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Abstract: Wildfires are recognized as a key physical disturbance of terrestrial ecosystems 

and a major source of atmospheric trace gases and aerosols. They are known to produce 

changes in landscape patterns and lead to changes in surface albedo that can persist for long 

periods. Here, we estimate the darkening of surface albedo due to wildfires in different land 

cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Reso-

lution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires 

over most land cover types (e.g. woody savannas: (-0.00352 ± 0.00003) and savannas: (-

0.00391±0.00003), which together accounted for  >86% of the total MODIS fire count be-

tween 2003 and 2011). Grasslands had a higher value (-0.00454± 0.00003) than the savan-

nas, but accounted for only about 5% of the total fire count.  A few other land cover types 

(e.g. Deciduous broad leaf: (0.00062 ± 0.00015), and barren: 0.00027 ± 0.00019), showed 

an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo 

change due to wildfires is more important during the fire season (October-February). The 

albedo recovery progresses rapidly during the first year after fires, where savannas show 

the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wet-

lands and barren lands show the least one-year recovery (56%). The persistence of surface 

albedo darkening in most land cover types is limited to about six to seven years, after which 

at least 98% of the burnt pixels recover to their pre-fire albedo.  
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1.  Introduction 

Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and 

a significant source of atmospheric trace gases and aerosols (e.g. Roberts et al., 2009; An-

dreae & Merlet, 2001; Bremer et al., 2004). Since biomass burning depends primarily on 

fuel availability that is controlled by mean annual precipitation and soil fertility, intense fire 

activities are normally observed when vegetation is dry. In Africa, most intense biomass 

burning is observed in the northern hemisphere between December and February, and in 

southern Africa between July and November (Scholes & Archer, 1997). These fires are be-

lieved to have shaped the savannas vegetation more than any other disturbance (Sheuyange 

et al., 2005). So there is a strong linkage between biomass burning, weather and climate (cf. 

Dale et al., 2001; Crutzen and Andreae, 1990). 

The extent of wildfires in Africa can be seen clearly from a map of active fire de-

tected by satellite sensors such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) at their times of overpass under relatively cloud-free conditions. In the northern 

Sub-Saharan Africa (NSSA) region, most fires are detected south of the Sahara desert al-

most across the whole region from west to east (Fig. 1a). Some areas such as Southern 

Sudan appear to be more fire-prone than others, as nearly every square km of land seems to 

have been affected by fire at least once between 2003 and 2011 (cf. Figure 1a: inset). Dur-

ing that nine-year period, with approximately two overpasses by Terra every 24 hours (once 

during the day and once at night), the total MODIS active fire-pixel count at 1-km resolu-

tion in the entire NSSA region is about 2.2 million, with an annual average of 242,143 ± 

21,664, which is significant. In deed, Africa has the highest frequency of occurrence of fire 

per land area than any other continent (Ichoku et al., 2008). These fire statistics are likely 

an underestimate of the actual fire activity, since smaller and cooler fires are probably 

missed due to the relatively high thresholds used in the MODIS global fire detection algor-
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ithm (Giglio et al., 2003; Justice et al., 2002). Some of the factors that can influence fire 

detection by satellite sensors such as MODIS relate to their orbital and viewing geometry, 

fire growth rates, fire intensity and size, and fire obscuration by clouds, smoke and atmos-

pheric moisture (Eva & Lambin, 1998). The occurrence of wildfires is more frequent in the 

savannas (woody savannas and savannas), and account for >86% of the total MODIS fire 

count between 2003 and 2011 (discussed later in section 3.1; c.f. Table 3, column 2; Fig. 

1b).  Hence, the spatial-temporal extent of vegetation fires in sub-Saharan Africa is wide-

spread, and creates effects that extend beyond the vegetation it consumes. 

