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A hardware system’s failure rate often increases over time due to wear and aging, but 
not always. Some systems instead show reliability growth, a decreasing failure rate with 
time, due to effective failure analysis and remedial hardware upgrades. Reliability grows 
when failure causes are removed by improved design. A mathematical reliability growth 
model allows the reliability growth rate to be computed from the failure data. The space 
shuttle was extensively maintained, refurbished, and upgraded after each flight and it 
experienced significant reliability growth during its operational life. In contrast, the 
International Space Station (ISS) is much more difficult to maintain and upgrade and its 
failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly 
(CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue 
to be a challenge.  

Nomenclature 
CDRA = Carbon Dioxide Removal Assembly 
ECLS = Environmental Control and Life Support 
ISS = International Space Station 
MTBF = Mean Time Before Failure 
NHPP = Non-Homogeneous Poisson Process 
WHC = Waste and Hygiene Compartment 

I. Introduction 
HIS paper discusses the process and mathematical modeling of reliability growth and considers its applicability 
to space life support systems. In failure analysis, it is often assumed a system’s failure rate first decreases with 

time, then remains constant during its normal operating life, and then finally increases due to wear and aging. This is 
represented by the well known “bathtub curve.” Actually most systems do not have an increasing failure rate due to 
aging, and some have a decreasing failure rate, called reliability growth, due to failure-preventing maintenance and 
failure-cause-removing upgrades. Reliability will grow if maintenance and redesign eliminate failure causes. Failure 
sources that are later removed by an improved design can be considered oversights in the original design. Since a 
design error affects all the units built to that design, it is usually categorized as a common cause failure.  

The Duane reliability growth model plots the cumulative failure rate, the total number of failures divided by total 
test time, versus the test time. The number of failures per unit time often declines with time, and can be 
approximately plotted by a straight line sloping down on a log-log graph. A formula for the failure rate can be 
derived by assuming the failures are produced by a time varying random Poisson process. Then the reliability 
growth slope can be computed from the failure data.  

Failure rate data and the possibility of reliability growth are considered for the space shuttle, the International 
Space Station (ISS), and the ISS Carbon Dioxide Removal Assembly (CDRA). The space shuttle demonstrated 
significant reliability growth. The shuttle was extensively maintained, refurbished, and upgraded after each flight. 
The ISS failure rate has been approximately constant over time. The ISS CDRA reliability has been slightly 
decreasing. Reliability growth requires an active program to discover and analyze failures and make improvements 
to fix the discovered design deficiencies. The space shuttle program achieved reliability growth. Failures on ISS and 
with the CDRA have not decreased.  
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II. Reliability growth concepts 
This section describes how failure rates may vary over time and how a decreasing failure rate, reliability growth, 

may be achieved. Reliability growth models and their use are explained.  

A. System failure rate changes over time 
The failure rate is the number of failures per unit time. The usual depiction of a system’s changing failure rate 

over time is the “bathtub curve.” This is seen when a system has a failure rate that first decreases with time, then 
remains constant during the system’s useful life, and finally increases due to component wear out. The initial high 
“infant mortality” failure rate is due to burn-in, to failure of defective components, and to detection and correction of 
design faults. The failures during useful life are usually assumed to be random events caused internal degradation. 
The failure rate increase at end-of-life can be caused by mechanical wear or aging related to chemical or thermal 
activity. The bathtub curve is shown in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The bathtub failure rate curve, arbitrary time units. 
 
More than two-thirds of all systems show infant mortality and then a constant failure rate, but no final aging 

period. (Hansen, p. 143) Individual shuttle maintenance data show a rapid decrease in the problem rate to a baseline 
that then decreases slightly, indicating reliability growth. The shuttle had no failure rate increase due to end-of-life 
effects, probably because of extensive maintenance and refurbishment. (Shishko, p. 93)  

Standard reliability analysis attempts to estimate the failure rate of a system during its useful life, between burn-
in and wear-out. A constant failure rate during useful life is usually assumed. However, reliability growth is often 
observed.  

