fast jitter (period of roughly
half an hour) with peak–trough amplitude of 0.05–0.1 pixels.
This is the same jitter that used to have a period of roughly

14 This is entirely different than inter-pixel sensitivity variations, which
should have been largely calibrated out by flat fielding. In any case, a scheme
that corrects IPSVs implicitly corrects inter-pixel sensitivity variations as well.
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Figure 2. Point-spread function centroid movement at 3.6 μm (left) and 4.5 μm (right). The top panels show the jitter and drift of the PSF centroid. The second panels
show the two-dimensional wander of the centroid. The bottom panels shows the intra-pixel sensitivity map for the central regions of the detector, constructed by
applying the Ballard et al. (2010) point-by-point decorrelation to our mapping data (see Section 3.2.2), with red arrows marking the approximate drift of the PSF over
the course of our observations. The green lines show pixel edges.

(A color version of this figure is available in the online journal.)

an hour: it is related to the heater cycling on Spitzer. The
cycling frequency was doubled in fall 2010, which doubled
the centroid jitter frequency and roughly halved the amplitude
of the jitter.15 The smaller amplitude of the jitter is undoubtedly
an improvement, while the higher frequency may or may not
be a nuisance, depending on the duration of ingress/egress for

15 ssc.spitzer.caltech.edu/warmmission/news/21oct2010memo.pdf

a given planet. In our data, the 3.6 μm flux exhibits clear 1%
peak-to-trough flux variations on the centroid jitter timescale,
while the 4.5 μm flux does not.

There is also a longer-term centroid drift, which is greatest in
the y-direction: 0.5 pixels of motion over the ∼1 day observation
at both 3.6 and 4.5 μm. The x-direction shows almost no long-
term drift (0.05 pixels, comparable to the faster jitter). Looking
at the bottom panels of Figure 2, it is easy to understand why
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the IPSVs are worse at 3.6 μm than at 4.5 μm: at the shorter
wave band, the PSF drifted up a steep slope in sensitivity from
a pixel corner toward a center; at the longer wave band, the PSF
contoured below a ridge in sensitivity.

The telescope takes a few hours to settle after pointing at a
new target, resulting in larger PSF excursions for the first few
data cubes of each light curve. It is difficult to correct for IPSVs
in poorly sampled regions of the detector, so we remove the first
0.05 days of both the 3.6 and 4.5 μm light curves (3.8% of our
data in each wave band).

The crux of the data reduction process is correcting for
IPSVs, because our astrophysical signals (eclipses and phase
variations) have an expected amplitude of 0.4%, comparable
to—or smaller than—these systematics. We tried a variety of
techniques, of which we describe the most promising below.
We first present two methods for removing the IPSVs before
fitting our astrophysical model of the system. These techniques
are attractive because they allow one to produce a systematics-
corrected light curve independent of any astrophysical model
assumptions. We then present an attempt to simultaneously fit
the IPSV and the astrophysical brightness variations.

3.2.1. Gaussian Decorrelation

We follow Ballard et al. (2010) in using point-by-point
positions and fluxes to generate an intra-pixel sensitivity map
with x and y Gaussian smoothing lengths of σx and σy ,
respectively. Stevenson et al. (2011) recently introduced a
similar—but faster—method using bilinear interpolation. Since
we are not attempting to iteratively fit the astrophysical and
IPSV model, we use the simpler Ballard et al. (2010) method.
We experimented with different smoothing lengths and chose
the combinations that yield the smallest χ2 value for the final
model fit; the astrophysical parameters are not very sensitive to
changes in the smoothing length. At 3.6 μm we use σx = 0.017
and σy = 0.0043, as in Ballard et al. (2010); at 4.5 μm we use
σx = σy = 0.015. The resulting pixel maps are shown in the
top panels of Figure 3.

We then divide the raw photometry by the weight function
and fit our astrophysical model. The second panels of Figure 3
show the corrected data with best-fit astrophysical model and
residuals. The bottom panels show the scatter in the residuals
as a function of binning, along with a red line indicating the
Gaussian-noise limit of root-mean-squared scatter scaling as√

N . The normalization of this theoretical curve is based on
the Poisson error for our electron counts (see first the raw
photometry in Figure 1). The best-fit astrophysical parameters
are listed in Table 2 (3.6 μm) and Table 3 (4.5 μm).

3.2.2. Mapping Data

The purpose of the mapping data was to deliberately map
the central four pixels of the detector by scanning over them
in 0.2 pixel and 0.1 pixel increments in the x- and y-directions,
respectively. Since these observations are much shorter than the
planet’s orbital time, and were scheduled to avoid transits or
eclipses, the changes in flux are in principle entirely due to the
centroid position on the detector.

In practice, the 3.6 μm light curve observations ended ap-
proximately 3.8 minutes before the end of eclipse egress, and
the 3.6 μm mapping observations immediately followed. We
therefore remove the first 4 minutes (0.003 days) of the 3.6 μm
mapping data.

We use the mapping data centroids and fluxes to generate
a weight map at the locations of the science centroids, again

following Ballard et al. (2010). We adopt larger smoothing
kernels set by the Nyquist sampling frequency of the regularly
spaced mapping centroids (σx = 0.1, σy = 0.05). We then use
this weight function to correct the science light curve as above.

Using the mapping data to generate pixel maps has the
advantage that we are not self-calibrating our science data,
and hence are not liable to throw the baby out with the bath
water. On the other hand, it does not successfully remove
the systematics: the model fits are far worse than either the
Gaussian decorrelation discussed above or the polynomial
models discussed below (the discrepancy in χ2 is a factor of
∼10 at 3.6 μm and ∼4 at 4.5 μm). This means that the IPSV
must have fine spatial structure (as seen by Ballard et al. 2010),
and/or some additional flux or time dependence.

3.2.3. Polynomial IPSV Model

Here, we model the IPSVs as a polynomial in the centroid x
and y. We simultaneously fit our astrophysical model and the
IPSVs by treating the x and y centroids as independent variables
in our function. We model the IPSVs as

Fobs

Fastro
= 1 +

∑n
i=1

[
ai(x − x̄)i + bi(y − ȳ)i

]
〈1 +

∑n
i=1

[
ai(x − x̄)i + bi(y − ȳ)i

]〉 , (4)

where Fobs is the observed flux, Fastro is the astrophysical model,
and x̄ and ȳ are the mean centroid positions. Formally, cross-
terms are necessary to describe an arbitrary 2D function, but we
find that including cross-terms does not significantly improve
the χ2 or affect the astrophysical parameters. This is a testament
to the fact that the bulk of the PSF motion is in the y-direction.

