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Abstract

Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM)
affect the simulation of brightness temperatures (Th) over land and the in-
version of satellite-observed Tb into soil moisture retrievals. In particular,
accurate estimates of the microwave soil roughness, vegetation opacity and
scattering albedo for large-scale applications are difficult to obtain from field
studies and often lack an uncertainty estimate. Here, a Markov Chain Monte
Carlo (MCMC) simulation method is used to determine satellite-scale esti-
mates of RTM parameters and their posterior uncertainty by minimizing
the misfit between long-term averages and standard deviations of simulated
and observed Th at a range of incidence angles, at horizontal and vertical
polarization, and for morning and evening overpasses. Th simulations are
generated with the Goddard Earth Observing System (GEOS-5) and con-
fronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS)
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mission. The MCMC algorithm suggests that the relative uncertainty of
the RTM parameter estimates is typically less than 25% of the maximum
a posteriori density (MAP) parameter value. Furthermore, the actual root-
mean-square-differences in long-term Th averages and standard deviations
are found consistent with the respective estimated total simulation and obser-
vation error standard deviations of ¢,,=3.1 K and 0,=2.4 K. It is also shown
that the MAP parameter values estimated through MCMC simulation are
in close agreement with those obtained with Particle Swarm Optimization
(PSO).
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1. Introduction

Uncertainties in radiative transfer modeling (RTM) affect the simula-
tion of brightness temperatures (Th) over land and the inversion of satellite-
observed Tb to soil moisture retrievals. Quantification of these uncertainties
is crucial to producing, validating and using passive microwave data, such
as those obtained from the Soil Moisture Ocean Salinity (SMOS, Kerr et al.
(2010)) and future Soil Moisture Active Passive (SMAP, Entekhabi et al.
(2010)) missions. Yet, it is not particularly clear which RTM formulation
and parameter values to use for large-scale applications.

In the context of forward Th simulation, several studies have analyzed
the effect of different RTM formulations for the microwave roughness length,
vegetation parameterization and soil dielectric model (Drusch et al., 2009;
de Rosnay et al., 2009). The impact of parameter values and dynamic land
surface variables as input to large-scale forward Th simulations was demon-
strated by, e.g., De Lannoy et al. (2013) and Balsamo et al. (2006), re-
spectively. Similarly, soil moisture retrievals based on Th observations are
affected by the RTM formulation and parameter values (Crosson et al., 2005;
Panciera et al., 2009; Konings et al., 2011; Parinussa et al., 2011), as well
as by the choice of background and auxiliary fields, such as soil temperature
and vegetation characteristics (Kerr et al., 2012; O’Neill et al., 2012). Col-
lectively, these studies suggest that RT'Ms exhibit significant uncertainty and
that the precise magnitude and impact of this uncertainty on large-scale Th
simulations and soil moisture retrievals remain unclear.

Estimating the uncertainty of microwave RTM parameters is a major

challenge, especially at larger spatial scales. Field experiments have pro-
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vided RTM parameters values (de Rosnay et al., 2006; Grant et al., 2007;
Panciera et al., 2009; Sabater et al., 2011), but mostly without uncertainty
estimates. De Lannoy et al. (2013) derived global-scale RTM parameter val-
ues and ad hoc uncertainty estimates using SMOS observations and Particle
Swarm Optimization (PSO, Kennedy and Eberhart (1995)). PSO is espe-
cially designed to find the optimal parameter values within a limited budget
of function evaluations, but without recourse to estimating their underlying
uncertainty.

In this paper, we introduce a (Bayesian) Markov chain Monte Carlo
(MCMC) simulation method to estimate the posterior RTM parameter dis-
tribution. The DiffeRential Evolution Adaptive Metropolis (DREAM) algo-
rithm is used with parallel direction and snooker sampling from past states
(Vrugt et al., 2008, 2009; Laloy and Vrugt, 2012), referred to as DREAMzg).
Bayesian approaches such as DREAMzg) have many advantages over op-
timization methods such as PSO. The explicit treatment and analysis of
uncertainty help to understand which parts of the RTM model are well re-
solved and which elements require further attention. Furthermore, a formal
analysis of the residuals can be used to check the validity of our assump-
tions about the residual error distributions and to discern whether reliable

parameter values have been derived.

The added value of obtaining posterior parameter distributions with Bayesian

approaches, however, comes at an increased computational cost. Adequately
sampling the posterior parameter distributions is too costly for global-scale
operational applications that rely on evolving modeling systems in need of

frequent re-calibrations, but can provide a valuable benchmark to verify re-
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sults from simple parameter optimization algorithms, such as for example
PSO.

The goals of the present paper are thus to infer RTM parameters and
their posterior uncertainty using a Bayesian method, and to study the as-
sociated simulated Th uncertainty. We are using the Goddard Earth Ob-
serving System (GEOS-5) modeling framework that will be used to gener-
ate the planned global SMAP Level 4 Surface and Root Zone Soil Moisture
(L4_-SM) data product through assimilation of SMAP Tb observations (Re-
ichle et al., 2012). As in De Lannoy et al. (2013), we focus on optimizing
time-invariant RTM-parameters by minimizing climatological differences be-
tween multi-angular, horizontally and vertically polarized Tb for morning
and evening overpasses from SMOS observations and GEOS-5 simulations.
The time-invariant optimized parameters will later be used in a data assimi-
lation system (outside the scope of this paper), where state variables such as
soil moisture and soil temperature will be updated in response to short-term
variations in the observed Tb.