B. Reliability growth concept 
Reliability can grow when effective efforts are made to reduce failures. Different kinds of systems have different 

failure modes that require different fault testing and remediation.  
1. High volume production hardware 
Commercial mass-produced hardware of a given design and model year, such as an automobile, appliance, or 

machine, does not show reliability growth during operational life. Failure rates follow the standard bathtub curve, 
although maintenance can postpone wear-out. Except for the occasional recall, the failures that occur are accepted as 
normal and repaired without a redesign. The production system’s reliability is the result of design and development 
trade-offs with cost, schedule, and performance.  

The reliability of commercial hardware usually increases from one year to the next, due to advances in 
technology and design techniques. Longer operating time does not itself increase reliability. More testing does not 
itself increase reliability. Testing and operating a system produce failures. Redesigning systems to reduce or 
eliminate failure modes increases reliability.  

2. Software 
Software is different from hardware. Hardware has inherently limited reliability since it always fails sooner or 

later due to some component or material failure. Software implements a logical structure that always does exactly 
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what it is programmed to do. Simple, well-designed, thoroughly tested software can achieve perfection and work 
flawlessly forever.  

Software often fails by producing unintended results or crashing. Rebooting and rerunning the same software 
always produces the same results, as long as the hardware is correct. Software failure modes are built into the code. 
Software failures are due to design errors. Software is developed, tested, integrated, and tested again, debugged, to 
detect and repair design errors, bugs. It is often not possible to test moderately complicated software enough to 
discover all flaws because of its very large number of different states and paths. An error in software may first 
appear after years of operation.  

Debugging during development and operations usually produces reliability growth. It may happen over time that 
the original software designers leave and less knowledgeable programmers make bug fixes that introduce new flaws, 
“software rot.”  

3. Development hardware 
Development hardware is produced in only a few units, unlike production hardware. Development hardware may 

be preproduction or perhaps only one or a few units may be needed, as in space applications. The typical 
development process is to design, test, investigate failures, and then redesign to eliminate the failure causes. This 
process is intended to reduce the failure rate and cause reliability growth. More failures will occur in high stress 
accelerated life tests.  

If the development process could remove all design flaws, a hardware system would have only unavoidable 
random failures, usually modeled by a constant failure rate, and no further reliability growth would be possible. In 
well-designed hardware, the probability of failure due to design flaws is usually much lower than the probability of 
random failure due to unavoidable physical or chemical deterioration.  

4. Design flaws lead to common cause failures 
System faults are either removable or non-removable. Failure sources that can be removed by redesign are 

design errors or oversights. All software faults are design errors. Since all copies of a particular software program 
will produce the same failures, these failures could be called common cause failures, although the term is usually 
used only for hardware.  

A useful definition of a common cause failure is one that cannot be cured by redundancy. Suppose a hardware 
system has two redundant components in a parallel path. If one fails the other can be used. But if both components 
are identical and have the same design flaw, both will fail, defeating redundancy. A design error can produce a 
common cause failure, perhaps better termed a “potential design improvement” or “reliability growth opportunity.”  

Common cause failures are caused by design errors, failures in human understanding and implementation. 
Common cause failures are usually identified by a failure analysis that determines that a design change is needed.  

In poorly designed systems, common cause failures may account for half the failures. The typical rate of 
common cause failures is ten percent but some systems have much lower rate. (Jones, 2012-3602)  

5. Different types of systems 
Failure testing varies for different types of systems. Some hardware operates continuously so failures are 

distributed over clock time. Many units and long test times are needed to detect infrequent failures and verify high 
reliability. Machines and automobiles are operated occasionally and failures occur with operating time or miles 
driven. One-shot systems such as rockets and explosive bolts work or fail on each test or flight. On-demand systems, 
such as alarms and back-up generators are usually not in operation but can be tested repeatedly. Software is timeless 
and always gives same result if run the same way, but many permutations cannot be tested when test time is limited. 

III. Reliability growth models 
The common Duane model of reliability growth is described first. The Duane model is then given a statistical 

basis and reformulated by assuming the failure data is produced by a time varying random Poisson process.  

A. The Duane model  
The failure rate, λ, is the number of times a component or system is expected to fail per unit time, given that it is 

currently still operating. It is assumed in basic reliability analysis that the failure rate, λ, is constant during the useful 
life of a system. The Mean Time Before Failure (MTBF) is the inverse of the failure rate, λ.  