We experiment with polynomials up to sixth order. To test
whether each additional pair of coefficients (one each for x and y)
improved the fit, we use the Bayesian Information Criterion
(BIC; Schwarz 1978), which imposes a penalty term on the
χ2 for additional free parameters: BIC = χ2 + k ln N , where
k is the number of free parameters and N ≈ 52,000 is the
number of data. Since ln(52,000) ≈ 11, an additional parameter
is acceptable if it improves the χ2 by at least 11. The BIC for
our 3.6 μm data improved with the addition of parameters up to
and including fifth order. The BIC for our 4.5 μm data was not
improved by the addition of terms beyond cubic.

Unlike some previous studies, we do not include a linear ramp
in time. Since the bulk of the PSF motion is a monotonic drift in
the y-direction, we found the ramp in time to be highly correlated
with the linear and quadratic coefficients of the y sensitivity, and
the fit was not significantly improved.16

We show the resulting fits in Figures 4 and 5. For each
figure, the top panel shows: the systematics-corrected light curve
and best-fit astrophysical model (top inset), the residuals after
subtraction of the best-fit thermal phases, along with the best-
fit ellipsoidal variations model (middle inset), and the residuals
after removing ellipsoidal variations (bottom inset). (Ellipsoidal
variations of the planet do not affect in-eclipse data since the
planet is hidden from view; hence we remove the in-eclipse
data from this panel.) The bottom left panel shows the weight
function used to correct the data. The bottom right panel shows
the scatter in the residuals as a function of binning; the red line
shows the photon noise limit; the vertical dotted line denotes
the timescale of ingress/egress.

16 We do include a linear ramp in time when performing isolated fits to
transits or eclipses, since (1) those shorter time series do not provide enough
leverage to properly fit the IPSV, and (2) the linear ramp can act as a proxy for
the thermal phase variations, which are not explicitly fit for in these cases.
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Figure 3. WASP-12b at 3.6 μm (left) and 4.5 μm (right), where we have corrected for IPSVs using the Ballard et al. (2010) point-by-point decorrelation, as described
in Section 3.2.1. The upper panels show the IPSV map determined from our science data, with pixel edges shown in green. The second panels show the corrected data
with best-fit astrophysical model and residuals. The bottom panels show the scatter in the residuals as a function of binning; the red line shows the photon noise limit;
the vertical dotted line denotes the timescale of ingress/egress.

(A color version of this figure is available in the online journal.)

4. MODEL FITTING AND ERROR ANALYSIS

We use the IDL implementation of a Levenberg–Marquardt
(L–M) χ2 gradient descent routine, MPFITFUN, to find the
best-fit model parameters. The covariance matrix of the model
parameters provides a first guess at the parameter uncertainties.

L–M or Markov Chain Monte Carlo (MCMC) error estima-
tion depends on the photometric uncertainties: larger error bars

on the data lead to larger uncertainties on the model parameters.
For the initial fits, we optimistically set the error bars on our data
at the Poisson limit, 1/

√
Ncounts; this means that the reduced χ2

of our best-fit model fits is somewhat larger than 1 (see Tables 2
and 3), and it means that either L–M or MCMC will underesti-
mate parameter uncertainties. To alleviate this problem, we then
scale the data uncertainties to give a reduced χ2, χ2

R , of unity (by
multiplying uncertainties by the square root of the best χ2

R). In
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Table 2
3.6 μm Parameters

Calibration Method χ2
R b a/R∗ (Rp/R∗)2 Fday/F∗ 2Atherm αmax Aellips

Point-by-point decorrelation 1.392a 0.5(1) 2.8(2) 0.0125(4) 0.0038(4) 0.0004(3) 0(29)◦ 1(1) × 10−4

Polynomial in x and yb 1.384a 0.3(2) 3.1(2) 0.0123(3) 0.0033(4) 0.0038(6) −53(7)◦ 1(1) × 10−4

Notes.
a When comparing these values, it is worth remembering that with approximately 52,000 degrees of freedom, a model is significantly better if it improves χ2

R by at
least 0.004.
b Our fiducial analysis.

Table 3
4.5 μm Parameters

Calibration Method χ2
R b a/R∗ (Rp/R∗)2 Fday/F∗ 2Atherm αmax Aellips

Point-by-point decorrelation 1.326a 0.5(1) 2.9(2) 0.0112(4) 0.0039(3) 0.0019(3) −12(6)◦ 1.1(1) × 10−3

Polynomial in x and yb 1.324a 0.5(1) 2.9(2) 0.0111(4) 0.0039(3) 0.0040(3) −16(4)◦ 1.2(2) × 10−3

Notes.
a When comparing these values, it is worth remembering that with approximately 52,000 degrees of freedom, a model is significantly better if it reduces χ2

R by at least
0.004.
b Our fiducial analysis.

the present case, this entails inflating the error bars by a constant
factor of 10%–20%, depending on the wave band and model in
question. Scaling photometric errors to obtain a reduced χ2 of
unity renders the χ2 useless for comparing different models; we
therefore quote the best reduced χ2 prior to inflating the error
bars. After adjusting the photometric uncertainties, we normal-
ize the light curve to the in-eclipse (star-only) value, and fix F∗
to unity in order to avoid correlations between F∗ and

〈
Fp/F∗

〉
in the final fits.

It is well known that simply using the covariance matrix
from the L–M fit does not provide a robust error estimate, so
we estimate parameter uncertainties using a variety of other
techniques. We experimented with MCMC and boot-strap MC
error estimates and found them to be slightly larger than—but
comparable to—those from the L–M. We found that our most
conservative error estimates (typically larger by a factor of two
or more) are obtained by considering the residuals of our best-
fit model: either binning of residuals or resampling of residuals
using a prayer-bead MC. Throughout the manuscript we always
adopt the largest uncertainty for a given parameter, but it
is worth noting that even our most conservative error estimates
may still be 15%–30% smaller than what one would obtain with
a wavelet analysis (Carter & Winn 2009).

4.1. Binning of Residuals

Pont et al. (2006) proposed a simple method to account for
red noise by considering how the scatter in residuals decreases
with bin size (bottom panels of Figures 3–5). At the left end of
the plots, where we are considering point-to-point scatter in the
residuals, the scatter is only 10%–20% greater than the Poisson
counting limit shown in red (∝ √

M/N(M − 1) ≈ √
N , where

N is the number of observations per bin and M is the number of
bins). But the observed scatter does not follow the theoretical
relation as the data are binned. The most important timescale
for transit and eclipse parameter estimation is the duration of
ingress/egress, which we denote by a vertical dotted line in
those panels (21 minutes for WASP-12b). The scatter on this
timescale determines the accuracy we can expect to achieve for
transit or eclipse depths.

