
ACPD
13, 17479–17517, 2013

Inverse modeling of
Texas NOx emissions

W. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Atmos. Chem. Phys. Discuss., 13, 17479–17517, 2013

www.atmos-chem-phys-discuss.net/13/17479/2013/

doi:10.5194/acpd-13-17479-2013

© Author(s) 2013. CC Attribution 3.0 License.

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry

and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Inverse modeling of Texas NOx emissions
using space-based and ground-based
NO2 observations
W. Tang1, D. Cohan1, L. N. Lamsal2,3, X. Xiao1, and W. Zhou1

1
Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS

519, Houston, TX 77005, USA
2
NASA Goddard Space Flight Center, Greenbelt, MD, USA

3
Goddard Earth Sciences Technology & Research, Universities Space Research Association,

Columbia, MD, USA

Received: 21 June 2013 – Accepted: 25 June 2013 – Published: 2 July 2013

Correspondence to: W. Tang (wei.tang@rice.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

17479



ACPD
13, 17479–17517, 2013

Inverse modeling of
Texas NOx emissions

W. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Abstract

Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 obser-

vations has become more prevalent in recent years, but has rarely been applied to

regulatory modeling at regional scales. In this study, OMI satellite observations of NO2

column densities are used to conduct inverse modeling of NOx emission inventories for5

two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning,

aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close

the gap between modeled and satellite observed NO2 over rural regions. Satellite-

based top-down emission inventories are created with the regional Comprehensive Air

Quality Model with extensions (CAMx) using two techniques: the direct scaling method10

and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity anal-

ysis. The simulations with satellite-inverted inventories are compared to the modeling

results using the a priori inventory as well as an inventory created by a ground-level

NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-

based inversion scales up the a priori NOx emissions in most regions by factors of 1.0215

to 1.84, leading to 3–55 % increase in modeled NO2 column densities and 1–7 ppb

increase in ground 8 h ozone concentrations, while the ground-based inversion indi-

cates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each

region. However, none of the inversions improve the model performance in simulating

aircraft-observed NO2 or ground-level ozone (O3) concentrations.20

1 Introduction

Nitrogen oxides (NOx = NO + NO2) in the troposphere are primary air pollutants, emit-

ted from both anthropogenic sources like fossil-fuel combustion and biomass burning,

and natural sources such as soil microbial processes and lightning. NOx also acts as

a precursor of a secondary air pollutant, tropospheric O3, when it reacts with the oxi-25

dation products of volatile organic compounds (VOCs) in the presence of sunlight. Ox-
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idation with hydroxyl (OH) radical is the dominant sink of NOx, leading to atmospheric

nitric acid (HNO3) formation. The atmospheric lifetime of tropospheric NOx varies from

a few hours in summer to a couple of days in winter (Seinfeld and Pandis, 2006).

NOx emission inventories used in air quality modeling are typically developed by

a bottom-up approach based on estimated activity rates and emission factors for each5

category. Due to inaccuracies in determining these rates and factors, the uncertainty

in NOx emission inventories has been suggested to be as high as a factor of two and

classified as one of the top uncertainties in ozone simulations and sensitivity analysis

(Hanna et al., 2001; Xiao et al., 2010).

Inverse modeling techniques can be used with atmospheric models to estimate10

model variables that may not be directly measurable (Gilliland and Abbitt, 2001). In-

verse modeling generates an optimized “top-down” NOx emission inventory for air qual-

ity models by minimizing the difference between observed and modeled NO2 concen-

trations, providing an opportunity to identify possible biases in the bottom-up NOx emis-

sion inventory (Napelenok et al., 2008). However, as uncertainties may also associate15

with the measurement data and the inverse methods themselves, inverse modeling has

its own limitations. Hence, it is valuable to compare both bottom-up and top-down NOx

emission inventories in order to improve the understanding of NOx emissions.