  MTBF = 1/λ 
Reliability growth, a decreasing failure rate over time, can occur when design improvements are made or failure 

modes removed. If the failure rate varies with time, it is λ(t), the instantaneous failure rate.  
The Duane model is the earliest reliability growth model and is still commonly used. Duane observed in 1964 

that a plot of the measured cumulative failure rate, [N(t)/t], versus the cumulative test time, t, often closely follows a 
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straight line when plotted on log-log graph paper. This occurred when failures were fixed by redesigns that 
improved reliability.  

Duane’s log-log plot is described by the equation  
 
  log [N(t)/t] = log k – α log t 
 
Here t is the total test time, N(t) is the cumulative number of failures until time t, k is a constant scale factor 

greater than zero, and α is the failure growth rate parameter that varies between zero and one.  
Taking antilogarithms  

  N(t)/t = k t
-α  

Given the two parameters of Duane’s model, k and α, the cumulative number of failures, N(t), and the 
cumulative failure rate, [N(t)/t], can be calculated for any time t. It is possible to solve this equation to find the test 
time it will take to achieve a specific failure rate, assuming that the reliability growth rate remains constant. 
Measured values of α, the growth rate parameter, average about 0.4 and usually vary from 0.2 to 0.6. (Yamada and 
Osaki) (MIL-HDBK-189C)  

B. A Duane model reliability growth analysis 
The Duane model is a graph-based analysis of reliability growth data. A data set of 56 failures occurring over 

400 hours is used to plot the data points of Figure 2. The data set is the list of failure times. These are used to 
compute the cumulative number of failures, N(t) and the cumulative failure rate, N(t)/t. (MIL-HDBK-189C, Table 
XV, p. 114)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Cumulative failure rate N(t)/t plotted versus time, t, in a Duane log-log graph. 
 
As expected, the data fall near a straight line on the log-log graph. The best Duane straight line fit has the 

equation,  
 
  log [N(t)/t] = 0.640 - 0.283 log t 
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So α = 0.283 and k = 0.640, and the Duane line fit is also plotted in Figure 2.  

  N(t)/t = 0.640 t
-0.283

  
 
The Duane line fit shows significant reliability growth. If the process of fixing failures continued as during the 

first 400 hours of test, the cumulative failure rate, N(t)/t, would drop below 0.10 at about 700 hours, according to the 
Duane line fit.  

However, it is easy to see that the sharp downward slope, and the high reliability growth parameter, α = 0.283, 
are due to the high early failure rate, infant mortality. The final data points for N(t)/t are above the fitted line, 
suggesting that reliability may no longer be growing! If the first two failures are ignored, the Duane line downward 
slope is much shallower, corresponding to α = 0.171.  

We will consider reliability growth for this data set again, but first the Duane model will be reformulated by 
assuming the failure data is produced by a time varying random Poisson process. This statistical model can provide a 
better estimate of the reliability growth.  

C. Crow’s formulation of Duane’s model using the non-homogeneous Poisson process 
Statistical reliability growth models usually assume that system failures are caused by a non-homogeneous 

Poisson process (NHPP). The NHPP is non-homogeneous in time, meaning the statistics and resulting failure rate 
change over time.  

A Poisson process counts the number of events, N(t), that occur during the time interval (0, t). The time varying 
failure rate is λ(t). A Poisson process occurs if:  

(1) the numbers of events (failures) in non-overlapping intervals are stochastically independent;  
(2) the probability that exactly one event occurs in the brief interval (t, t+Δt) is approximately λ(t) Δt; and,  
(3) the probability that more than one event occurs in an interval of length Δt approaches zero as Δt approaches 

zero. 
If these requirements are met, then the number of events occurring by time t, N(t), has a Poisson distribution 

with a mean value, m(t), which is equal to the integral from 0 to t of λ(t), m(t) = ∫ λ(s) ds. N(t) is the actual number 
of failures and m(t) is the expected number of failures occurring in the interval (0, t). (Yamada and Osaki) (MIL-
HDBK-189C)  

1. Crow’s formulation of Duane’s model  
Crow in the 1970’s reinterpreted the Duane model. He assumed that the failures of a system during development 

testing occur according to an NHPP with a power law mean value function, m(t), and the Weibull distribution failure 
rate. The mean number of failures is assumed to be 

  m(t) = k tβ 
where k is positive and β is between zero and one.  
The instantaneous failure rate is the time derivative of the number of failures. 