Following Winn et al. (2007, 2008), we define the factor β as
the actual scatter (black line) divided by the theoretical Poisson
limit (red line) on the 21 minute timescale (vertical dotted black
line); our residuals have β = 2–3. To account for red noise in
parameter uncertainties, we simply inflate the L–M parameter
uncertainties by β. (Inflating the photometric error bars by β
and recomputing the covariance matrix using L–M takes longer
and produces slightly smaller parameter uncertainties.) The
binning of residuals method turns out to be the most conservative
error estimate for transit- and eclipse-specific model parameters
(b, a/R∗, (Rp/R∗)2, etc.).

4.2. Boot-strap and Prayer-bead Monte Carlo

We also estimate parameter uncertainties using two resam-
pling techniques: boot-strap and prayer-bead MCs. Both of these
techniques use the scatter in the residuals of our best-fit model as
an estimate of photometric uncertainty. In both cases the resid-
uals are shifted in time and added back to the best-fit model to
produce a new instance of the light curve, which is then fit using
the L–M.17 The standard deviation in the sequence of model pa-
rameters is our estimate of their 1σ uncertainty. Note that—by
construction—resampling techniques cannot improve parame-
ter estimates: the best-fit parameters are those determined by
fitting the original time series.

For the boot-strap MC, the residuals are randomly shuffled
so—much like the L–M and MCMC techniques—the boot-
strap error analysis is insensitive to the ordering of residuals.
Such error estimates will therefore only be accurate insofar as
residuals are uncorrelated in time. Indeed, we found that error
estimates from the boot strap were comparable to those from
the L–M or MCMC analyses.

The prayer-bead analysis maintains the relative ordering of
the residuals and simply shifts them all by the same amount
(wrapping around the start/end of the data), so that correlated
noise present in the residuals is preserved. A prayer-bead

17 Since we use L–M to find best-fit solutions, one might think that the
prayer-bead and boot-strap analyses implicitly depend on photometric error
estimates. But in fact, the L–M algorithm settles on the same solution
irrespective of error bars (within reason). The prayer-bead and boot-strap
parameter uncertainties are therefore effectively independent of the
photometric uncertainties.
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Figure 4. WASP-12b at 3.6 μm, where we have treated the IPSVs as a polynomial function in both x and y centroid, as described in Section 3.2.3. The top panel shows
the systematics-corrected light curve and best-fit astrophysical model (top inset), the residuals after subtracting the best-fit transit, eclipse and thermal phase model,
along with the best-fit ellipsoidal variations model (middle inset), and the residuals after removing ellipsoidal variations (bottom inset). Ellipsoidal variations of the
planet do not affect in-eclipse data since the planet is hidden from view; hence we remove the in-eclipse data from this panel. The bottom left panel shows the weight
function used to correct the data, with pixel edges shown in green. The bottom right panel shows the scatter in the residuals as a function of binning; the red line shows
the photon noise limit; the vertical dotted line denotes the timescale of ingress/egress.

(A color version of this figure is available in the online journal.)

analysis is not appropriate if the nature of the noise is expected to
change throughout the observations (e.g., the 8 μm ramp seen
in cryogenic Spitzer observations). But there is no evidence
for such changes in behavior in Warm Spitzer data in general,
or in our time series in particular. The prayer bead can only
have as many iterations as there are data points, but this is
not a problem for the current study given our approximately

52,000 images; we run the prayer bead for 10,000 iterations
with randomly chosen offsets and verify that the uncertainties
have converged by comparing to 100- and 1000-iteration prayer-
bead MCs. It is also worth noting that with such a long
data set, we are more likely to observe rare instances of bad
behavior in the detector, making the prayer-bead technique
particularly conservative. Indeed, prayer-bead MC provides the
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Figure 5. WASP-12b at 4.5 μm, where we have treated the IPSVs as a polynomial function in both x and y centroid, as described in Section 3.2.3. The top panel shows
the systematics-corrected light curve and best-fit astrophysical model (top inset), the residuals after subtracting the best-fit transit, eclipse and thermal phase model,
along with the best-fit ellipsoidal variations model (middle inset), and the residuals after removing ellipsoidal variations (bottom inset). Ellipsoidal variations of the
planet do not affect in-eclipse data since the planet is hidden from view; hence we remove the in-eclipse data from this panel. The bottom left panel shows the weight
function used to correct the data, with pixel edges shown in green. The bottom right panel shows the scatter in the residuals as a function of binning; the red line shows
the photon noise limit; the vertical dotted line denotes the timescale of ingress/egress.

(A color version of this figure is available in the online journal.)

largest error bars for the phase variation parameters: Atherm,
αmax, Aellips.

5. RESULTS

The two methods used to remove IPSVs are fundamentally
different. The Gaussian decorrelation uses local information to

correct the flux with no assumption about larger-scale trends;
it is able to correct for small-scale variations in sensitivity, but
requires very high densities of centroids. The polynomial fit
assumes a functional form for the smoothly varying sensitivity,
but is better able to correct regions that are less-well sampled.
It is not clear which method is better suited to a given data
set. Ballard et al. (2010) found the decorrelation to be better (in
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terms of χ2) than the polynomial fit when analyzing their binned
4.5 μm time series. We run both methods on unbinned data and
find that the two methods perform equally well at 4.5 μm, while
at 3.6 μm the polynomial fit is better.

Given their very different underlying philosophies, it is en-
couraging that the two methods yield similar weight functions
(compare the pixel maps in Figure 3 to those in Figures 4 and
5). In fact, the transit depths, eclipse depths, and ellipsoidal
variations recovered by the two techniques are generally con-
sistent. The thermal phase variation amplitude and offset differ
significantly, however.

5.1. Transits

Our values for the impact parameter and geometrical factor
are broadly consistent with published values. Note that we
simultaneously fit the transits and eclipses, and eclipses are
notoriously bad at constraining these orbital parameters.18

Combining our transit times for epochs 925 and 947 (BMJD
of 55,518.0407(4) and 55,542.0521(4), respectively) with those
of Chan et al. (2011) and the ephemeris of Maciejewski et al.
(2011), we obtain a BJD discovery epoch transit center of
t0 = 2454508.9768(2) and period P = 1.0914207(4) days.
Since our transits occurred slightly earlier than predicted, our
best-fit orbital period is 3.5σ shorter than that of Maciejewski
et al. (2011), but it is notoriously difficult to compare transit
times at different wavelengths analyzed by different groups
because of subtle differences in star-spot coverage, treatment
of limb darkening, etc. (Désert et al. 2011b).