To summarize, in this paper we apply MCMC simulation using multi-
angular SMOS Tb observations to (i) verify if the maximum a posteriori
density (MAP) parameter values derived from a converged posterior distri-
bution with DREAMzg) can be approximated using PSO, (ii) obtain reliable
parameter uncertainty estimates, and (iii) quantify the magnitude of param-
eter and other error sources in Th simulations. The remainder of this paper
is organized as follows. Section 2 summarizes the modeling system and the
SMOS observations used in the present study. This is followed in section 3

by a description of the DREAMzsy MCMC simulation method and PSO.
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Section 3 also discusses several quantitative diagnostic metrics to analyze
the simulated Tb uncertainty. Finally, this paper concludes in sections 4 and

5 with a discussion of the results and conclusions.

2. Observations and Model

2.1. SMOS Tb Data

Since its launch in November 2009, the SMOS mission provides global Tb
data at a nominal spatial resolution of 43 km and with an equator overpass
every 3 days. Here we use the multi-angular, full polarization Th data from
the period 1 July 2010 to 1 July 2012. Specifically, the data are extracted
from the MIR_SCLF1C product, with processor version 504 for the years 2010
and 2011, and version 551 from January 2012 onwards. Our previous study
presented in De Lannoy et al. (2013) discusses in detail the various steps
involved in the processing of the SMOS data. Most importantly, the data
are screened extensively using both product-based data quality information
and model-based quality control rules. Furthermore, the data are spatially
mapped onto a 36 km Equal-Area Scalable Earth Grid (EASE) and binned
per incidence angle. Consistent with our previous study, only a subset of
6 incidence angles is used: 6=[32.5°, 37.5°, 42.5°, 47.5°, 52.5° and 57.5°],
where, for example, 32.5° represents the average of all data with incidence
angles between 32° and 33°.

For the purpose of estimating the microwave RTM parameters, long-term
averages (m,) and standard deviations (s,) of the SMOS data are computed
separately for each of the 6 incidence angles, 2 polarizations (horizontal H

and vertical V), and 2 overpass times (ascending at 06:00h local time (LT),
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descending at 18:00h LT). This results in a total of 48 “observations” per grid
cell: 24 for the long-term average Tb and 24 for the long-term Tb standard

deviation. Section 3 provides more details.

2.2. GEOS-5 Tb Modeling

The modeling combines (i) land surface modeling with the Catchment
land surface model (CLSM) and (ii) radiative transfer modeling with a tau-
omega model to simulate long-term Tb averages and standard deviations. As
in De Lannoy et al. (2013), the GEOS-5 CLSM (Koster et al., 2000) is set up
on the 36 km EASE grid and spun up prior to the SMOS observation period.
Surface meteorological forcing data at a 1/2°x2/3° spatial and hourly tem-
poral resolution are taken from the Modern-Era Retrospective analysis for
Research and Applications (MERRA, Rienecker et al. (2011)). The MERRA-
precipitation is corrected with gauge-based precipitation from the National
Oceanic and Atmospheric Administration (NOAA) Climate Prediction Cen-
ter “Unified” (CPCU) product (Reichle, 2012). The model version is the
same as that used for the MERRA-Land data product (Reichle et al., 2011),
except for two changes that more closely align the model with the version
that will ultimately be used for the SMAP L4_SM data product: (i) the sur-
face soil moisture pertains to the top 5 cm surface layer (as opposed to the
top 2 cm layer in MERRA-Land), and (ii) a preliminary version of updated
soil parameters from a forthcoming version of GEOS-5 is used.

The vegetation parameterization in CLSM uses 8 default vegetation classes.

For the RTM simulations, these classes are further refined into the 16 classes

defined by the Moderate Resolution Imaging Spectroradiometer (500 m MOD12Q1

V004) International Geosphere-Biosphere Programme (IGBP) land cover

7
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classification (Loveland and Belward, 1997). Figure 1 shows the North Amer-
ican study domain which covers 9 of the 16 IGBP vegetation classes.

The soil moisture, soil temperature, vegetation water content, air temper-
ature and climatological vegetation dynamics simulated with the prognostic
CLSM are used as input to the diagnostic zero-order (tau-omega) microwave
RTM to simulate L-band Tbh. A short description of the RTM is given in Ap-
pendix. In essence, the Tb is determined by the surface soil temperature and
attenuated by dynamic and static soil and vegetation characteristics. The
key model parameters that impact the rough surface reflectivity h (Eq. A.3,
Eq. A.4), the scattering albedo w, and vegetation optical depth 7 (Eq. A.6)
will be estimated using the multi-angular SMOS observations (section 3),
where h is a function of soil moisture and 7 depends on the leaf area index

(LAI).

3. Methods

3.1. Overview

Keeping up with our previous work (De Lannoy et al., 2013), the objec-
tive of the parameter estimation is to minimize the difference between long-
term (climatological) averages and standard deviations for multiple types of
SMOS-observed and GEOS-5-modeled Th. We purposely do not minimize
differences in the time domain as the goal of the present paper is to derive
parameter estimates that result in the smallest possible bias in the long-term
simulation of Th. Short-term differences between Th observations and simu-
lations will be exploited in future studies using sequential data assimilation.

We estimate a time-invariant multi-dimensional parameter set (hereafter re-
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ferred to as a) that determines climatological features of the simulated Tb.
The parameters are optimized locally, i.e., for each grid cell independently,
and only for non-frozen land surface conditions as determined by the GEOS-5
modeling system.

Table 1 gives an overview of the parameters estimated in different exper-
iments. All scenarios estimate the 5 most relevant RTM-parameters: Ay,
Ah = hipar — honin, b, Ab = by — by and w (according to the best scenario
identified in De Lannoy et al. (2013)). Based on these time-invariant pa-
rameters, time-variant values of h, 7y and 7, are computed, using dynamic
information about soil moisture for h (Eq. A.4) and LAI for 7 (Eq. A.6).
Time-averaged results for < h > and < 7 > are then presented, where < - >
denotes the long-term time average. These RTM-parameters are estimated
with either DREAMzg) or PSO, hereafter referred to as scenarios D and P,
respectively. The DREAMzg) analysis is further expanded to also include
the residual Tb error statistics o, and oy (scenario D, discussed below).
For each grid cell, we thus estimate 5 parameters for scenarios P and D, and
7 for D,.