Several inverse modeling studies have used surface NO2 measurements (Mendoza-

Dominguez and Russell, 2000; Quélo et al., 2005; Pison et al., 2007) or aircraft NO220

measurements (Brioude et al., 2011) to constrain NOx emissions. Compared to ground

and aircraft measurements, satellite-based observations generate greater spatial cov-

erage of NO2. Studies on combining satellite NO2 measurements with inverse modeling

techniques to create the top-down NOx emission inventories also have been conducted

recently in both global scale (Martin et al., 2003; Müller and Stavrakou, 2005; Jaeglé25

et al., 2005; Lin et al., 2010) and regional scale modeling (Konovalov et al., 2006,

2008; Deguillaume et al., 2007; Napelenok et al., 2008; Kurokawa et al., 2009; Zhao

and Wang, 2009; Chai et al., 2009).
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Discrete Kalman filter (DKF) (Prinn, 2000) is an inverse modeling method that solves

the inverse problem iteratively, and can be applied to the cases with linear or weakly

non-linear relationships between emissions and pollutants. It has been used in several

studies to constrain emissions of carbon monoxide (Mulholland and Seinfeld, 1995),

chloroflourocarbons (Haas-Laursen et al., 1996), isoprene (Chang et al., 1996) and5

ammonia (Gilliland et al., 2003). Most recently, Napelenok et al. (2008) applied the

DKF method to the regional Community Multiscale Air Quality (CMAQ) model, gen-

erating a top-down NOx emission inventory for the southeastern United States using

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAM-

CHY) (Bovensmann et al., 1999) satellite NO2 data.10

Despite the growing number of scientific studies conducting satellite-based inver-

sions of NOx emissions, the applicability of these methods to state-level regulatory

attainment modeling has not been widely explored. In this work, the DKF method in-

troduced by Napelenok et al. (2008) is applied with finer resolution satellite NO2 data

now available from the Ozone Monitoring Instrument (OMI) as well as ground-level15

NO2 observations, to constrain NOx emissions for actual regulatory modeling episode

in Texas. Lightning and aircraft NOx emissions are added to the base case NOx emis-

sion inventory to address the bias noted by Napelenok et al. (2008) of regional models

underestimating upper tropospheric NOx. The DKF inverted a posteriori emissions are

compared to the base case emissions, the a priori emissions and a posteriori emissions20

derived by the inversion method of Martin et al. (2003).

2 Methodology

2.1 Model inputs and configurations

Base case model inputs were taken from episodes developed by the Texas Commis-

sion on Environmental Quality (TCEQ) for Texas ozone attainment planning. CAMx ver-25

sion 5.3 (ENVIRON, 2010) was used in this study to simulate two modeling episodes
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in 2006 with high ozone concentrations in the Dallas–Fort Worth (DFW) region, from

31 May to 1 July, and in the Houston–Galveston–Brazoria (HGB) region, from 13 Au-

gust to 15 September (Fig. 1). The NCAR/Penn State (National Center for Atmospheric

Research/Pennsylvania State University) Mesoscale Model, Version 5, release 3.7.3

(MM5v.3.7.3) (Grell et al., 1994), conducted with the Eta-PBL scheme, was used to5

generate the meteorological fields with 43 vertical layers. The preprocessor MM5CAMx

was used to convert MM5 outputs into CAMx-ready meteorology inputs. The ver-

tical configuration of CAMx modeling consists of 17 vertical layers for the August–

September modeling episode, whereas 28 vertical layers were used for the June mod-

eling episode. Modeling was conducted with the Carbon Bond version 2005 (CB-05)10

chemical mechanism, PPM advection scheme, and K-theory vertical diffusion scheme

(TCEQ, 2010, 2011). Boundary conditions for the 36 km eastern US domain were gen-

erated by the Model for Ozone and Related Chemical Tracers (MOZART) global model

(ENVIRON, 2008).