More importantly, we are simultaneously fitting an entire
orbit’s worth of data including many different astrophysical
effects, while the optical transit data were fit on their own, irre-
spective of longer-term astrophysical trends. In order to make a
more appropriate comparison, we try fitting the transits indepen-
dently of the rest of the data (considering only those data within
0.15 days of the transit center). This yields later transit centers,
leading to an ephemeris more consistent with that of Maciejew-
ski et al. (2011): t0 = 2454508.9767(2), P = 1.0914210(4).

Because of WASP-12b’s high temperature and inflated ra-
dius, the variations in transit depth with wavelength should be
3× larger than for “typical” hot Jupiters (using the scaling re-
lation from Winn 2010). Based on observations and models of
HD 189733b (Fortney et al. 2010), one might therefore expect
the transit depth at 4.5 μm to be ∼10−3 deeper than at 3.6 μm.
This is borne out by the dotted black line in Figure 6, which
shows a Burrows et al. (2007, 2008) model transit spectrum as-
suming solar composition and a day-like temperature–pressure
(T-P) profile. If the planet’s terminator has a night-like T-P
profile (shorter scale height; solid black line in Figure 6), the
difference in transit depth could be as small as 2 × 10−4—but
always with a transit depth greater at 4.5 μm than at 3.6 μm.

In Figure 6, we compare our transit depths at 3.6 and 4.5 μm
with previously published optical values: 0.0138(2) (B and
z′ band, Hebb et al. 2009), 0.01380(16) (R band, Maciejewski
et al. 2011), and 0.0125(4) (V band, Chan et al. 2011), yielding
a three-band transmission spectrum of the planet. Curiously,
the transit depth at 4.5 μm is considerably shallower than at
3.6 μm. If we adopt the larger Maciejewski et al. (2011) optical
transit depth, then our mid-IR transit depths could be indicative

18 If we only consider the 0.3 days of data centered on each transit, we find
impact parameters of b = 0.46 and 0.60 (larger than published values), and
geometrical factors of a/R∗ = 2.9 and 2.7 (smaller than published values) at
3.6 and 4.5 μm, respectively.

Figure 6. Predicted wavelength-dependent transit depth of WASP-12b based
on a solar composition (Burrows et al. 2007, 2008). The dotted black line
shows a model with a day-like temperature–pressure (T-P) profile (large scale
height); the solid line shows a model with a night-like T-P profile (short
scale height). The red points correspond to a model with ellipsoidal variations;
the blue point corresponds to a model without 4.5 μm ellipsoidal variations (see
first Section 5.3.2). The two black points with error bars on the left show the
optical transit depth from Hebb et al. (2009) and Maciejewski et al. (2011) (top)
and Chan et al. (2011) (bottom); we normalize the model transit spectrum to the
latter’s observation.

(A color version of this figure is available in the online journal.)

of hazes or optical absorbers in the atmosphere of WASP-12b,
as has been inferred for HD 189733b (Pont et al. 2008; Sing
et al. 2011). The larger radius at 3.6 μm as compared to 4.5 μm
indicates a higher atmospheric opacity at the shorter wave band,
which is difficult to reconcile with current models.

In an attempt to explain its peculiar eclipse spectrum, Deming
et al. (2011) hypothesized that CoRoT-2b might have equal
opacity at 3.6 and 4.5 μm (and lower opacity at 8 μm) due
to a haze of—as yet unknown—μm-sized particles. One may
similarly explain the unusual WASP-12b transit spectrum in
terms of a haze of slightly smaller particles, such that the opacity
drops from 3.6 to 4.5 μm. Given the large difference in transit
depth between the two wave bands, this hypothesis also requires
a large atmospheric scale height at the planet’s terminator.

5.2. Eclipses

At 3.6 μm, the eclipse depth is ∼1σ lower using the poly-
nomial fit as compared to the decorrelation. If we fit the two
eclipses individually using the polynomial IPSV fit, we obtain
depths of 0.0030 (highly correlated residuals) and 0.0038 (in-
complete egress), respectively. Given the prior measurement of
0.0038(1) by Campo et al. (2011), we adopt the larger value
from the Gaussian decorrelation for our analysis (this choice
does not significantly affect any of our conclusions).

At 4.5 μm, we obtain comparable χ2 values and eclipse
depths regardless of our treatment of systematics. In both
cases they are consistent with the Campo et al. (2011) value:
0.0038(2).

In all cases our error estimates are somewhat larger than the
Campo et al. (2011) estimates. We observed the same planetary
system with the same instrument, so one expects the same
eclipse depths and uncertainties. The only significant change
in the detector is that our observations occurred after the fall
2010 change in heater cycling, as mentioned in Section 2. This
means that the short-term telescope jitter for our observations
has a period of 30 minutes rather than 1 hr, and the amplitude of
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the centroid excursions—and hence flux variations—is reduced
by a factor of two (for reference, the ingress/egress time for
WASP-12b is 21 minutes, and the total transit/eclipse duration
is 3 hr).

It is conceivable that the near coincidence between the
centroid jitter half-period and the ingress/egress timescale leads
to greater residual systematics in our data than in the Campo
et al. (2011) time series. However, our eclipse depths are based
on two occultations, and we have a much longer baseline
of observations to help us correct for detector systematics,
characterize noise properties, and estimate uncertainties (see
Section 4.2). Our MCMC error estimates are similar to those
of Campo et al. (2011), but residual-binning and prayer-bead
analyses produce eclipse depth uncertainties more than 2×
larger than the MCMC. This means that there is still red noise
present in our residuals, and the prayer-bead analysis is a more
realistic estimate of our parameter uncertainties.

5.2.1. Dayside Emergent Spectrum

If one assumes solar composition, the relative eclipse depths
at 3.6 and 4.5 μm can probe the temperature versus pressure
(T-P) profile of the planet. Water vapor absorbs less at 3.6 μm
than at 4.5 μm, so the shorter wave band will have a higher
brightness temperature if the temperature is locally dropping
with height or vice versa (e.g., Burrows & Orton 2010).

If the eclipse depth is measured at sufficiently many wave-
lengths, one may hope to simultaneously constrain a planet’s
atmospheric composition and T-P profile (e.g., Madhusudhan &
Seager 2009). The high C/O chemistry invoked by
Madhusudhan et al. (2011) was the result of an abnormally
low eclipse depth at 4.5 μm in the Campo et al. (2011) data,
which was interpreted as being due to CO absorption in
the planet’s relatively cool upper atmosphere. More recently,
Kopparapu et al. (2011) used a photochemical model to study
the disequilibrium chemistry of WASP-12b, confirming that CO
would be enhanced in a high C/O composition atmosphere.