To derive these parameters, we minimize per grid cell the climatological,
or long-term, differences between 48 Tbh observations and simulations. The
2 x 24 observations consist of long-term Tbh averages and Tbh standard de-
viations for the 24 combinations of 2 polarizations, 2 overpass times, and 6
incidence angles. The errors in these observations are assumed to be indepen-
dent, that is, we neglect correlations in instrument errors and errors between
H- and V-polarized observations at identical incidence angles. Similarly, the

simulation errors are assumed to be independent, even though correlation is
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to be expected. Note that temporal correlations in the errors are of little
concern because the observations are long-term averages and standard de-
viations, and not measurements in the time domain (Wohling and Vrugt,
2011).

In keeping up with De Lannoy et al. (2013), the two years of historical
SMOS data are divided into a calibration period (1 July 2011 - 1 July 2012)
and an evaluation period (1 July 2010 - 1 July 2011). To ensure a meaningful
calibration at each grid cell, we impose a minimum of 20 valid data points
(N;) per year to compute the long-term Th average and standard deviation
for a particular combination (i = 1,...,24) of incidence angle, polarization
and overpass time. The requirement of V; > 20 is used for the calculation of

evaluation statistics as well.

3.2. Markov Chain Monte Carlo (MCMC) Sampling

The Bayesian framework allows deriving posterior probabilities of param-
eter estimates and model simulations, conditioned on errors in observations
and simulations. The posterior probability distribution is computed by com-

bining the observation likelihood p(m,, s,|a) with a prior distribution p(c):

_ p(m, sola)p(e)
plafmo, s,) = [, p(m,, s,|a)da (1)

The observations consist of long-term averages (m;, € m,) and standard
deviations (s;, € s,) of Tb for 24 different combinations of incidence angles,
polarizations and overpass times (i = 1,...,24). The denominator is a nor-
malization factor and thus it suffices to maximize p(m,, s,|a)p(a) to find
the posterior distribution of a. In practice, it is difficult to solve this prob-

lem analytically and we therefore resort to MCMC simulation to generate a

10
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sample of the posterior target distribution.

In this paper, the differential evolution adaptive metropolis (DREAMzg),
Vrugt et al. (2008); Laloy and Vrugt (2012)) algorithm with sampling from
past states is used to efficiently explore the posterior parameter distribution.
This algorithm adaptively updates the scale and orientation of the proposal
distribution during sampling, and is specifically designed to rapidly explore
multi-dimensional target distributions. In DREAMzgs), multiple chains are
running in parallel and the update of a chain is determined from an external
sample of points that collectively summarizes the search history of all the
individual chains. The log-likelihood of the current and proposed parameter
values are compared using the Metropolis selection rule. If the proposal is
accepted, the chain moves to this new point, otherwise the chain remains
at its current position. Diminishing adaptation of the external archive of
samples ensures convergence to the exact posterior distribution.

We assume a Gaussian prior for each of the individual parameters oy, €
. The mean and standard deviation of this multi-normal distribution p(cx)
are derived from literature values that yield reasonable Tb simulations com-
pared to SMOS Th and are summarized in Table 1. Note that these values
were referenced as ‘Lit2’ in De Lannoy et al. (2013). The prior mean for each
individual parameter is given by a vegetation-dependent value ) and the
standard deviation o, is defined by afyo?k = (Qmazk — Qmink)?/12, using
upper and lower bounds [maz ks Cmin k] -

The following log-likelihood function is used to minimize the differences in

long-term Th averages and standard deviations between observations (m; ., si o)

11
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24
B 24 24 5 (mio — mi(a))?
L =In(p(m,, s,|a)) = Yy In(27) — o In(o;,,) — ; 202, Lo

2
i=1 20’iv5

This formulation thus explicitly takes into consideration long-term biases in
the Tb average (L, [-]) and the Tb variability (Ls, [-]) and is derived from

a classical Gaussian likelihood function:

1 m; o — Myl& 2
pm, sola) = []|———exp (_( 2= ( )))
i=1 27T(72m Oim

T e <_<§J> )

; 2 ;
i=1 2mo; i,s

where 0, , and o; 5 denote the (ensemble) standard deviations of the residual
differences between the observed and simulated values of the long-term Tbh

averages and standard deviations, respectively.

3.3. Particle Swarm Optimization (PSO)
The PSO algorithm (Kennedy and Eberhart, 1995) is a global search

method that uses a dynamic swarm of particles to explore the parameter
space. The best position of each individual particle (cognitive aspect) and
of the entire swarm (social aspect) are used to guide the particles towards
the optimal solution. The iterative swarm search is performed in several
independent repetitions to account for sampling variability.

The fitness of each parameter combination in the swarm is measured by

an integrated ‘cost’ or ‘objective function’ J [-] that measures the distances

12
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between the observed and simulated long-term Tbh averages (J,,, [-]) and
standard deviations (J;, [-]). To make sure that the estimated parameter
values honor the prior information (as used in DREAM g ), we also include
a penalty term that quantifies deviations of the parameters from their ex-
pected values (J, [-]). This results in the following definition of the objective

function to be minimized:

24
(M0 — mi(a))2
J=Y = T
i=1 z,m

+ Z (S0 ;;;(a))z } oo

i=1 2,8
N,
= (Oéo,k - Oék)Z
P @
k=1 a0,k

where N, signifies the number of simultaneously estimated parameters. This
formulation is essentially similar to the definition of the posterior density
used in DREAM(zgs). The main difference is that PSO handles the prior
information of the parameters explicitly as penalty term .J, in the objective
function, whereas in DREAM|zg), the prior parameter distribution is handled
independently from the likelihood function by application of Bayes law. Both

methods should thus find the same “best” parameter values.