There are many possible effects from fires that have been found to manifest through 

changes in albedo (Govaerts et al., 2002), evapotranspiration (Bosch & Hewlett, 1982; 

Zhang et al., 2001), rainfall interception (Levia & Frost, 2003), runoff (Farley et al., 2005), 

and streamflow (Jackson et al., 2005). Therefore, fires can cause multiple effects that oper-

ate through changes in albedo, roughness length, and water transport properties from soil to 

the atmosphere, including leaf area index, stomatal conductance, and rooting depth. Other 

effects include changes in the carbon mass balance in terrestrial ecosystems, as well as the 

production of carbonaceous aerosols and trace gases.  On a regional scale, surface albedo 

can play an important role in determining whether aerosols exert a warming or a cooling 

effect (Ramanathan et al., 2001). However, this albedo dependence is difficult to quantify 

properly owing to a large spatial and temporal variability as a result of other factors such as 

seasonal changes in vegetation cover, rainfall, and intensification of land use as measured 

by population density (Fuller and Ottke, 2002).  

This study focuses on changes in surface albedo associated with biomass burning in 

the NSSA region, where fires are believed to be a major driver of the carbon, energy, and 

water cycles due to their enormous heat release, and an abundance of gaseous and particu-
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late smoke emissions. The region comprises a wide range of vegetation and climatic zones 

over a relatively small latitudinal belt from 5–20°N (Fig. 1b), and has become a focal point 

of debates over desertification, deforestation, and climate change. This study is a part of an 

interdisciplinary effort investigating the effects of intense biomass burning on the declining 

regional water resources as exemplified by the drying of Lake Chad. The interdisciplinary 

study seeks to assess surface, atmospheric and water cycle processes in the region through 

remote sensing and modelling approaches that integrate research, systems engineering, and 

applications expertise to best make the connections between various identified processes 

and phenomena. Such an approach ensures concrete results for societal benefits and climate 

assessments. 

The results of the albedo analysis presented in this paper are expected to provide 

critical input to various models used in the different aspects of the broader interdisciplinary 

research. They will be used in the land-surface models to determine the effects of albedo 

changes due to fires on soil moisture budget, evapotranspiration, infiltration, and runoff, all 

of which govern the land-surface component of the water cycle. Also, our surface albedo 

change results will be ingested in atmospheric models, where they will serve as part of the 

essential input parameters based upon which radiative energy budget estimates are made, 

both at the surface and at the top of the atmosphere (TOA). As such, these models can bet-

ter characterize the effects of change in surface albedo due to fires on the atmospheric heat-

ing rates of the black carbon (BC) aerosols emitted by fires, which can affect the atmos-

pheric component of the water cycle through the interaction of radiation with surface al-

bedo and the aerosol indirect radiative effects on clouds. Furthermore, information on the 

spatial and temporal dynamics of the post-fire albedo recovery will be important in model-

ling the medium- to long-term climate impacts of fires in the NSSA region. 



Gatebe et al. 2012 (submitted to Remote Sensing of Environment) 

 5

The remainder of this paper is organized into three main sections. Section 2, data and 

methods, describes the MODIS albedo data, albedo gap filling, and determination of albedo 

change and recovery. Section 3 presents our results of the albedo change and recovery fol-

lowing fire activities for different land cover types in the NSSA region. Section 4 concludes 

with a summary of the study. 

2. Data and Methods  

2.1 MODIS Albedo 

Satellites are ideal for providing observations needed for description of surface al-

bedo on a global scale, but we must contend with issues such as uncertainty of the meas-

urements due to atmospheric effects, inadequate sampling (spectral, spatial and temporal), 

and directionality of these measurements. The global MODIS (Collection 5) albedo pro-

duct, MCD43A3, (https://lpdaac.usgs.gov/products/modis_products_table/, 1 September 

2012) combines measurements from both Terra and Aqua satellites to retrieve directional 

hemispherical reflectance (black-sky albedo) and bihemispherical reflectance (white-sky 

albedo) at local solar noon as both spectral (seven narrow spectral bands, 

http://modis.gsfc.nasa.gov/about/specifications.php, 1 September 2012) and three broad-

band (0.3–0.7 µm, 0.7–5.0 µm, and 0.3–5.0 µm) quantities.  