In Figure 7, we compare the near- to mid-IR broadband spec-
trum of WASP-12b to various one-dimensional (1D) radiative
transfer models (Burrows et al. 2007, 2008). We vary the abun-
dance of CO as a proxy for varying the C/O ratio. Our eclipse
depths are consistent with those of Campo et al. (2011), so we
still favor models with enhanced CO (10 × solar) and a weak
inversion for this planet, in agreement with Madhusudhan et al.
(2011). We also find that we can obtain an equally good fit to
the data by reducing H2O to 1% solar abundance and partition-
ing carbon evenly between CO and CH4. Given the caveat that
these models are in radiative—but not chemical—equilibrium,
the crux of fitting WASP-12b’s unique dayside spectrum is to
suppress H2O with respect to CO.

Our larger error bars, however, make these composition
statements marginal: the solar composition model with modest
inversion (the green line in Figure 7) is only worse by Δχ2 = 8
for 8 degrees of freedom. Furthermore, neither the standard
composition nor the enhanced CO scenario is consistent with
the relative transit depths at 3.6 and 4.5 μm (see Figure 6
and previous section). It may be possible to reconcile these
two measurements if the atmospheric composition is grossly
different at the day–night terminator than near the sub-stellar
point.

5.3. Ellipsoidal Variations

The best-fit ellipsoidal variations at 3.6 μm are consistent
with the predicted amplitude of 2 × 10−4, but as one can see

Figure 7. Dayside emergent spectrum of WASP-12b. The colored lines show
various 1D atmospheric models (Burrows et al. 2007, 2008), while the red
points show the measured secondary eclipse depths. From left to right, the data
are z band (López-Morales et al. 2010); J, H, and Ks band (Croll et al. 2011),
IRAC channels 1 and 2 (this study); and IRAC channels 3 and 4 (Campo et al.
2011). Note that the Ks-band eclipse depth and K–H eclipse color have been
confirmed by Zhao et al. (2011) and Crossfield et al. (2012), respectively. The
Campo et al. (2011) eclipse depths at 3.6 and 4.5 μm are shown in gray. The
blue point shows the 4.5 μm eclipse depth if ellipsoidal variations are set to
zero, the “null hypothesis.” In the legend, the first χ2 value for each model is
for the fiducial analysis (including ellipsoidal variations), the second value is
for the null hypothesis (setting ellipsoidal variations to zero). The enhanced CO
model (yellow line) offers the best fit, but the solar composition model (green
line) is not significantly worse.

(A color version of this figure is available in the online journal.)

from the relative uncertainty (or from glancing at Figure 4),
they are not robustly detected: the χ2, residuals and remaining
astrophysical parameters do not change significantly if Aellips is
set to zero.

As shown in Figure 5, however, we clearly detect power
at 4.5 μm in the second cosine harmonic, cos(2α), consistent
with the prediction of ellipsoidal variations due to the prolate
shape of the planet (Li et al. 2010; Leconte et al. 2011;
Budaj 2011). The semi-amplitude of the variations, however,
is 1.2(2) × 10−3 using either decorrelation or polynomial IPSV-
removal, approximately 6× the predicted value.

Since ellipsoidal variations are primarily a geometrical effect,
it is difficult to understand how the measured amplitude could
be so different at 3.6 and 4.5 μm. The upper layers of the
atmosphere should be more distorted; the deeper layers more
spherical. The relative strengths of ellipsoidal variations at the
two wave bands imply that the 4.5 μm flux is originating from
much higher up in the planet’s atmosphere than the 3.6 μm flux.
The simplest way to do this is for the atmosphere to have a
greater opacity at 4.5 μm than 3.6 μm. But the relative transit
depths indicate exactly the opposite, as described above and
shown in Figure 6.

Alternatively, it is possible that detector systematics still
present after IPSV-removal attenuate the ellipsoidal signal at
3.6 μm or enhance it at 4.5 μm. The raw photometry shown in
Figure 1 implies that the 4.5 μm light curve is more trustworthy
of the two. We therefore begin by assuming that the ellipsoidal
signal at 4.5 μm is entirely astrophysical in nature, then consider
the opposite scenario.

5.3.1. Interpreting the Ellipsoidal Variations at 4.5 μm

If we take the 4.5 μm ellipsoidal variations at face value,
they have surprising implications for the planet’s shape. The
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Figure 8. Our best-fit 4.5 μm phase variations (top panel) can be modeled as
a geometrical component due to the planet’s changing projected area (middle
panel) and a thermal component due to longitudinal variations in the planet’s
brightness (bottom panel). For the red lines all of the 2α power is attributed
to the planet’s ellipsoidal shape; this hypothesis can be ruled out by the transit
morphology (Figure 9). The blue lines result from assuming that the planet is
spherical in shape; this hypothesis leads to unphysical brightness variations on
the planet. The green lines show the middle path: most of the 2α power is due to
the planet’s shape, but the thermal component also contributes a bit. Note that this
a posteriori analysis has limitations: in our astrophysical model, the thermal and
ellipsoidal components of phase variations were added, while strictly speaking
the planet’s intensity and cross-sectional area should be multiplied.

(A color version of this figure is available in the online journal.)

dimensions of a prolate planet may be described by its short
and long radii, denoted by Rp and Rlong, respectively. The third
dimension (parallel to the system’s angular momentum vector)
is assumed to be Rp because we are neglecting rotational effects,
which tend to produce oblate planets. Note that WASP-12b is on
a very short period orbit, so—if tidally locked—it has a rotation
rate only a factor of two slower than Jupiter or Saturn. As a result
of this rotation, Budaj (2011) estimates the planet’s polar radius
to be 2.5% shorter than its lateral equatorial radius,19 so strictly
speaking WASP-12b is a triaxial ellipsoid, but this does not
affect the analysis below because of the planet’s edge-on orbit,
and our relatively short baseline of observations is insensitive
to the spin precession of the planet (Carter & Winn 2010b).

At conjunction—either transit or eclipse—we are seeing the
planet’s smallest projected area (πR2

p, in the case of a perfectly
edge-on orbit). The projected area of an ellipsoid on an edge-on
orbit varies as (e.g., Vickers 1996)

Ap(α) = πR2
p

√
cos2 α +

(
Rlong

Rp

)2

sin2 α. (5)

For Rlong/Rp ≈ 1, the changes in projected area follow a
Ap ∝ cos(2α) shape and this is in fact how we modeled them;
for more severe elongations, the peaks become broader and the
troughs narrower, until a limiting case of Ap ∝ | sin α|.