3.4. Likelihood, Objective Function and Algorithm Settings

The design of the likelihood (L) or objective (J) function for DREAM zg)
and PSO warrants further discussion. As discussed above, we sample the cli-
matological, or long-term, Th averages and standard deviations over multiple
incidence angles, polarizations and overpass times (that is, 2 x 24 observa-

tions, ¢ = 1,...,24) per location, rather than one observation at multiple

13
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time steps. The long-term Th averages and standard deviations could also
be interpreted as ‘summary statistics’ or ‘signatures’ of the system, and hence
our approach has many elements in common with the diagnostic model eval-
uation procedure presented in Vrugt and Sadegh (2013).

The variables 0;,, and ;5 in Eq. 2 and Eq. 4 measure the (ensemble)
standard deviation of the residual differences between the observed and sim-
ulated long-term Tb averages and standard deviations, respectively, for each
observation i. The residual errors are assumed to have a zero mean and in-
clude both SMOS observation and simulation errors, due to e.g. inaccurate
soil moisture, temperature or vegetation characteristics. These o; ., and o; 4
statistics trade-off errors in the long-term Tbh averages against those of the
long-term Tb standard deviations (as well as deviations from the prior pa-
rameter constraints). Since only one sample is available for each observation,
it is impossible to estimate individual o; ,,- and o; ;-values. Therefore, we de-
fine o;,, and o, , as a combination of a homoscedastic term (o,,, 0,) and a

tuning factor w; to account for the robustness of the diagnosed long-term Tbh

2

averages and standard deviations, i.e. o2 = w;o? and o?, = w;o?. The

S
homoscedastic term is identical for all 24 observations and set to a default

value of 1 K (De Lannoy et al., 2013), or alternatively we estimate o, and o

jointly with the RTM parameters (see section 3). The weights are given by

N

~.» Where N; denotes the number of data points in time that contribute

w; =
to a particular long-term Tb average (or standard deviation), and N signifies
the average number of time steps across all observations. These weights are
typically close to 1 and assign somewhat more (less) weight to climatologi-

cal differences that are based on more (fewer) individual data points in the

14
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original 1-year data time series.

A maximum of 12,000 log-likelihood function evaluations are performed
with DREAMzg) using standard settings of the algorithmic variables. For
PSO, we use the same algorithmic settings as De Lannoy et al. (2013), except
a swarm size of 10 particles is used with a minimum of 10 and maximum of 100
iterations. The search is terminated if the reduction of the objective function
is smaller than 1E-5 over the last 10 iterations. A total of 12 repetitions are

performed, which results in a maximum of 12,000 function evaluations.

3.5. Posterior Parameter Distribution

The ‘optimal” parameter values are defined as those with the maximal a
posteriori density (MAP), i.e. with the largest value for L (Eq. 2, DREAMzs))
or smallest value for J (Eq. 4, PSO). Note that these MAP values are not nec-
essarily identical to the posterior ensemble mean of the distribution derived
with of DREAMzg). For the DREAMzg) experiments, the last 25% of the
MCMC chains (3,000 samples) are used to summarize parameter uncertainty
by calculating the standard deviation of each individual parameter. To illus-
trate this in more detail for one grid cell, consider Fig. 2a, which depicts the
marginal distributions of the RTM parameters. We define the uncertainty as
the ensemble standard deviation stdv[a] = a — @ centralized around the en-
semble mean @, not around the MAP parameter value aj;4p. The notation
~ refers to the ensemble mean. Note that the standard deviation around
the MAP estimate stdvpap[.] can be found as a function of the centralized
standard deviation stdv[.], i.e. stdvyrap[.]? = stdv[]> + AL(A, — stdvl]),
where A, = @ — aprap is the difference between the ensemble mean and

MAP parameter estimate. We found that, across the different experiments,

15
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A, is either small or A, and stdv[.] are of similar magnitude (not shown

herein), so that stdvyapl.] ~ stdv[.].

3.6. Convergence

‘Convergence’ can reflect accuracy (closeness to the actual optimum solu-
tion) or precision (reduction of the prior uncertainty). The following hypothe-
ses will be verified to assess the convergence of the DREAMzs) algorithm:
(i) the Tb performance (accuracy) with posterior parameter estimates should
be better than with prior parameter guesses (section 3.7), (ii) the posterior
parameter uncertainty (section 3.5) and the corresponding uncertainty in Th
simulations (section 3.7) should be reduced compared to their counterparts
derived from the prior parameter uncertainty, and (iii) the potential scale re-
duction factor v/R by Gelman and Rubin (1992) should be near 1 to inspire
confidence that the different MCMC chains have converged to the appro-
priate limiting distribution. The latter metric measures by which scale the
posterior distribution will shrink as the number of MCMC iterations would

go to infinity.

3.7. Tb Performance and Ensemble Verification

A number of measures are used to evaluate the long-term Tb simulations
and their associated uncertainty. Fig. 2b illustrates some of the terms used
in this evaluation. First, we assess the quality of the deterministic Th sim-
ulations with the MAP parameter estimates, using the mean-square differ-

ence (MSD [K?]) between the observed and simulated long-term Th averages

16
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(Eq. 5) and standard deviations (Eq. 6) across the 24 different observations:

24

1 2
MSD,, = ﬂ;(mi(aMAp)—mw) (5)
1 24
_ 2
MSD, = ﬂ;(si(aMAp)—sw) (6)

If the modeling errors were solely due to uncertainties in the parameter val-
ues, these metrics should be very close to zero. In practice, however, the
metrics will substantially deviate from zero and reflect residual errors that
cannot be explained by parameter uncertainty. The 24 differences contribut-
ing to M SD,, are illustrated as A,,, in Fig. 2b.