The albedo is derived from the BRDF (bidirectional reflectance-distribution func-

tion) model parameters that are retrieved from all high-quality, cloud-free, atmospherically 

corrected surface reflectance, acquired over a 16-day period at a spatial resolution of 500 

m. The 16-day interval provides an appropriate trade-off between the availability of suffi-

cient angular samples and the temporal stability of the surface (Schaaf et al., 2002; Wanner 

et al., 1997). However, the assumption of stability becomes more tenuous during periods of 

strong phenological change such as vegetation green-up, senescence, harvesting, or even 
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snowfall or meltdown, when surface characteristics change abruptly. The synergistic use of 

MODIS observations from both Terra and Aqua offers an opportunity to increase the angu-

lar sampling, and helps to improve the coverage and quality of global BRDF and albedo 

retrievals (Salomon et al., 2006). Note that Terra has a descending equatorial crossing time 

of 10:30 a.m., while Aqua has an ascending orbit with a 1:30 p.m. equatorial crossing time. 

High quality retrievals are obtained during periods of intermittent clear-sky observations by 

overlapping processing of the data such that retrievals are attempted every eight days 

(based on all clear sky observations over the 16 days). However, during long periods of 

clear sky conditions, the 8-day overlapping introduces an autocorrelation between retriev-

als, since some of the observations wind up being used in more than one period of retrieval 

(Schaaf et al., 2002). 

We used high-quality white-sky broadband albedo (0.3–5.0 µm), whose quality is 

defined by the BRDF and albedo quality product (MCD43A2), to assess the impact of bio-

mass burning on surface albedo. The white-sky albedo is derived from BRDF measure-

ments, integrated over both incoming and outgoing hemispheres, and does not depend on 

the illumination and atmospheric conditions. Oftentimes, the high quality retrievals contain 

significant data gaps, especially in periods of significant cloud cover, where insufficient 

angular sampling leads to a magnitude inversion rather than a full-model inversion (Schaaf 

et al., 2002). A full model inversion is attempted only when at least seven cloud-free obser-

vations of the surface are available during a 16-day period, and the directional observations 

adequately sample the view/illumination geometry. 

2.2 Gap Filling Method and Validation 

As described in Section 2.1, MODIS albedo time series contains data gaps where 

albedo is not retrieved because of problems such as low data quality, persistent or cloud 
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contamination, and poor illumination conditions, which lead to insufficient angular sam-

pling and a lower accuracy on BRDF and albedo. To address the resulting data gap prob-

lem, we developed a simpler algorithm for producing temporally smoothed and spatially 

complete MODIS white-sky albedo data set. The new gap-filling algorithm first examines 

each pixel time-series for data gaps and then assigns it one of the five categories deter-

mined by the number of consecutive data gaps k in the time-series (k= 1, or 2, or 3, or 4, or 

≥4 gaps).  For classes with gaps k =1,…, 4, the missing values are determined from Eq. 1: 

α t = α t−1 + (
α t+1 − α t−1

dt+1 − dt−1
)(dt − dt−1)       (1) 

where α t  is the missing albedo value on a Julian day, dt , α t−1 is the last existing al-

bedo value in the time series, and α t+1 the first albedo value in the time series after the gap.  

While a majority of the missing values are determined from Eq. 1, the method does not 

work well when there are more than four consecutive missing values in a time series. In this 

case, an attempt is made to use neighboring pixels to estimate the missing albedo value 

within a small window defined by 11 × 11 MODIS 500-m pixels around the missing value, 

and having the same land cover type as defined by the MODIS Land Cover product 

(MCD12Q1). If there are no pixels of the same land cover type as the missing value in the 

selected window, the algorithm progressively increases the search-window size to 31 x 31, 

or 61 x 61, or 121 × 121, while automatically continuing the search until a suitable albedo 

match is found. If the algorithm finds no pixels within the maximum search distance (121 × 

121 MODIS 500-m pixels), the missing value is replaced by a long-term average albedo 

derived from the 2003-2011 MODIS albedo of each land-cover type in the entire study re-

gion. This approach ensures that every gap is filled with an albedo value.  