2.2 Emission inventory15

Base case emission inventories were provided by TCEQ. The point source emissions

were from the State of Texas Air Reporting System (STARS) database which col-

lects emission information from approximately 2000 point sources annually, and the

EPA’s acid rain database (ARD) which contains emissions from electric generating

units (EGUs). The on-road mobile emission inventory was generated by Motor Vehicle20

Emission Simulator 2010a (MOVES2010a), and the non-road mobile inventory was de-

veloped by National Mobile Inventory Model (NMIM) and the Texas NONROAD (TexN)

mobile source model. The area source inventory was projected by the EPA Economic

Growth Analysis System (EGAS) model based on 2005 emissions from the Texas Air

Emissions Repository (TexAER) database. The Emission Processing System, version25

3 (EPS3) (ENVIRON, 2007) was used for processing the point, mobile, and area emis-

sions to the model-ready format (TCEQ, 2010, 2011). Biogenic emissions were gener-

ated by the Global Biosphere Emissions and Interactions System (GloBEIS) biogenics
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emissions model, version 3.1 (Yarwood et al., 1999), with soil NOx emissions estimated

by the Yienger and Levy method (Yienger and Levy, 1995).

Lightning and aircraft NOx emissions in the upper troposphere were missing in the

base case emission inventories and should be added before conducting inversions.

In this study, lightning NO emissions were developed based on National Lightning5

Detection Network (NLDN) data obtained from Vaisala Inc., following the approach

of Kaynak et al. (2008). Intra-cloud lightning flashes were treated as three times of

cloud-to-ground lightning flashes with 500 mol NO emission per flash. Lightning NO

was placed into the model to match the time and location of NLDN flashes, and then

distributed vertically based on the profile obtained from the mean April to Septem-10

ber 2003–2005 vertical distribution of VHF sources from the Northern Alabama Light-

ning Mapping Array (Koshak et al., 2004). Global aircraft NOx emissions of year 2005

in 0.1
◦ ×0.1

◦
resolution were obtained from the Emission Database for Global Atmo-

spheric Research (EDGAR) v4.1 (http://edgar.jrc.ec.europa.eu/datasets_grid_list41.

php?v=41&edgar_compound=NOx) and mapped to our modeling domain and placed15

at 9 km altitude.

2.3 Inversion regions

Five urban areas: Houston–Galveston–Brazoria (HGB), Dallas–Fort Worth (DFW),

Beaumont–Port Arthur (BPA), Northeast Texas (NE Texas), and Austin and San An-

tonio; plus two surrounding rural areas: North Rural area (N rural) and South Rural20

area (S rural) (Fig. 1) were designed as inversion regions for the DKF inversions of

NOx emissions. The five urban regions are all air quality planning areas included in

Texas SIP development (Gonzales and Williamson, 2011). HGB and DFW were clas-

sified by US EPA as ozone nonattainment areas for violating the 1997 ozone National

Ambient Air Quality Standard (NAAQS) of 84 ppb. BPA was designated as an ozone25

maintenance area, and NE Texas, Austin and San Antonio were designated as ozone

early action compact areas under that standard. However, the recent tightening of the

NAAQS to 75 ppb has heightened interest in ozone reduction in all of these regions.
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The sensitivities of NO2 concentrations to boundary conditions and to NOx emissions

from each inversion region and the border region (the area between model boundary

and inversion regions) were computed through DDM. The border region minimizes the

impacts from boundary conditions on the inversion regions to the level of only 2 %.

The DDM sensitivities show that NOx emissions from each urban region has the most5

impact on NO2 concentrations within that region, and has less than 10 % influence on

other regions.

2.4 Inversion methods

Two methods are applied for inverse modeling: a direct scaling method introduced by

Martin et al. (2003), and the DKF method.10

2.4.1 Direct Scaling (DS) inversion method

The DS method applies the ratio between satellite NO2 observations and modeled NO2

concentrations to scale the bottom-up NOx emissions in each grid cell:

Et = Eb ×
Ωs

Ωm

(1)

where Et is the top-down NOx emission rate; Eb is the bottom-up NOx emission rate;15

Ωs and Ωm are the satellite and modeled NO2 column densities, respectively.