Secondly, we verify whether the spread in prior and posterior ensemble Th
simulations is in agreement with the misfit between modeled and observed
values, in a mean-square sense. To this end, an ensemble of Th simulations
is generated by randomly drawing 20 samples from the prior and posterior
parameter distributions. The misfit or skill is again defined using the mean-
square difference (MSD [K?]), but now for the ensemble means:

IR )
MSDym = o (mi(a) — mi,o) (7)
i=1

L2, )
MSD, = 21 2 (si(a) —3@(,) (8)

where - denotes the ensemble mean. Fig. 2b illustrates the 24 differences
contributing to MSDy; as Ag;. If the uncertainties are well estimated and
biases between observations and simulations are constrained during the cal-
ibration, the MSDy and M S Ds metrics should match the total expected
uncertainty (M EnSp,,, M EnSp,), which is the sum of the Tb simulation

17
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spread due to parameter uncertainty (EnSp; m par, EnSDi s par) Plus the resid-

ual Th error variance (07,,, 07,):
| o2
MEnSp,, = 2 ; [EnSDpimpar + 07 ) 9)
| 2
MEnSps, = 2 Z [EnSpi,s,par + Uzs] (10)

i=1
where aim and o7, are dominated by observation, input and structural error
after the MAP parameters values have been found. The constituent terms

EnSpim par and EnSp; s yar for each observation type 4 are given by:

EnSpimpar = (mi(oz)—mz-(oz)>2 (11)

EnSp;spar = (si(a)—m>2 (12)

An illustration of EnSp; ;. par is given in Fig. 2b. Again, if the uncertainties
are well estimated, then the ratios M.S Dy /M EnSp,, and MSDs/M EnSp;
should be close to 1, or in other words: the “actual” (MSDg, MSDs) and
“expected” (M EnSpy,, M EnSps) errors should be similar. These metrics
are very similar to those used to verify the prescribed observation and simu-
lation uncertainties in data assimilation systems (Reichle et al., 2002) and for
ensemble forecast verification (De Lannoy et al., 2006). The only difference
is that here, the mean values (i.e. the ‘M’, or mean, in M.SD and M EnSp)
are derived from multiple observations types (i = 1,...,24), whereas in the

earlier studies the mean was calculated in the time domain.
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4. Results

4.1. RTM-Parameters and Their Uncertainty

In this section, we analyze the MAP values of < h >, < 7 > and w, and
their posterior uncertainty (stdv[.]). The DREAMyg) scenario D, should
be considered as benchmark in the following discussion, because of statisti-
cal rigor of the sampled posterior (will be further discussed below). Fig. 3
shows maps of the prior parameter values and the MAP estimates derived
from scenario P (PSO), D and D, (DREAMzg)) (Table 1). The spatially
averaged posterior parameter values are very similar for all 3 scenarios, with
a microwave roughness < h > around 0.75+0.5 [-], a nadir opacity < 7 >
of 0.26£0.15 [-] and a scattering albedo w of 0.09£0.07 [-], where the values
after the & sign measure the spatial standard deviation and reflect the vari-
ability of the MAP parameters across the spatial domain. Note that these
values should not be confused with uncertainty estimates. Compared to the
prior values (Table 1 and 2), < h > has generally increased for grassland,
< 7 > is smaller for forests and w has increased for all vegetation classes
except grassland (details per vegetation class not shown; these finding are
similar to those of De Lannoy et al. (2013)). The spatial patterns for the 3
scenarios are also very similar. Moreover, Fig. 3 suggests that MAP values
derived with the PSO algorithm closely match those of DREAMzg.

Fig. 4 shows the ensemble parameter uncertainty for scenarios D and D,,.
Maps with RTM parameter uncertainty estimates for PSO (obtained as in
De Lannoy et al. (2013)) are not shown, because they are statistically invalid
and significantly larger than those derived with DREAMzs). The relative

uncertainties for scenario D are less than 10% of the MAP parameter value
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and substantially smaller than the spatial variability in the MAP values. For
scenario D, the relative uncertainties increase, with errors ranging up to
25% of the MAP values: for < h >, the spatially averaged uncertainty is
0.1040.08 [-], for < 7 > 0.04 £ 0.04 [-] and for w 0.02 £ 0.02 [-], respectively.
The uncertainty in < h > typically increases with more complex terrain and is
smallest in the cropped region southwest of the Great Lakes. The uncertainty
of < 7 > is largest in the forested Appalachian mountains where the highest
MAP values of < 7 > are found. On the contrary, w is best defined in this
area and uncertainties in w increase in the Western dry mountain ranges. The
< h >-values are more uncertain where either the uncertainty in w (Fig. 4e)
or < 7 > (Fig. 4f) is larger.

In summary, both DREAMzs) scenarios D and D, provide MAP pa-
rameter values that are very similar and in close agreement with the PSO
estimates. The DREAM|zg) derived posterior parameters appear well defined
with relative uncertainties that are less than 25% of the MAP values. It will
be shown below that the uncertainty estimates of scenario D, are consistent

with the sample RMSD between long-term Th observations and simulations.

4.2. Residual Tb Error Standard Deviation Estimation

To analyze the effect of 7, and o, in more detail, Table 2 summarizes the
MAP parameter values and their associated uncertainties averaged over the
entire study domain. In addition, Fig. 5 depicts the results for different veg-
etation classes. As discussed above, scenarios D and D, return similar MAP
RTM-parameter values, but when o, and o, are simultaneously estimated,
the posterior RT'M-parameter uncertainty increases about 2 - 3 times. The

domain-averaged values for scenario D, are ¢, = 3.1 K and o, = 2.4 K
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(Table 2), whereas scenario D uses default values of these variables of 1 K.

