Hurricane Karl’s Structure and some thoughts for 2014 strategy

Dan Cecil, NASA MSFC
Ken Leppert II, Univ. Alabama-Huntsville
Why Karl?

Pros:
- Karl is the only hurricane so far sampled with the flight patterns we want for HIRAD, HIWRAP, HAMSR
- Karl was rapidly intensifying from TS to Cat-3 Hurricane while crossing the Bay of Campeche

Cons:
- They were not on the same aircraft (HIRAD on WB-57, HIWRAP and HAMSR on AV-6), so did not have coincident measurements
- Only a few hours of overlap between WB-57 and Global Hawk
- Retrievals from all instruments are slow to come out

Bottom Line:
This case has interesting data, but far below the standards we should be able to achieve in HS3
Best Track

GH on station 1845 – 0830 UTC 16-17 Sep 2010
WB-57 (with HIRAD) on station only late 16 Sep
The few hours of overlap are probably the best we have so far for the HS3 Over-Storm payload (HIWRAP, HIRAD, HAMSR)
Karl was re-organizing / rapidly intensifying after crossing the Yucatan. Karl regained hurricane intensity just before the aircraft arrived, and peaked (110 kt) shortly after Global Hawk departed.
Satellite Vis Snapshots
from NRL MRY TC Web Page

09/16 1500 UTC

09/16 1815 UTC

09/16 2100 UTC

09/16 2315 UTC

09/16 1315 UTC
Satellite IR Snapshots
from NRL MRY TC Web Page

09/16 1500 UTC
09/16 1745 UTC
09/16 2045 UTC
09/17 0000 UTC
09/17 0300 UTC
09/17 0600 UTC
09/17 0845 UTC
09/17 1200 UTC
Hurricane Karl (2010) as seen by Hurricane Imaging Radiometer (HIRAD) (left) and conventional visible satellite imagery (right). HIRAD flies over hurricanes on high-altitude aircraft to measure the surface wind speed. Red shades denote the strongest winds and heaviest rains.
HIRAD depicts strongest winds, heaviest rain from NW side cyclonically around to S/SE side.
HIRAD Legs 5, 7, 10

Rain Rate

From UCF MLE algorithm

Wind Speed

HIRAD depicts strongest winds, heaviest rain from NW side cyclonically around to S/SE side.
HIWRAP Composite at 2 km

Also shows heaviest rain, strongest winds from NW around through SE sides

From Steve Guimond

Hurricane Karl (2010) Ku band average (files 1 – 3) at 2 km
Inner core vertical motion

From HIWRAP vertical velocity cross-sections, qualitatively depicting whether eyewall / inner core had predominantly *upward motion* (red) or *downward motion* (blue).

Azimuths depict the quadrants sampled, but plotted radius depicts duration of time into flight.
How do we get better over-storm cases in HS3 2014?

Dan’s Soapbox

Fly the Over-Storm aircraft over the storm
• Do not approach thunderstorms within 25 nm during flight at FL500 or below.
• Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except:
 a) When cloud tops above FL500: Do not approach reported significant lightning activity or indicators of significant overshooting tops within 25 nm.
 b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops.
• No flight into forecasted or reported icing conditions

Open the East Pacific as an option
• We have 3+ months until science flights – there should be time to work it out.
• NHC has a Mexican Air Force representative during the summer to coordinate clearances
• Potential El Nino favors East Pac over Atlantic
• Even without El Nino, HS3 2013 would have been better served by flying the East Pacific
Karl and the flight rules

Cloud tops 50-54 kft
Overflown by AV-6 with no problems

Recall from Zipser, Houze presentations (and several papers) that convection occupies a small percentage of the area under the hurricane’s cloud shield

Figures from Sarah Monette and Chris Velden, from the 2013 flight rules white paper
Matthew (2010) and the flight rules

Cloud tops 52-58 kft
Overflown at 58-61 kft with no problems

- Aircraft should maintain **at least 5000 ft vertical separation from significant convective cloud tops** except:
 a) When cloud tops above FL500: Do not approach reported significant lightning activity or indicators of significant overshooting tops within 25 nm.
 b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops.
Emily and the flight rules
(ER-2 case, GH rules don’t apply)

ER-2 overflew broad area of high cloud tops on SE side with no problem

Turbulence when overflying a new cell that emerged on inner edge of the western eyewall

Several lightning flashes, beginning just before the ER-2 got to the wrong place at the wrong time
Emily box pattern

After the turbulence, we flew a box pattern just outside the eyewall.

No problems, pilot edged closer to the eyewall as he grew more comfortable.

If we cannot overfly a given eyewall due to significant convection, we should be able to fly the adjacent region.

Significant convection is rare there, even under very high cloud shield – think Molinari, Corbosiero, Cecil, Houze, etc.
1997 (El Nino)

5 W. Atlantic storms in June-July
0 for August
1 C. Atlantic Hurricane (Erika) in Sept
2 TS in October

Aug 25 – Nov 10

3 Major Hurricanes + 2 TS
Aug 25 – Sep 26 in E. Pac.
2009 (El Nino)

Atlantic: 2 short-lived TS and 1 Major Hurricane (Fred, east of 35°) Aug 26 – Sep 29

E. Pac: 3 TS and 2 Hurricanes (1 major, Jimena) Aug 26 – Sep 29
Summary

Karl has interesting data, but far below the standards we should be able to achieve in HS3.

We need to fly AV-1 over hurricanes in 2014.

Most of the cold cloud shield in the inner core of hurricanes should be safe for AV-1 to fly. Significant convection occupies a small region, but we sometimes unnecessarily apply the 5000-ft separation rule to the entire cold cloud shield.

We should make the East Pacific a viable option. There are 3+ months to work out clearances, which NHC should be able to facilitate.

I am *not* advocating that we give up on the Atlantic, just that we should be prepared to fly across Mexico to East Pacific targets.