To verify the efficacy of the new gap filling algorithm to MODIS measurements, we 
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applied it over the Southern Great Plains (SGP) Central Facility site in Oklahoma, USA, 

over a period of 32 days, centered around 24 June 2007 (Day-of-the-year, DOY, 175), 

when there was a coincident airborne surface reflectance measurements from NASA’s 

Cloud Absorption Radiometer (CAR; Gatebe et al., 2003; King et al., 1986) taken during 

the 2007 Cloud and Land Surface Interaction Campaign (CLASIC’07; Román et al. 2011).  

That period was dominated by cloudy sky and heavy rainfall in the region, resulting in a lot 

of missing albedo values (Román et al., 2011) that had to be filled to create a good dataset 

to evaluate the new gap filling method. Thus, we used the coincident retrievals from CAR 

to make first-order evaluation of the gap filled approach (c.f. Table 1; Fig. 2, MODIS al-

bedo2). We also compared our method to the MODIS temporally smoothed and spatially 

continuous albedo method by Gao et al., (2008) (c.f. Table 1; Fig. 2, MODIS albedo1). 

Note that we used the full expression for all retrievals from aircraft (CAR) and MODIS gap 

filled approaches (albedo1 and albedo2), as described in Román et al, (2010). Although 

MODIS albedo values are systematically biased low against aircraft/CAR albedo and tower 

based albedo by about 15–20%, the two gap-filling methods (albedo1 and albedo2) agree to 

within 4–5% (cf. Table 1), but the new approach is simpler and uses mainly the most recent 

values on either side of the gap and land cover to fill the missing values. On the other hand, 

MODIS gap filling approach (Gao et al., 2008) is much more rigorous and normally fit at 

least 18 months to adequately capture the phenology and bridge a gap. These systematic 

differences should have little or no impact on the determination of albedo change due to 

fires. 

2.3 Determination of albedo change due to fires  

The albedo change caused by biomass burning was determined at the pixel level for 

each land cover type using the 2003-2011 MODIS albedo data record in the entire NSSA 

region on a monthly basis. A pixel was considered burned when an active fire was reported 
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in the MODIS Level-3, 8-day daily active fire product (MOD14A2) at the 1 km grid cell 

and at all the fire detection confidence (low-confidence fire, nominal-confidence fire, or 

high-confidence fire). The decision to consider fires in all confidence classes was meant to 

boost the number of burnt pixels, especially during the non-fire season months. The study 

focuses more on the albedo changes during fire season. Here, we define the average albedo 

change ΔΩc  due to vegetation fires for land cover type c as: 

ΔΩc = Ωc − Ωc,0       (2) 

where Ωc,0  is the albedo of unburned pixels  (c.f. Table 2), before or when a fire is 

reported, averaged over many pixels of the same land cover type c, and Ωc is an albedo of 

the burned pixels, 24 days after fire is reported, averaged over many pixels of the same land 

cover type c. Table 3 shows the monthly albedo change derived from various major land 

cover types in the NSSA region, which constitute 99.7% of the land area, and averaged 

over nine years of MODIS data from 2003-2011. Note that monthly values are defined by 

the average of the 8-day retrievals that fall in a calendar month. The standard deviation in 

each case (Table 3) represents a temporal and spatial variability of the albedo change. 

3. Influence of biomass burning on albedo  

3.1 Albedo changes caused by biomass burning  

We estimated changes in the albedo after vegetation fires for 11 major land eco-

system types in Africa, which are defined by the International Geosphere and Biosphere 

Programme (IGBP) and applied to the global 1-km MODIS data (cf. Fig. 1b; Friedl et al., 

2002) – referred to here as the MODIS land cover. Barren or sparsely vegetated lands oc-

cupy a large area of the northern Sub-Saharan Africa, 25%, followed by woody savannas, 

15%, grassland, 15%, savannas, 11%, open shrubland, 11%, evergreen broadleaf, 10%, 

cropland or natural vegetation, 8%, closed shrubland, 2%, cropland, 2%, persistent wetland, 
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0.6%, deciduous broadleaf and others,  ~0.003%. As noted earlier, the occurrence of fires is 

most frequent in the savannas (woody savannas and savannas), which accounted for over 