  λ(t) = d[m(t)]/dt = k β tβ
-1

 
This is known as the Weibull distribution failure rate. The resulting reliability growth model is equivalent to the 

Duane model. Its mathematically expected cumulative failure rate is given by 

  Expected [N(t)/t} = m(t)/t = k tβ
-1  

 
The Duane model α is equal to 1 - β in Crow’s reformulated NHPP based model. The parameter k is the same as 

in the Duane model. The parameter β is the ratio of the current instantaneous failure rate, λ(t), to the average 
cumulative failure rate, m(t)/t.  

 

  β = λ(t)/[m(t)/t] = k β tβ
-1

/k tβ
-1    

 
A β less than one corresponds to a decreasing failure rate and positive reliability growth. (Yamada and Osaki) 

(MIL-HDBK-189C) 
2. Reliability growth parameter estimation 
The assumption that failures occur according to an NHPP with a Weibull distribution failure rate allows the 

reliability growth model parameters k and β to be calculated from the failure data.  
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Suppose that N failures are observed during the test time (0, T), and that they occur sequentially at times s1, s2, 
… , sN. The maximum likelihood estimate of β is 

 
  β* = N / ∑ ln (T/si)  
 
where ln is the natural logarithm and the summation ∑ is over i = 1 to N. The maximum likelihood estimate of k 

is 

  k* = N / Tβ*
 

 
(Yamada and Osaki) (MIL-HDBK-189C) 
3. An NHPP model reliability growth analysis 
The same data set of 56 failures occurring over 400 hours used in Figure 2 is used again in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Cumulative failure rate N(t)/t plotted versus time, t, in an NHPP log-log graph. 
 
The computed value of β = 0.927 and the computed k = 0.217. This β corresponds to an α = 1 - β = 0.073, which 

is much less than the α = 0.283 found using the Duane method. The fitted line is 

  Expected [N(t)/t} = m(t)/t =  k tβ
-1  = 0.217 t 

-0.073
 = 0.217  t

-α 
 
As can be seen in Figures 2 and 3, the α which corresponds to the downward slope of the fitted line and 

measures the estimated reliability growth is much less for the NHPP model than for the Duane model. The NHPP 
model is much less influenced by the early infant mortality data and gives a more realistic projection of reliability 
growth. If the process of fixing failures continued as during the first 400 hours of test, the cumulative failure rate, 
N(t)/t, would be 0.131 at 1,000 hours in the NHPP model. This is a significantly higher failure rate than in the Duane 
model line fit.  

4. Does this data show continuing reliability growth? 
Crow used this data set to illustrate the NHPP model method and it was analyzed in (MIL-HDBK-189C, pp. 

113-6). The same values of k and β were obtained there. It was noted that, “While growth is small, hypothesis 
testing indicates it is significantly different from 0. Thus growth is occurring and the failure intensity (failure rate) is 
decreasing.” MIL-HDBK-189C, p. 115)  

Figure 4 shows the cumulative failure rate, N(t)/t plotted versus time, t, but in actual values, not in the usual 
Duane log-log graph.  
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Figure 4. Cumulative actual N(t)/t plotted versus time, t, not log-log.  
 
Each data point is a failure occurrence, so when the next failure is long delayed, the cumulative failure rate falls. 

After the high initial failure rate is smoothed out over time, the cumulative failure rate in Figure 4 looks nearly 
constant. It actually increases slightly after 350 hours. Eliminating only the first failure data point in the computation 
of β increases β about ten percent, so that then the value of β is greater than one and α is negative, indicating that 
there is no reliability growth. The entire data set does show reliability growth, but it is apparent only in the early part 
of the test.  

The cumulative average failure rate from time zero is shown in Figure 4. As the number of failures increases to 
56, the cumulative average converges to a steady state constant number and additional failures change it only 
slightly. Figure 5 shows the average recent failure rate based on the last 20 failures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The average recent failure rate based on the last 20 failures.  
 