The value of o, and its posterior uncertainty are largest in cropped re-
gions (Fig. 5g) where residual Tb errors are dominated by less skillful model
simulations. This is to be expected because irrigation is not simulated and
the climatological LAI estimates do not account for interannual crop rota-
tions. The parameters can not compensate for these errors, and the default
values of 0, = 0, = 1 K make scenarios D and P vulnerable to suboptimal
solutions. For example, the relative large differences between D and D, for
om and o, over cropland areas increases the differences in the MAP values of
w. For forests, o, = 1 K appears to be a good estimate (Fig. 5i) because the
variability in Tb is expected to be low due to vegetation attenuation. Both
the MAP values and uncertainties for g, are always larger than those derived
for o,. One of the reasons for the higher ¢, are the opposite signs in the
biases for the long-term averages of ascending and descending Tbh, which can-
not be mitigated with time-invariant RTM-parameters. These biases are due
to sensor error and modeled temperature errors as discussed in De Lannoy
et al. (2013). In a separate exercise (not shown herein), we verified that the
o-values absorb biases in geophysical fields: by re-scaling the soil moisture
both the RMSD (see below) and o-values are jointly reduced.

For the simulations with prior parameters, we also calculated (i.e. not
optimized) o, and oy as 7.5 K and 4.8 K, respectively (Table 2). Unlike
the MAP o,,- and o,-values, these prior residual o-values are dominated by

simulation error due to suboptimal parameter values.
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4.3. MAP Tb Performance

Fig. 6 shows the misfit between observed and MAP simulated long-term
Th averages and standard deviations (RMSD,,, RMSD;, square-root of
Eq. 5 and 6) across the 24 observations for the calibration and evaluation
period, averaged per vegetation class. The performance skill is very similar
for scenarios P, D and D,, which reflects that the three scenarios generate
similar parameter estimates. The RMSD,, ranges between 2 and 4.5 K dur-
ing the calibration (Fig. 6a) and increases up to 8 K for cropland in the
evaluation period (Fig. 6¢). The RMSD; ranges between 1 and 3 K during
calibration (Fig. 6b) and reaches values of 5 K for cropland in the evaluation
year (Fig. 6d). Cropland has the highest errors, because of known simula-
tion errors (see above). Note also that the RMSD,, and RMS Dy values of
scenario D, during the calibration period (Fig. 6a-b) show the same pattern
as 0, and o, in Fig. 5g and 5i. The increased errors in the evaluation period
suggest that the calibration could benefit from climatological observations

based on longer data records to better estimate the parameter values.

4.4. Ensemble Tb Performance

For DREAM|zg), we analyze the balance between the actual Th misfit and
the expected uncertainty (ensemble variance) in the ensemble Th simulations
(20 members, as opposed to single deterministic MAP simulations above).

The results are presented in Table 2 and Fig. 7. Table 2 shows the skill of the

ensemble mean Tb simulations m;(a) and s;(a) for the calibration period in
terms of RM S Dy and RM S Ds, i.e. the square-root of Eqs. 7 and 8. These
values are very similar to the results for the MAP simulations (section 4.3).

For both scenarios D and D, the RMS Dz and RMS D5 are respectively
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3 K and 2.5 K, which is less than half of the actual misfit when the prior
parameters are used.

Table 2 also lists the square-root of the combined mean simulation and
observation spread or expected uncertainty, i.e. RM EnSp,, and RM EnSp;
(square-root of Egs. 9 and 10), along with the constituent terms (RM EnSp., par,
RMEnSps par, 0m and oy). Generally, the uncertainty associated with the
parameter values is much smaller than the uncertainty related to other fac-
tors, that is, RMEnSpp, < o, which is valid both when using prior and
posterior parameter distributions. Moreover, after calibration both the o-
and RM EnSpp.-values are significantly reduced compared to their prior
values.

If the uncertainty estimates are consistent, RM.S Dy ~ RM EnSp,, and
RMSDg ~ RM EnSp, i.e. there should be a balance between the actual and
expected errors (section 3.7). The domain-averaged RM S Dy / RM EnSp,, is
2.7 for scenario D and 1.0 for scenario D,. Similarly, the domain-averaged
RMSDs/RM EnSps is 2.5 for scenario D and 1.0 for scenario D,. Optimal
results are thus only found after including an estimation of ¢, and o, in
scenario D,. Note that for the evaluation period (not shown), the ratios
always exceed 1, because of an increased RM S Dy and RM .S Ds.

Fig. 7 shows how the ensemble spread is consistent with misfits between
observations and simulations for scenario D,. Specifically, Fig. 7a shows the
SMOS observed m;, and the GEOS-5 simulated m for ascending, H-
polarized Tb at 6 angles for scenarios D and D,, averaged over the entire
study domain. Fig. 7b shows the same for V-polarized Tb, and Figs. 7c

and d provide this information for the long-term Tb standard deviations.
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Also shown is the total ensemble simulation and observation uncertainty for
each observation type, presented as error bars around the ensemble mean Th
simulations for illustration.

The error-bars for scenario D, fully envelop the observations, whereas this
is not the case for scenario D. Fig. 7 also explains the nature of the residual
misfit. Except for the 57.5%-angle, the ascending ensemble mean simulations
Wa) consistently underestimate the SMOS-observed m; , for H-polarization
and randomly deviate from the SMOS-observed m;, at V-polarization. In
contrast, the descending simulations m slightly overestimate the SMOS-
observed m;, at H-polarization (see De Lannoy et al. (2013)). The SMOS-
observed s;, is always larger than the simulated m This is probably
dominated by observation noise, but could also be attributed to an under-
estimated variability in the Tb simulations. For example, an increase in the
RTM-parameter h not only compensates for a cold bias but simultaneously
also reduces the Tbh variability. Fig. 7 clearly illustrates why the uncertainty

estimates obtained from scenario D, are superior.