86% of the total MODIS fire count between 2003-2011 (cf. Table 3, column 2; Fig. 1b). As 

shown in Figure 3, most fires in the NSSA occur between October and March, with the 

peak for some cover types around January or November. Barren or desert land cover type 

has a peak around May, but this may be a false peak given that fire detection over barren or 

desert is quite a challenge and oftentimes contains more false alarms compared to other 

land cover types (c.f. Giglio et al., 2003). 

The albedo change caused by fires varies by ecosystem type as depicted in Fig 4, 

and detailed in Table 3. Each value represents an average of many burnt pixels of the same 

land cover type and over nine years (2003-2011). The standard deviation accounts for tem-

poral and spatial variability of the albedo change due to fires. Some ecosystems show large 

values of the standard deviation partly because of post-fire changes in surface albedo asso-

ciated with dissipation of charcoal and ash, and vegetation regrowth over the 24 days pe-

riod used to calculate monthly post-fire albedo change (cf. Jin & Roy, 2005).  Figure 4a 

shows total albedo change for all months in each land cover type, which show an increase 

in albedo except in barren and evergreen broadleaf forests. But given that most fires occur 

between October and February in the NSSA region (cf. Fig. 3), we decided to aggregate 

albedo change values for the fire season months (October-February).  

Figure 4b shows the albedo change during the biomass burning season, where most 

land cover types now show a decrease in albedo after fires, except for a few land cover 

types (e.g. deciduous broadleaf forests). Both evergreen broadleaf forests and grasslands 

show the highest albedo decrease ((-0.00590 ± 0.00015) and (-0.00454 ± 0.00003), respec-

tively), followed by savannas (-0.00352 ± 0.00003), croplands/natural vegetation (-
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0.00374±0.00002), woody savannas (-0.00352 ± 0.00003), open shrublands (-

0.00266±0.00002), and croplands (-0.00110 ± 0.00003). The four land cover types that 

show an increase after fires are permanent wetlands (0.00340±0.00010), closed shrublands 

(0.00144 ± 0.00003), deciduous broadleaf forest (0.00062±0.00008), and barren 

(0.00027±0.00019). The change in albedo associated with fires is more important where 

most fires are reported (e.g. woody savannas (48.69%), savannas (37.73)%, crop/natural 

vegetation (5.59%) and grasslands (4.78%)), which together accounted for about 97% of all 

the MODIS fires detected between 2003 and 2011.  Some studies have suggested that the 

observed differences in albedo change among different land covers are likely related to dif-

ferences in fuel composition and combustion characteristics, with generally higher combus-

tion completeness observed in grasslands than woodlands (Jin & Roy, 2005; Roy et al. 

2008; Hoffa et al., 1999).  

Fires during the main burning season reduce the albedo of savannas, woody savan-

nas, crop/natural vegetation and grasslands as described above and shown in figure 4b. The 

relatively few fires during the northern hemisphere summer months cause an increase in 

albedo that is sufficiently large to dominate the annual average of the albedo perturbation 

for all fire events shown in figure 4a. However, we note that the uncertainties in both the 

albedo and the albedo perturbation reported in tables 2 and 3 during the summer months for 

these land surface types are larger than the uncertainties for the winter months. Thus, we 

conclude that the albedo reduction during the main fire season for these land surface types 

is the more robust result. Higher spatio-temporal variability in the albedo during the sum-

mer months accounts for greater uncertainty in characterizing the undisturbed albedo dur-

ing these months. Quantifying the albedo perturbation during these months is further ham-

pered by the relatively few fire events. 
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Figure 5 illustrates further the importance of albedo change in the fire months 

(October – February). While albedo change in July is high (Fig. 5a), probably caused by 

uncertainties of rapidly changing albedo that is correlated with the peak growing season, 

the contribution is negligible when the monthly albedo changes are weighted by the frac-

tional fire count in each month (Fig. 5b). The albedo perturbations during the fire months 