This method was developed in a global model with coarse grid resolution and as-

sumes that the NO2 concentration in each model grid will not be affected by the NOx

emitted from surrounding grids. However, in a regional model with relatively small grid

size, this assumption may fail, generating a spatial smearing error when NOx lifetime20

is longer than the horizontal transport time (Martin et al., 2003; Boersma et al., 2008;

Lamsal et al., 2010; Turner et al., 2012). Martin et al. (2003) indicated that the spatial

smearing error can be neglected if the grid length is greater than 100 km. Therefore,

smoothing kernels (Toenges-Schuller et al., 2006; Boersma et al., 2008; Lamsal et al.,
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2010) need to be applied in order to alleviate the spatial smearing error in CAMx by

accounting for the emissions from adjacent grid cells in developing the top-down NOx

emissions. The smoothing kernel is defined as

K =
1

k +8

⎛
⎝1 1 1

1 k 1

1 1 1

⎞
⎠ (2)

where k is a smoothing parameter, and is determined by applying the smoothing kernel5

(K) to each grid cell in the bottom-up NOx emission inventory with different k values

until the correlation between smoothed bottom-up NOx emissions and corresponding

CAMx modeled NO2 column density reaches a maximum. The smoothing kernel (K) is

then applied to Eq. (1) to form Eq. (3),

E t
i ,j =

Eb
i ,j∑1

n=−1

∑1
l=−1Kl ,nE

b
i+l ,j+n

Ωs

Ωm

×Eb
i ,j (3)10

where i and j represent column and row in horizontal model grids.

2.4.2 DKF inversion method

The direct scaling inversion approach, as described above, creates spatial smearing

errors when applies to the regional models with fine resolution. Meanwhile, it assumes

concentrations scale proportionally with emissions; hence, the nonlinearity between15

NO2 concentrations and NOx emissions becomes problematic because NOx may influ-

ence its own lifetime by influencing concentrations of OH radicals (Martin et al., 2003).

The DKF inversion (Fig. 2), however, solves the spatial smearing problem by taking

the spatial relationship between NO2 concentrations and NOx emissions directly from

model simulations, and also reduces the non-linearity issue by performing the inversion20

iteratively.
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To constrain NOx emissions, the DKF inversion includes two processes at each

time step: the measurement update (correction) process and the time update (pre-

diction) process (Rodgers, 2000; Welch and Bishop, 2001). In the measurement up-

date process at time step k (Eqs. 4–6), the inversion corrects the predicted NOx emis-

sion (E−
NOx,k) and error covariance (P−

NOx,k) by incorporating the measurement data5

(Cmeasured

NO2,k ) and Kalman Gain (Gk), and then generates the corrected emission (ÊNOx,k)

and error covariance (P̂NOx,k).

Gk = P−
NOx,kST

k

(
SkP−

NOx,kST
k +Rk

)−1

(4)

ÊNOx,k = E−
NOx,k +Gk

(
Cmeasured

NO2,k −Cmodeled

NO2,k

)
(5)

P̂NOx,k = (I−GkSk)P−
NOx,k (6)10

S represents the NO2 sensitivity to NOx emissions. R is the measurement error co-

variance, and it relates to the uncertainties in OMI and ground NO2 measurements. In

here, the uncertainty for the AQS ground NO2 measurements was set to 0.15 (US EPA,

2006) and for the NASA standard OMI NO2, version 2, was set to 0.3 (Bucsela et al.,15

2013) for all diagonal elements in R. The error covariance (P) relates to the uncertainty

in the NOx emission inventory, and the uncertainty value of 2.0 (Hanna et al., 2001;

Napelenok et al., 2008) was chosen here for all diagonal elements in P. To simplify,

off-diagonal elements in R and P were set to zero, because we assume each inversion

region is an independent element.20

In the time update process at time step k, the inversion process predicts the emission

(E−
NOx,k+1

) and the error covariance (P−
NOx,k+1

) for the measurement update process at

time step k+1, based on the corrected emission (ÊNOx,k) and error covariance (P̂NOx,k)
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from the measurement update process at time step k (Eqs. 7, 8).

E−
NOx,k+1

= MkÊNOx,k +εk (7)

P−
NOx,k+1

= MkP̂NOx,kMT
k +Qk (8)

M represents a transition matrix; ε and Q are process errors which relate to errors in5

modeling processes, and are difficult to estimate. Since we assume the bias between

modeled and measured NO2 is mostly from errors in NOx emissions (Prinn, 2000;

Napelenok et al., 2008), ε and Q were set to zero.