If we interpret all of the power in the second cosine harmonic
as being due to the changing cross-sectional area of the planet
(the red curves in Figure 8), we may estimate the planet’s aspect
ratio as

Rlong/Rp ≈ 1 + 2Aellips
〈
F∗/Fday

〉 = 1.8(1). (6)

19 Note, furthermore, that the sub-stellar and anti-stellar planetary radii are not
equal. Nevertheless, the dominant effect is the planet’s prolate shape.

Figure 9. WASP-12b transit light curve at 4.5 μm; the data have been binned
for plotting. The red line shows our fiducial model: a spherical planet with
nonlinear limb darkening of the star. The green line shows the effect of the
planet’s changing cross-sectional area (but not its changing shape). The blue
line shows how limb darkening partially washes out this signal. For the two
prolate planet models, we use Rlong/Rp = 1.8, the most extreme scenario
supported by the phase variations.

(A color version of this figure is available in the online journal.)

The predicted aspect ratio for the planet is Rlong/Rp = 1.1,
while the aspect ratio for a Roche lobe is 3/2 = 1.5.

It is worth noting that a planet with an aspect ratio of 1.8 would
have a 13% larger projected area at the start and end of transit
as compared to transit center, resulting in a w-shaped transit, in
the absence of stellar limb darkening (note that this differs from
changes in transit morphology due to an oblate planet discussed
in Carter & Winn 2010a). Since the transit depth of WASP-12b is
approximately 1%, this shape-induced transit effect would come
in at the 1.3 × 10−3 level and might be detectable in our current
data. In Figure 9, we estimate the expected transit morphology
by treating the planet as a sphere with variable cross-sectional
area. The red line shows our fiducial model: a spherical planet
with nonlinear limb darkening of the star. The green line shows
the effect of the planet’s changing cross-sectional area (but not
its changing shape). The blue line shows how limb darkening
partially washes out this signal. Figure 9 implies that our data
rule out the most extreme prolate toy model, but clearly the
treatment of limb darkening is important here.

If we instead interpret the phase curve as being caused entirely
by longitudinal brightness variations on a spherical planet (the
blue curves in Figure 8), it can be inverted into a longitudinal
intensity map of the planet, following Cowan & Agol (2008).
Because of the low-pass filtering that occurs in the map → light
curve convolution, the deconvolution will enhance the highest
frequency terms present in the light curve (e.g., Figure 2 of
Cowan & Agol 2009). In the current case, the resulting map has
two prominent temperature peaks: one at the dawn terminator
and one at the dusk terminator. More importantly, the only way
to simultaneously fit the bright terminators and dark night side
is by having negative intensity at the anti-stellar point, clearly
an unphysical solution.

Another argument against a spherical planet is that while
the thermal phase variations of a spherical planet will in general
contain power in the second harmonic, there is no reason for it to
all appear in the cosine rather than sine term.20 When we run fits

20 This is in stark contrast to the first harmonic, where one expects most of the
power to be in the cos α term due to the extreme day–night forcing.
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allowing for the phase of the cos(2α) term to vary, the offset is
consistent with zero at the 2σ level, with the largest offset being
less than 6◦. This indicates that the flux is peaking at quadrature,
as expected for ellipsoidal variations. To our knowledge, there
is no reason to expect such a temperature profile if the planet is
spherical.

If the planet is prolate, however, one might expect some-
thing akin to the gravity darkening/brightening seen in some
binary stars: the sub-stellar and anti-stellar points on the planet
are farther from the center of the planet than the termina-
tor, leading to lower surface gravity. The lower surface grav-
ity at the sub-stellar and anti-stellar regions might lead to
cooler temperatures, all things being equal (von Zeipel 1924).
But this would only affect the intrinsic component of the
planet’s power budget, expected to be insignificant for hot
Jupiters.

Finally, it is possible that the planet’s shape affects the
circulation of its atmosphere in more subtle ways, leading
to relatively hot regions at the dawn and dusk terminators.
This brings us to our favored astrophysical interpretation of
the ellipsoidal variations. The planet may have an aspect ratio
of Rlong/Rp ≈ 1.5 (somewhat easing the transit morphology
constraints described above), with an additional enhancement
of the cos(2α) power because of a relatively hot day–night
terminator (the green curve in Figure 8). Since the atmospheric
dynamics on severely non-spherical planets has not yet been
addressed in the literature, it is difficult to say whether this
scenario is reasonable.

5.3.2. The Null Hypothesis at 4.5 μm

If the amplitude of ellipsoidal variations, Aellips, is set to
zero at 4.5 μm, the residuals become more correlated (as
one would guess from Figure 5), increasing the red noise
and hence uncertainties in the other astrophysical parameters.
Furthermore, including terms up to sixth order in the polynomial
IPSV-removal does not obviate the need for the ellipsoidal term,
and the same signal is detected in the Gaussian decorrelation
version of the analysis. The χ2 is worse when ellipsoidal
variations are ignored (Δχ2

R = 0.007 for either the decorrelation
or polynomial fit).

However, it is conceivable that the 4.5 μm ellipsoidal signal
is in fact uncorrected detector systematics. It is therefore
worth briefly considering the astrophysical implications of this
scenario.

The most obvious implication of the null hypothesis is that
the Roche-filling upper atmosphere of the planet need not be
optically thick. Since the predicted amplitude of ellipsoidal
variations were only at the 2σ level, the null hypothesis is
consistent with the predictions of Li et al. (2010), Leconte et al.
(2011), and Budaj (2011).

Furthermore, the ellipsoidal variations have minima at in-
ferior and superior conjunction, so the null hypothesis causes
the transit depth and eclipse depths to significantly increase.
Notably, the 4.5 μm transit depth becomes 0.0126(4), commen-
surate with that at 3.6 μm. The null hypothesis transit depths
are consistent with a short (night-like) scale height and solar
composition (solid black line in Figure 6).

The deeper 4.5 μm eclipse depth, Fday/F∗ = 0.0050(4),
no longer favors the enhanced CO scenario (yellow line in
Figure 6) invoked by Madhusudhan et al. (2011). The fit to
the solar composition model with modest inversion (green line
in Figure 7) is only worse by Δχ2 ≈ 4, for 8 degrees of freedom.

5.4. Thermal Phase Variations

We model thermal phases using only first harmonics (cos α
and sin α), while our parameterization of ellipsoidal variations
is a second harmonic (cos 2α). These functions are by definition
orthogonal, so it is not surprising that our conclusions about
thermal phase variations (Atherm, αmax) described below are not
significantly affected by the presence or absence of ellipsoidal
variations discussed above.