4.5. Convergence and Computational Cost

The effectiveness of the posterior parameter sampling is measured by the
convergence of the algorithms. Table 2 confirms that both the posterior
uncertainties in the parameter estimates (stdv].]) and the misfit between the
simulations and observations (RMSD) of the long-term Th averages and
standard deviations are greatly reduced compared to the results with the
prior parameter distribution. Another measure for convergence is the scale
reduction factor, or v/R-statistic by Gelman and Rubin (1992). Values close

to 1 are preferred, and suggest that the MCMC sampler has converged to a
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limiting distribution. Fig. 8 shows the evolution of the convergence diagnostic
V'R for both DREAMzs) scenarios. The V'R is averaged over all estimated
parameters and across the study domain, since no obvious differences in V'R
are found between the different vegetation classes (not shown). Initially, the
values of v/R exhibit a lot of variation (due to random initial sample) before
they settle down and reach values close to 1.

Finally, we report that the derivation of the posterior distributions re-
quires approximately 225 seconds for a single grid cell using DREAMzg).
For global applications that involve 10° — 10° grid cells, posterior distribu-
tion exploration may be too costly. Yet, if we target the MAP value only,

PSO or DREAMzs) are both viable options.

5. Conclusions

Accurate estimates of microwave RTM parameters for large-scale L-band
applications are difficult to obtain. The available parameter estimates are
generally based on small-scale field experiments and often come without any
estimate of posterior uncertainty. This complicates radiative transfer mod-
eling for both the forward simulation of L-band Tb over land and the re-
trieval of soil moisture based on Tb observations. This paper expands earlier
research reported in De Lannoy et al. (2013) to derive time-invariant RTM-
parameters using observations of the long-term average Tb and the long-term
Tb standard deviation obtained from SMOS data. The overall objective is to
optimize GEOS-5 Th simulations prior to sequential assimilation of SMOS
or SMAP Tb data, such as planned for the SMAP 1L.4_SM product (Reichle

et al., 2012) and to examine the uncertainties involved in the optimization.
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Per grid cell, 48 observations of the long-term Th averages and standard de-
viations were constructed for 24 different combinations of 6 incidence angles,
2 polarizations and 2 overpass times. The differences with their respective
long-term GEOS-5 simulations are minimized (as opposed to minimizing dif-
ferences between Tb observations and simulations in the time domain) and
used along with the prior parameter information to derive posterior param-
eter estimates.

In the present paper, the full posterior distribution of RTM-parameters
is derived using MCMC simulation with the DREAMzg) algorithm. To our
knowledge, this is the first large-scale application of the DREAMyg) algo-
rithm for the estimation of RTM-parameters and their underlying uncer-
tainty. The results serve as a benchmark to verify the results from simpler
parameter optimization algorithms, such as for example PSO. Simple algo-
rithms are desirable for global-scale operational applications that rely on
evolving modeling systems in need of frequent re-calibrations.

First, we verified that the MAP RTM-parameter values derived from
converged posterior distributions with DREAMzg) can be approximated by
a simpler optimization algorithm (PSO), which corroborates our earlier re-
search (De Lannoy et al., 2013). Secondly, we obtained reliable parameter
uncertainty estimates with DREAMzg), which are impossible to estimate
with PSO. The relative parameter uncertainties are generally less than 25%
of the MAP value for < h >, < 7 > and w, when including the residual
(observation and simulation) error statistics (o,,, o) of the long-term Tb
averages and standard deviations in the estimation.

The third objective of this paper was to quantify the importance of param-
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eter and other errors on Tb simulations. The uncertainty associated with the
parameter values only contributes a small part to the total Th uncertainty.
Most of the discrepancy between Tb simulations and observations is covered
by residual Tb errors, with MAP estimates of the standard deviations o, and
o, (assumed homoscedastic) around 3.1 K and 2.4 K, respectively. The prior
estimate of 1 K was thus too low, except for o, over forests which exhibit
limited Th variability due to vegetation attenuation. The largest o,,-values
are found in cropped regions where the RMSD between Th simulations and
observations is also highest, due to observation errors and errors in geophys-
ical fields (e.g. soil moisture and temperature) that constitute important
inputs to the Tbh simulations.

The expected Th error, i.e. the total of the MAP residual Tb error

2 02) and the Tb spread introduced by the posterior

m? S

variance estimates (o,
parameter uncertainties (EnSp;m pars ENSDi s par), is found to be consistent
with the actual RMSD of 3 and 2.5 K for the long-term posterior Tbh aver-
ages and standard deviations. In other words, the joint estimation of RTM-
parameters, 0, and o, with DREAMzg) results in a balance between actual
and expected errors in Th simulations, and in statistically adequate param-
eter values and uncertainty estimates.

In summary, the Bayesian inference of the posterior distribution of the
RTM-parameters ensures reliable Th simulations with GEOS-5. Further-
more, the DREAMzg) algorithm also reveals the importance of observation
error and simulation error that cannot be explained by the RTM parameters.
These error sources can be addressed using model refinement and assimilation

of satellite-observed Th data.
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Appendix A. Radiative Transfer Model

A diagnostic zero-order (tau-omega) microwave RTM is used to simulate
L-band Tbh at the top of the atmosphere (Tbroa, [K]|). The Throa, at
polarization p = [H, V] (horizontal or vertical) is a combination of (i) soil
emission, possibly attenuated by vegetation, (ii) vegetation emission, possibly

reflected by the soil, and (iii) atmospheric effects:

Tbrovy, = Ts(1—1,)A4,+T.(1—w,)(1—A,))(1+1r,A,)
+Tbad,prA]2g (Al)