(Oct-Feb) stand out more prominently. Therefore, the albedo increase shown in Fig 4a is 

due to uncertainties associated with other disturbances, while fires reduce or darken the sur-

face albedo as observed during the fire season (Fig. 4b). Additionally, the albedo decrease 

after fires in February and December is associated with peak burning period of certain land 

cover types depicted in Fig 3a (e.g. savannas, woody savannas, and croplands), probably 

related to post-fire albedo darkening due to dissipation of charcoal and ash, or vegetation 

growth. While the albedo increase after fires in January, October, and November is associ-

ated with peak burning period of other land cover types depicted in Fig 3b (e.g. grasslands, 

shrublands and barren), probably related to the reduced vegetation moisture content in the 

fall and winter, and resultant increasing combustion completeness during burning that leads 

to more exposure of the underlying soils with higher albedo. This is consistent with the 

findings of Hoffa et al. (1999) deduced from experimental burning, where decreasing vege-

tation moisture content and increasing fire line intensity were noted as the dry season pro-

gressed. Full details of albedo change by month and land cover types are given in Table 3.  

The magnitude of albedo perturbations seen here (relative differences: -7% to 6 %) is con-

sistent with results from other studies (e.g. Govaerts et al. 2002) over the fire affected areas 

in the NSSA region (5°N–10°N), where relative differences were found to range between -

8% and -5%. 

3.2 Post-fire albedo recovery 
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In this section, we will describe results of the post-fire persistence of surface albedo 

changes in different ecosystems. This is deduced from the time it takes albedo to go back to 

its pre-fire value.  Our approach involves tracking albedo at the pixel level comparing both 

burned and unburned (control) cases for the same ecosystem.  The unburned case was care-

fully selected from neighbouring pixels and same land cover type that show similar albedo 

characteristics over an extended period of time (at least two years), under similar condi-

tions. Figure 6a shows a plot of albedo time series of both burned and unburned savannas 

pixels, before and after fires for a period of about 3 years. Note that the interval between 

data points is eight days. Figure 6b shows the same data, but zooming into the fire period in 

order to show details of the albedo recovery after the fires. The pre-fire albedo values ex-

hibit a seasonal trend consistent with the vegetation phenology changes from senescence to 

greenup, before and after the northern hemisphere winter in October–February. The corres-

ponding post-fire albedo values follow a similar trend, but have consistently lower values 

after the fire is detected (gray-shaded region in Fig. 6a&b). Since the points represent al-

bedo every eight days, the recovery period in this case takes 288 days or about a year. We 

used this approach to determine how long it took a burnt pixel to return to the pre-fire al-

bedo levels compared to a control pixel, which mimicked how the burnt pixel would have 

behaved over several years without fires.  

Figure 7 and Table 4 show post-fire albedo recovery of different land cover types in 

northern sub-Saharan Africa for burn events that took place in 2003 tracked cumulatively at 

3-month intervals over a period of seven years. At each step, we normalized by the total 

number of tracked pixels in each land cover type. During the first year after the fires, some 

biomes such as croplands, closed broadleaf forests, deciduous broad leaf forests and barren 

or sparse vegetation experience a more rapid albedo recovery. Others such as grassland, 

savannas, and woody savannas take a slower recovery path. Over 60% of the burnt pixels 
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recover their albedo to pre-fire period for all the biomes during the first year after the burn. 

By the end of the second year after fires, over 80% of the burnt pixels recover their albedo 

to pre-fire period, with some biomes such as deciduous broadleaf and closed shrublands 

showing 100% albedo recovery. For the savannas and woody savannas, where 86% of 

burning takes place, >97% of the burnt pixels take at least five years to recover their albedo 

to pre-fire period. Over 97% of the evergreen broadleaf forests burnt pixels took at least six 

years to recover their albedo to pre-fire period.  