CAMx-DDM (Koo et al., 2007) calculates a semi-normalized NO2 sensitivity to NOx

emissions (unitless), as shown in Eq. (9), replacing sensitivity elements in S in Eq. (4),10

SNO2toNOx
= ẼNOx

∂CNO2

∂ENOx

= ẼNOx

∂CNO2

∂((1+x)ẼNOx
)
=

∂CNO2

∂(1+x)
=

∂CNO2

∂x
(9)

where Ẽ represents the unperturbed NOx emission field; x is the perturbation factor.

Hence, in this study, the DKF inversion actually seeks the optimal perturbation factor

(x) at each iteration. The inversion processes will repeat iteratively until the perturbation

factor for each emission region converges within a prescribed criterion, δ (Fig. 2), for15

which the value of 0.01 was chosen in this study.

2.5 NO2 observations

2.5.1 Satellite NO2 measurements

The Dutch–Finnish Ozone Monitoring Instrument (OMI) aboard NASA’s EOS Aura

satellite, launched on 15 July 2004, is a nadir-viewing UV-Vis spectrometer that mea-20

sures solar backscattered irradiance in the range of 270 nm to 500 nm. It has been

utilized to retrieve atmospheric NO2 in the spectral range from 405 nm to 465 nm with

spatial resolution down to scales of 13km×24km at nadir view point (Levelt et al.,

17488
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2006a,b). The EOS Aura satellite follows a Sun-synchronous polar orbit at approxi-

mately 705 km altitude with local equator crossing time around 13:40 LT (Levelt et al.,

2006b; Boersma et al., 2007). In this study, the NASA standard product, version 2 (Buc-

sela et al., 2013) retrieval of OMI NO2, gridded at 0.1
◦ ×0.1

◦
resolution, was obtained

from NASA Goddard Space Flight Center and mapped to the 12 km CAMx modeling5

domain. OMI pixels with cloud radiance fraction greater than 0.5 and sizes of more than

20km×63km at swath edges were excluded in the dataset. The OMI averaging kernels

(Eskes and Boersma, 2003) were interpolated into each CAMx model layer and then

applied to the modeled NO2 column density (Eq. 10), to account for the influence of

the a priori NO2 vertical profile used in the OMI retrieval and the OMI measurement10

sensitivities at each altitude:

Cmodeled

NO2
=
∑

Ai ·Xi (10)

where Ai is the averaging kernel at pressure level i , and Xi is the CAMx modeled partial

NO2 subcolumn density at the corresponding pressure level.

In order to reduce the OMI measurement uncertainties and effects from invalid data15

points, monthly averaged OMI NO2 column densities were used in the DKF inversions.

2.5.2 Ground and other NO2 measurements

The US EPA Air Quality System (AQS) NO2 ground monitoring network data (Fig. 1)

(http://www.epa.gov/ttn/airs/airsaqs/) were also used for inverse modeling. AQS mon-

itors are equipped with a heated molybdenum catalytic converter that first transforms20

NO2 to NO, and then measures the resultant NO using a chemiluminescence analyzer.

NO2 is then calculated by subtracting NO measured in a separate NO mode from

the resultant NO (US EPA, 1975). Studies (US EPA, 1975; Demerjian, 2000; Lam-

sal et al., 2008) indicate that the catalytic converter also converts fractions of other

reactive nitrogen species (e.g. HNO3, PAN) into NO during this measurement. There-25

fore, correction factors computed from CAMx modeled concentrations by the method
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of Lamsal et al. (2008) (Eq. 11) are applied before deploying the AQS NO2 data in the

DKF inversion:

CF =
NO2

NO2 +
∑

AN+ (0.95PAN)+ (0.35HNO3)
(11)

In Eq. (11),
∑

AN represents the sum of all alkyl nitrates and PAN is peroxyacetyl

nitrate. The CAMx model with CB05 mechanism does not output alkyl nitrates specif-5

ically, so the difference between modeled total organic nitrates and PAN was used to

represent modeled alkyl nitrates.