TbTOA,p = Tbau,p + eXp(_Tatm,p)TbTOV,p (A2)

where Throy, [K] is the top of vegetation Th, T [K] is the surface soil tem-
perature, T, [K] is the canopy temperature (assumed equal to T;), Thgq, [K]
and Thg,, [K] are the downward and upward atmospheric radiation, A, [-] is
the vegetation attenuation, exp(—7utm,p) [-] is the atmospheric attenuation,
Tatmp -] 1 the atmospheric optical depth, r, [-] is the rough surface reflec-
tivity, and w, [-] is the scattering albedo. The atmospheric contributions
(Tbad,p, Thayp and exp(—Tam,p)) are described by Pellarin et al. (2003). The
rough surface reflectivity r, |-] is derived from the smooth surface reflectivity

R, [-] following (Choudhury et al., 1979; Wang and Choudhury, 1981):
= (Q Ry+ (1 - Q)R,)exp(—h)cos™(0) (A.3)

where @ [-] is the polarization mixing ratio and typically set to 0 for L-
band (Kerr and Njoku, 1990), # [rad] is the incidence angle, h [-] is the
roughness parameter accounting for dielectric properties that vary at the sub-

wavelength scale, Nr, [-] is the angular dependence, and ¢ = V for p = H
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and vice versa. The smooth surface reflectivity R, [-] is given by the Fresnel
equations as a function of the dielectric constant, which itself depends on soil
moisture, temperature, texture, incidence angle and wavelength. We select
the Wang and Schmugge (1980) soil dielectric mixing model for this study.
The results with this model are similar to what is obtained with the Mironov
et al. (2004) model, and both are in a better agreement with the SMOS data
than the Dobson et al. (1985) model. We include the dependence of h on soil
moisture (SM [m?.m~3]) through a stepwise linear expression (adapted from
the proposed SMOS soil moisture retrieval algorithm (CESBIO et al., 2011;
Kerr et al., 2012)):

Bonaz if SM <= wt
h = (A.4)

Pmag + Mmin—hmae (GNF _qpt) if wt < SM <= poros

poros—wt

where poros [m*.m~3] and wt [m*.m™3] are the porosity and transition soil
moisture, respectively. The latter is modeled as wt = 0.48.wp+ 0.165 (Wang
and Schmugge (1980)) where wp [m®>.m~3] is the wilting point.

The vegetation attenuation A, [-] is based on the Jackson and Schmugge

(1991) vegetation opacity model:

_ Ty
Ap — exp( COSQ), with (A'5)
7, = b, VWC =b, LEWT LAI (A.6)

where 7, [-] is the nadir vegetation opacity, which is a function of a vegetation
structure parameter b, [-] and the vegetation water content (VW (') [kg.m2].
The latter is modeled here as the product of LAI [m?>.m~2] and the leaf
equivalent water thickness (LEWT) [kg.m™2].
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Table 2: Domain-averaged parameters values and their uncertainty stdv[.] for the prior
distributions and the posterior distributions obtained with scenarios P, D and D,.
The bottom half of the table shows ensemble Tb prediction statistics (square-root of
Eq. 7-8, 9-10 and 11-12), averaged across 24 long-term Tb observations and calcu-
lated for the calibration period. Only for the prior parameters, o, and o, are cal-
culated assuming (a) RMEnSp,, = RMSDy and RMEnSp, = RMSDs, and (b)
O = \/RMSD% — RMEnSp2, o, and o, = \/RMSD§ — RMEnSp2 ...

Prior P D D,
<h>[] 059 0.74 0.75 0.77
<71 >[] 0.35 0.26 0.26 0.25
w ] 0.05 0.09 0.09 0.0
om K] 745 1.00 1.00 3.08
os [K] 4.78% 1.00 1.00 2.39
stdv[< h >] [-] 063 - 004 0.10
stdv]< T >] [] 027 - 0.02 0.04
stdv|w] [-] 0.09 - 0.01 0.02
stdv]o,,] [K] - - - 071
stdvlos] [K] - - - 0.53
RMS D+ [K] 763 - 277 3.02
RMSDs [K] 504 - 253 2.54
RMEnSp, [K] | 763 - 104 3.24
RMEnSp, [K] 504 - 101 2.45
RMEnSpmpar [K] | 1.65 - 028 0.92
RMEnSp, e [K] | 157 - 014 0.39
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Figure 1: Study domain with indication of the dominant IGBP vegetation classes.
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Figure 2: Illustration of marginal distributions for (a) RTM-parameters and (b) Tbh simu-
lations at a single grid cell. Crosses (x) indicate the MAP estimates, the vertical dashed
lines and white box indicate the ensemble mean posterior estimate, and horizontal dotted
arrows indicate one standard deviation uncertainty around the ensemble mean. The per-
formance of the Tbh simulations is quantified by comparing either the MAP (m;(arap),
si(aprap)) or the ensemble mean (m;(a), s;(a)) simulations against (black dots) 24 ob-

served values (m; 0, 8i,,) with ¢ = 1,...,24. The differences A,,, and Az, contribute to

MSD,, (Eq. 5) and M SDm (Eq. 7), respectively.
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Figure 3: Parameter values for (left) < h >, (middle) < 7 >, and (right) w, for the (top

row) prior distribution and scenarios (second row) P, (third row) D and (fourth row) D,.
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w, obtained with DREAM(zg) scenario (top row) D and (bottom row) Dy
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Figure 7: (a-b) Long-term average and (c-d) standard deviation, for (a-c) H- and (b-d)
V-polarized Tb (dots) SMOS observations and (lines) ensemble simulations averaged over
the study domain, during the calibration period (1 July 2011 - 1 July 2012) and only
including ascending time steps. The simulations use an ensemble of parameter estimates
derived with DREAMyg) scenarios (gray) D and (black) D,. The ensemble mean is shown
by a central horizontal dash. The error bars indicate the total simulation and observation
uncertainty and are drawn around the simulated Tb for illustration. For clarity, symbols
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48



—
oo

—
Sk

—
N

Mean Gelman VR [-]
>

3000 6000 9000 12000
lteration [-]
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