4. Conclusions 

We estimated the change of surface albedo due to fires over different land cover 

types in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) from 2003–2011. We determined a decrease in albedo 

over most land cover types due to fires (e.g. woody savannas (-0.00352 ± 0.00003) and sa-

vannas (-0.0.00391±0.00003), which accounted for >86% of the total MODIS fire count 

between 2003 and 2011. Grasslands had a higher value (-0.00454± 0.00003) than the sa-

vannas, but accounted for only about 5% of the total fire count.  A few other land cover 

types (e.g. Deciduous broad leaf: 0.00062 ± 0.00015 and barren: 0.00027 ± 0.00019) 

showed an increase in albedo after fires, but accounted for less than 1% of the total fires. 

The observed monthly albedo change for various biomes in NSSA is variable, while the 

largest values observed in July, probably caused by uncertainties due to rapidly changing 

albedo and correlated with the peak growing season. During the fire season the monthly 

albedo decrease is correlated with peak fire count of some land cover types (e.g. savannas), 

related to post-fire albedo darkening due to dissipation of charcoal and ash, or vegetation 

regrowth. The albedo increase is correlated with peak fire count of the other land cover 

types (e.g. grasslands), related to the reduced vegetation moisture content in the fall and 

winter, and resultant increasing combustion completeness during burning that leads to more 
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exposure of the underlying soils with higher albedo. The albedo recovery after fires pro-

gresses rapidly in year one, with the savannas leading in the recovery (>77%) and decidu-

ous broadleaf, permanent wetlands and barren showing the least recovery (56%). The per-

sistence of surface albedo darkening or brightening is limited to about six to seven years, 

where at least 98% of the burnt pixels recover to their pre-fire albedo for all land cover 

types. 
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Fig. 1. a. Spatial distribution of MODIS detected fires in 2011. A similar pattern 

was observed for each year between 2003-2011. The inset shows fire dis-
tribution for all the years (2003-2011) over a small area, 150 km x 150 km 
in Southern Sudan. Most fires occurred in the savannas and grasslands. b. 
Spatial distribution of the main types of land cover in the Northern Sub-
saharan Africa. Barren or sparsely vegetated lands occupy the largest 
area (25%), followed by woody savannas and grasslands, each at 15% (cf. 
section 3.1).  
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Fig. 2. Comparisons between instantaneous albedos (15-min intervals) derived from air-

borne CAR, tower-based measurements, and satellite MODIS using two different 

gap filled approaches over the CART site on 24 June 2007 during CLASIC Field 

Campaign. The difference between daily average MODIS and Aircraft/Tower al-

bedo varies from 15-20% (cf. Table 1).  



Gatebe et al. 2012 (submitted to Remote Sensing of Environment) 

 26 

 

 

Fig. 3. Monthly Fires detected by MODIS (2003–2011) normalized by the total fires for 

each land cover type in Northern Sub-Saharan Africa. Most fires occur between 

October and March with peak for some cover types around a. January, or, b. 

November. Barren or desert land cover type has a peak around May. 

 

 



Gatebe et al. 2012 (submitted to Remote Sensing of Environment) 

 27 

 

Fig. 4. Annual mean change in albedo for different land cover types averaged 
over nine years (2003-2011).  
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Fig. 5. a. Monthly change in albedo associated with wildfires for all land cover 
types combined. b. Same as in a., but weighted by fire count observed by 
MODIS in each month and normalized by total fire count.  
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Fig. 6. a. An example of albedo time series of a burned pixel (red line) and its 
corresponding control pixel (blue line) beginning 10 Feb 2005 to 2 Feb 
2008. The gray-shaded area represents mostly the post-fire period. b. 
Same as a., but zooming into the post-fire period. The control pixel mim-
ics how the burned pixel would have behaved without fire. Fire was de-
tected on 26 June 2006 and its effect on albedo lasted for about 288 days. 

 



Gatebe et al. 2012 (submitted to Remote Sensing of Environment) 

 30 

 

 

Fig. 7. Percentage of pixels burned in 2003 that has recovered by each subse-
quent year tracked over a period of seven years for different land cover 
types in northern sub-Saharan Africa. Points are plotted every 30 days. 

 