The first point at 122 hours is the average failure rate based on the first 20 failures. Each new failure is added 

and the earliest one is dropped, to compute a new moving time window average after each subsequent failure. The 
recent average failure rate decreases until 250 or 320 hours, but then it increases, first slightly and then with a jump. 
It could be judged that the average recent failure rate is roughly constant from 220 to 365 hours. Three failures close 
together at about 365 hours cause a sharp increase in the recent average failure rate.  

The statistical analysis based on the NHPP model shows a small positive reliability growth. The final increase in 
the recent failure rate could then be attributed to random variation. However, the final increase is large enough to 
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cancel all the previous reliability growth after the infant mortality phase. Clearly, the reliability growth process is 
not producing significant failure rate decrease in this textbook example.  

It appears that the Duane log-log plot, and even the NHPP mathematical line fit can exaggerate the long term 
reliability growth because they are strongly influenced by the very common early “infant mortality’ failures. The 
recent failure rate and trend are the best predictors of the near future failure rate. And many systems do exhibit an 
“end-of-life” increase in failure rate.  

5. Projecting future reliability. 
Reliability growth is driven by an active program to test a system, discover its failures, and then make 

improvements and fix design deficiencies. The Duane and NHPP reliability growth models attempt to characterize 
this process. The NHPP model does a better job of fitting the later stages of reliability growth.  

The reliability growth models can be used to project the future reliability growth if the past test and upgrade 
process is continued into the future. The NHPP model indicates that N(t)/t could reach 0.131 at 1,000 hours.  

If the test and fix process is terminated and the system put into operation, the best estimate of the future failure 
rate is the final failure rate at the end of the reliability growth effort. For the NHPP model, the final cumulative 
failure rate, N(t)/t, is 0.140. The final recent average failure rate, based on the last 20 failures is 0.164, higher tha 
expected.  

IV. Space systems reliability growth 
Failure rate data and reliability growth are considered for the International Space Station (ISS), the space shuttle, 

and the ISS Carbon Dioxide Removal Assembly (CDRA).  

A. International Space Station (ISS) 
The cumulative failure rate versus time for the ISS is shown in Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The cumulative failure rate for the ISS. 
 
The failure rate has been essentially constant over time. The ISS failure rate data is based on the number of 

unscheduled maintenance actions from February 1999 to February 2011. (Cirillo et al.) The number of pressurized 
modules grew from two to fourteen over this period, and the data is normalized as failure rate per pressurized 
module. Since the ISS was not permanently inhabited for the first two years, the number of unscheduled 
maintenance actions was much lower.  The same ISS data is plotted in Figure 7 in a log-log plot with HNPP best fit 
line.  
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Figure 7. Cumulative failure rate for ISS in a log-log graph with an NHPP line fit. 
 
The NHPP fit line has a β = 1.022, α = - 0.022, roughly corresponding to constant or slightly decreasing 

reliability. To achieve reliability growth, failures must be analyzed and the design changed to prevent the problems 
recurring. The ISS is difficult operational environment. Developing and implementing improvements requires a long 
time cycle, even compared to its long operational life.  

Russell and Klaus found that Environmental Control and Life Support (ECLS) repair was a major component of 
ISS maintenance. They also found that the ISS ECLS maintenance load was constant over an 865 day period. 
(Russell and Klaus) (Russell et al.) The ISS and ISS ECLS failure data do not show reliability growth.  

The ISS failure data was provided by (Cirillo et al.) as the number of maintenance actions related to failures per 
month. The formula given above for computing the NHPP fit line uses the individual failure time data. Estimating 
the NHPP line fit for grouped data, such as failures per month, requires a trial and error procedure using a nonlinear 
equation that is described in (MIL-HDBK-189C, p. 85). The space shuttle and CDRA failure data below are also 
grouped.  

B. Space shuttle 
The cumulative failure rate data versus time for the space shuttle is shown in Figure 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The cumulative failure rate for the space shuttle. 
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The data is for the space shuttle Columbia for its first 10,000 operating hours and was reported in this form. The 
discontinuity at about 4,000 operating hours is due to the interruption of shuttle flights after the 1986 Challenger 
accident. The other shuttles show similar failure rate declines. (Shishko, SP-6105) The same Columbia space shuttle 
data is plotted in Figure 9 in a log-log plot with the NHPP best fit lines. 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Cumulative failure rate for the space shuttle in a log-log graph with NHPP lines fitted. 
 