That said, the amplitude and offset we obtain for the thermal
phase variations depends on which IPSV-removal scheme we
use. Unfortunately, it is not clear how to perform a direct model
comparison between decorrelation and polynomial fits using the
BIC. The Gaussian decorrelation can be thought of as having a
large number of free parameters and a somewhat smaller number
of additional constraining equations, but it is not obvious how
to estimate its degrees of freedom. As discussed by Ballard
et al. (2010), the point-by-point decorrelation does a great job
of removing the short-term jitter and long-term detector drift,
but may also remove any longer-term astrophysical signal. (This
did not interfere with their goal of searching for transits.) Insofar
as diurnal phase variations are the most gradual astrophysical
signal in our study, it is not surprising that it is the most
dependent on IPSV-removal.

The polynomial fit leads to χ2 values at least as good
as—and sometimes significantly better than—the Gaussian
decorrelation. More importantly, the scatter in the residuals on
the critical 21 minute timescale is lower for the polynomial fits,
indicating that this method is doing a better job of removing
correlated noise.

Our 4.5 μm pixel sensitivity map obtained from Gaussian
decorrelation (top right panel of Figure 3) shows a valley at
y ≈ 14.75; this does not follow the usual pattern of sensitivity
decreasing toward pixel edges. (Note that we observe the same
ripples in sensitivity as Ballard et al. 2010, but those occur
on a much smaller spatial scale—and exhibit a much smaller
amplitude—than the y ≈ 14.75 valley.)

Finally, the middle left panel of Figure 3 suggests that the
decorrelation method has overcorrected the 3.6 μm system flux
near superior conjunction: the eclipse bottoms—which should
be flat since the planet is hidden from view—slope upward
toward the central transit.

We therefore argue that the decorrelation has filtered out much
of the phase variations along with the systematics and adopt the
polynomial-fitted thermal phase parameters in what follows.21

Following Cowan & Agol (2011b), we estimate the hemi-
spheric effective temperatures to be Tday = 2928(97) K
and Tnight = 983(201) K, where the uncertainties include
an estimate of systematic errors in going from brightness
temperatures to effective temperatures.22 This implies a Bond
albedo of AB = 0.25 (presumably due to Rayleigh scattering
and/or reflective clouds) and very low heat recirculation effi-
ciency, ε < 0.1, at 1σ (see Figure 10).23 Note that our 1D ra-
diative transfer models used for interpreting transit and eclipse

21 For completeness, we include the thermal phase parameters resulting from
the decorrelation in Tables 2 and 3. That analysis leads to smaller phase
amplitudes than the polynomial fit. If taken at face value, this implies lower
albedo and higher heat transport efficiency.
22 WASP-12b has a sub-stellar equilibrium temperature of T0 = 3555(132) K,
a no-albedo, no-recirculation dayside temperature of
Tε=0 = (2/3)1/4T0 = 3213(119) K, and a no-albedo full-recirculation global
temperature of Tuni = (1/4)1/4T0 = 2514(92) K (e.g., Cowan & Agol 2011b).
23 If one presumes that advection is the dominant mode of heat transport, then
ε ≈ τrad/(τadv + τrad), where τrad and τadv are the characteristic radiative and
advective timescales at the mid-IR photosphere.
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Figure 10. 1σ , 2σ , and 3σ constraints on the Bond albedo and recirculation
efficiency of WASP-12b from thermal eclipse (blue) and phase variation (red)
observations, using the parameterization of Cowan & Agol (2011b). The gray
scale shows the confidence intervals for the combined constraints.

(A color version of this figure is available in the online journal.)

spectra are cloud-free and have an albedo lower than this in-
ferred value.

Space-based optical secondary eclipse depths have been
measured for a handful of hot Jupiters. If the planet’s equilibrium
temperature is sufficiently low, such measurements provide an
unambiguous estimate of geometric albedo, Ag: 0.04(5) for
HD 209458b (Rowe et al. 2008), 0.32(3) for Kepler-7b (Demory
et al. 2011), 0.10(2) for Kepler-17b (Désert et al. 2011a), 0.30(8)
for KOI-196b (Santerne et al. 2011), and 0.025(7) for TrES-2b
(Kipping & Spiegel 2011). Acknowledging that WASP-12b is
more than 1000 K hotter than any of those planets, a Bond albedo
of 0.25 is well within the observed range for hot Jupiters.

Assuming gray albedo and a Lambertian scattering phase
function (AB = 3/2Ag; Hanel et al. 1992), the reflected-
light secondary eclipse of WASP-12b should have a depth of
2.4 × 10−4, comparable to current ground-based precision for
this target. In practice, most planets exhibit an opposition surge
(making them disproportionately bright at superior conjunction)
and Rayleigh scattering, so the actual contrast ratio in blue
optical wave bands is likely more favorable than this estimate.

Assuming solar atmospheric composition and hence opacity,
the 3.6 μm thermal flux should originate from deeper in the
atmosphere than any other mid-IR wave band. Insofar as
radiative times increase monotonically with pressure, we may
therefore expect the 3.6 μm phase variations to be muted
compared to the 4.5 μm phase variations, and the phase offset
should be greater at the shorter wavelength (e.g., Figure 9 of
Burrows et al. 2010).

The hot spot offset is 53(7)◦ east of the sub-stellar point at
3.6 μm. While not as extreme as υ-Andromeda b (Crossfield
et al. 2010), it is difficult to reconcile our large phase offset and
large amplitude at 3.6 μm.24 It is worth noting, however, that
there are highly correlated residuals near the purported peak
(∼0.35 day after transit) which may be partially responsible for
the large offset.

24 It is tempting to attribute the early peak of the 3.6 μm phase curve to
Doppler beaming, which would produce a peak in flux when the star is moving
toward us, a quarter period before superior conjunction (Loeb & Gaudi 2003).
The expected amplitude of this signal, however, is only 7.5 × 10−7 on the
Rayleigh–Jeans tail of the star.

On the other hand, we find that the 4.5 μm phase amplitude
and offset, 16(4)◦E, are consistent with a Cowan & Agol (2011a)
model with heat transport efficiency of ε ≡ τrad/τadv ≈ 0.1. To
put this in context, phase variations and eclipse timing offset of
HD 189733b at 8 μm indicate ε ≈ 0.7 (Agol et al. 2010).

5.4.1. Implications of Thermal Phase Variations

Cowan & Agol (2011b) noted that the dayside tempera-
tures of the hottest short-period giant planets are very close
to the theoretical upper limit of no albedo and no recircu-
lation. This was in contrast to run-of-the-mill hot Jupiters
(e.g., HD 189733b, HD 209458b), which exhibit a variety of
albedos/recirculation efficiencies, albeit consistent with gener-
ally low albedos (AB < 0.3). In a statistical study of Kepler
planetary candidates, Coughlin & Lopez-Morales (2012) also
found generally low albedos for hot Jupiters based on optical
secondary eclipses.