The first NHPP line has β = 0.385 , α = 0.615, and the second line has β = 0.496 , α = 0.504, both corresponding 

to significant reliability growth. The shuttle was extensively refurbished, maintained, and upgraded after each flight. 
A large staff had the time it needed in ideal hangar conditions, which is a significant contrast to the ISS in continual 
orbital flight. The space shuttle failure history is a convincing demonstration of reliability growth in a space system.  

C. ISS Carbon Dioxide Removal Assembly (CDRA) 
The ISS Carbon Dioxide Removal Assembly (CDRA) has been operating on board ISS since 2001. The number 

of failures per year was determined from yearly ISS life support system status papers given at ICES. (Reuter, 2000-
01-2248, Reuter and Reysa, 2001-01-2386, Gentry et al., 2002-01-2495, Williams et al., 2003-01-2589, Williams 
and Gentry, 2004-01-2382, Williams and Gentry, 2005-01-2777, Williams and Gentry, 2006-01-2055, Williams and 
Gentry, 2007-01-3098, Williams and Gentry, 2008-01-2131, Williams and Gentry, 2009-01-2415, Williams et al., 
2010-6180, Williams et al., 2012-3612) Two units were on board during the last year reported and the cumulative 
failure rate is given per unit. The cumulative failure rate for the ISS CDRA is shown in Figure 10.  
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Figure 10. The cumulative failure rate for the ISS CDRA. 
 
The data was gathered in the form of the number of failures per year. No failures were reported in years 4, 5, and 

6, which were 2004, 2005, and 2006. This gives an impression of initial reliability growth, but many failures 
occurred in the following years. The same the ISS CDRA data is plotted in Figure 11 in a log-log plot with HNPP 
best fit line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Cumulative failure rate for the ISS CDRA in a log-log graph with an NHPP line fit. 
 
The NHPP line has β = 1. 186, α = -0.186, corresponding to decreasing reliability. The NHPP line fit procedure 

for grouped data was used. The ISS CDRA, like the ISS ECLSS and overall ISS, does not show reliability growth. 
The continuing poor reliability of ISS life support is acknowledged and well known. “It continues to be a challenge 
to provide the functionality necessary to support the six crew members on ISS with all of the problems that have 
occurred with the new regenerative ECLS racks, WHC, and CDRA.” (Williams et al., 2012-3612)  

V. Conclusion 
The motivation for this work was a hope that the expected reliability growth in space life support would lead to 

the high reliability systems needed for future missions to deep space, an asteroid or Mars. Although the ISS ECLS is 
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effectively supporting the crew and providing valuable knowledge and experience, it is clearly not evolving into the 
ultra reliable system needed for Mars.  

As a practical matter, the great complexity of analyzing failures and implementing upgrades on the orbiting ISS 
makes it very difficult to improve ISS reliability. The ISS maintenance approach accepts the possibility of failures 
and relies on the resupply and onboard storage of replacement units, which is effective in Earth orbit but not in deep 
space. And, ISS life support reliability does not seem to be significantly improving. 

Logically, systems engineering and design is about making the best practical trade-offs. Reliability is very 
important, but it is only one objective that must be balanced against many others, including launch mass, crew time 
for operations, maintenance, and repair, crew time and equipment for science, and the hardware development and 
total mission costs. The best overall life support system design for a space station, if it was possible to invest 
development funds to cut total mission cost, would be more reliable and initially expensive than the current system, 
but would still be much less reliable and expensive than the life support system needed for Mars. If life support fails 
on the space station, parts and materials for repairs can be provided or the crew can return to Earth. If life support 
fails on the way to Mars, the crew may be lost. The expense of the ultra reliability needed for Mars is not justified 
for an orbital space station. The reliability of life support for a space station, even for the Moon or anywhere within 
the Earth-Moon system, will never grow through the expected process of failure analysis and upgrade, to reach the 
ultra reliability needed for deep space and Mars.  
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