The amplitude of the phase variations for WASP-12b depends
on the details of the systematics correction, but—for reasons
stated at the start of Section 5.4—we favor the polynomial fit,
which implies a large day–night temperature contrast, and a
non-zero Bond albedo. This suggests that the difference between
the hottest short-period giant planets and other hot Jupiters is
not albedo, but recirculation efficiency. (Differences in albedo
may very well explain the differences in dayside effective
temperature among the remaining hot Jupiters, however.)

What could make the hottest of hot Jupiters poor heat
recirculators? There are two classes of solutions: decreasing
either the planet’s characteristic advective frequency or radiative
timescale.25

More magnetic drag. Assuming these planets have magnetic
fields, the movement of ionized alkali metals through the field
produces drag that is collisionaly imparted on the dominant
neutral species (presumably H and He). Hotter planets should
have more ionized species, more drag and therefore a harder time
advecting heat to their night side (Perna et al. 2010). Because
of the nonlinear dependence of ionization on temperature, this
effect could lead to sudden changes in dynamical regime as
one considers increasingly hot planets. The scaling relations
of Menou (2011) indicate that the temperature above which
magnetic drag severely curtails heat transport is inversely related
to the planet’s magnetic field strength. Even the weakest field
they considered in their study, 3 Gauss, would result in very low
recirculation efficiency for a planet as hot as WASP-12b.

Shorter radiative times. Following the argument of Cowan &
Agol (2011b), the radiative relaxation time of a parcel of gas
scales as τrad ∝ T −3 (Iro et al. 2005; Seager et al. 2005). But
zonal wind speeds may also increase with the amplitude of the
diurnal forcing. If one assumes that the wind speeds have a fixed
Mach number, they should scale as vwind ∝ T 1/2, and therefore
the advective time should scale as τadv ∝ T −1/2 (a more detailed
scaling analysis leads to the same temperature dependence;
Menou 2011). The stronger dependence on temperature of
radiative time compared to advective time implies that—all
things being equal—hotter planets should be less efficient at
balancing their day–night temperature contrast. This effect
should cause the heat transport efficiency to gradually decrease
as one considers increasingly hot planets.

25 One can imagine more exotic means of transporting energy (e.g., gravity
waves; Watkins & Cho 2010) but most hydrodynamical simulations suggest
that horizontal energy transport on hot Jupiters is primarily a matter of
advection.
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Weaker greenhouse. Atmospheric opacity is typically greater
at the thermal wavelengths of emergent radiation than at
the visible wavelengths of incident radiation. For the hottest
planets, the blackbody peak of thermal emission approaches
the peak of their host star, so the opacities of the incoming
and outgoing streams converge. In that limit, one expects the
thermal photosphere and the optical deposition depth to be one
and the same: thermal radiation should escape the atmosphere
just as easily as the incoming stellar radiation came in. As
with the scalings above, this effect should lead to gradually
decreasing recirculation efficiency as a function of increasing
planet temperature.

More observations of thermal eclipses and phase variations
for hot Jupiters—especially those near the T0 ≈ 2700 K
transition—will be necessary to distinguish between the mag-
netohydrodynamic and the radiative timescale arguments.

6. CONCLUSIONS

We obtained Warm Spitzer full-orbit phase observations of
WASP-12b at 3.6 and 4.5 μm, allowing us to measure the
transit depths, eclipse depths, thermal and ellipsoidal phase
variations at both wavelengths. We are able to push Warm Spitzer
photometry to within 10%–20% of the Poisson limit, but there
are two important caveats.

1. Removing IPSVs from the data is inherently a model-
dependent endeavor. This means that we must specify not
only an IPSV model, but also an astrophysical model before
getting close to the quoted precision. The simultaneous fit
to astrophysical and systematic effects makes it difficult to
produce a “clean” light curve independent of astrophysical
assumptions. For example, we obtain very different thermal
phase variation parameters depending on how we correct
for systematics, and it is difficult to distinguish between
these scenarios based solely on goodness of fit. Instead,
we must resort to a number of indirect clues as to which
IPSV-removal scheme is more trustworthy.

2. There is still red noise in our residuals, no matter how we
remove IPSVs. This remaining red noise is the dominant
source of uncertainty for all of our astrophysical parameters.

We find that WASP-12b exhibits large-amplitude thermal
phases—indicative of poor day–night heat transport and a
moderate Bond albedo—but also an unexpectedly large phase
offset at 3.6 μm. We do not detect ellipsoidal variations at
3.6 μm, while we detect an unexpectedly strong signal at
4.5 μm. This leads us to two possible hypotheses.

1. If we take the 4.5 μm ellipsoidal variations at face value,
we find: deeper transits at 3.6 μm as compared to 4.5 μm,
inconsistent with either solar or enhanced CO models;
eclipse depths consistent with previous studies. If the
4.5 μm ellipsoidal variations are astrophysical in nature, it
indicates that the planet is far more distorted than predicted,
and exhibits a bright terminator. In this scenario, the
3.6 μm ellipsoidal variations are attenuated due to detector
systematics, possibly throwing off the 3.6 μm transit depth
as well.

2. If instead we presume that the 4.5 μm ellipsoidal varia-
tions are caused by detector systematics and set them to
zero—the null hypothesis—we find: transit depths consis-
tent with a solar composition and short atmospheric scale
height at the planet’s terminator; eclipse depths consistent
with a solar composition and a modest temperature inver-
sion; ellipsoidal variations in line with predictions.

The null hypothesis is attractive in its simplicity, but requires
that we were very unlucky; follow-up Warm Spitzer observations
would have different systematics (the PSF would fall on different
regions of the pixels) and could settle the question of ellipsoidal
variations. It is likely that near-infrared transit spectroscopy
could break the composition degeneracy, or at least determine
the atmospheric structure of WASP-12b; if the planet has a
short scale height at the terminator it will lend credence to
the null hypothesis. Further optical transit photometry will
be useful in pinning down the transmission spectrum and
refining geometrical parameters; if a/R∗ < 3, then the planet
could very well be more distorted than predicted, making
the large ellipsoidal variations more plausible. Optical eclipse
measurements from the ground or from space might confirm the
moderate albedo of the planet.

The planet is hypothesized to be losing mass to its host star.
If this is indeed the case, the presence of an accretion disk,
accretion stream, and impact hot spot may necessitate a more
holistic model to properly interpret observations.
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with the Spitzer Space Telescope, which is operated by the Jet
Propulsion Laboratory, California Institute of Technology under
a contract with NASA. Support for this work was provided by
NASA through an award issued by JPL/Caltech.
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