The NOAA P-3 aircraft NO2 data (http://www.esrl.noaa.gov/csd/tropchem/

2006TexAQS/) and the Texas Radical and Aerosol Measurement Program (TRAMP)

NO2 data, measured at Moody Tower (Fig. 1), (http://geossun2.geosc.uh.edu/web/10

blefer/TRAMP/Final%20data/) were used to evaluate the inverse modeling results.

The Moody Tower measurement site located at the University of Houston campus is

approximately 70 m above the ground (Luke et al., 2010), corresponding to the CAMx

modeling layer 2, with hourly NO2 data available for the whole August–September

episode, but no coverage for the June episode. The P-3 aircraft measurement was15

made from ground level to around 5000 m height with 1 s resolution, but only available

on 4 days (31 August, 11 September, 13 September, and 15 September 2006) during

our modeling period. Hourly averaged aircraft NO2 data was used to compare with the

hourly modeled NO2 at corresponding grid cells. Both P-3 aircraft and Moody Tower

NO2 measurements were made by using a photolytic converter, and hence did not20

require corrections via Eq. (11).
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3 Results and discussion

3.1 Pseudodata test for the DKF inversion with CAMx-DDM

To evaluate the performance of the DKF inversion technique, a controlled pseudodata

test was performed for 10 modeling days (31 May to 9 June, and 13 August to 22 Au-

gust) for each modeling episode. The 10 day averaged modeled NO2 columns at 1–5

2 p.m. from the base case were used as pseudo-observations, and the model was re-

run with NOx emissions from each region perturbed by known factors ranging from

0.5 to 2.0 (Table 1). Appling the DKF inversion successfully adjusted the perturbed

NOx emissions from each region back to their base values, converging in 4 iterations

(Fig. 3). The robustness of the DKF inversion was tested by varying the uncertainty10

parameters, which were set to 2.0 for emissions and 0.3 for observations in the initial

pseudodata test. While higher levels of the emission uncertainty parameter and lower

levels of the observation uncertainty parameter led to more rapid adjustments, the final

results of the DKF inversion were insensitive to the assumed uncertainty parameters,

and also to the off-diagonal elements in the error covariance matrix.15

3.2 Additional NOx emissions

Since DKF inversions scale emissions from their original levels, an appropriate a priori

NOx emission inventory is essential for obtaining reasonable results. The NASA Inter-

continental Chemical Transport Experiment (INTEX-A) air quality study (Singh et al.,

2006) found large discrepancies between aircraft measurements and CMAQ simula-20

tions of NO2 concentrations in the upper troposphere. Possible explanations could be

upper tropospheric NOx sources such as lightning and aircraft NOx emissions that

are often neglected in emission inventories. Missing NOx sources in the upper tropo-

sphere may bias the inversion on the remaining emissions (Napelenok et al., 2008). At

ground level, Hudman et al. (2010) found that the soil NOx emissions estimated by the25

widely used Yienger and Levy method (Yienger and Levy, 1995) were underestimated
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by a factor of 2 over the United States. Therefore, in this study, the lightning and aircraft

NOx emissions were added in the upper troposphere as described in the Sect. 2.2, and

the soil NOx emissions were doubled from base case levels. The emission inventory

with added lightning and aircraft NOx, and doubled soil NOx (hereafter referred to as

the a priori emission inventory) was used for the following inversion studies. Inclusion5

of these NOx sources improves the performance of the model in simulating satellite

observed NO2 column densities, especially in the rural areas (Figs. 4c and 5c), and

reduces the bias and error by around 15 % (Table 3).

3.3 Top–down NOx emissions using OMI NO2

3.3.1 DS inversion10

The DS inversion method was performed with OMI NO2 column densities to create top-

down NOx emissions for the 12 km modeling domain. The monthly averaged (3 June

to 1 July, and 16 August to 15 September) NO2 column densities at 1–2 p.m. were

used to calculate the ratio of OMI to CAMx (Eq. 1). The first three modeling days

were discarded for both modeling episodes to avoid the influence of initial conditions.15

The monthly 24 h averaged NOx emissions and modeled NO2 column densities were

used to determine the value of the smoothing parameter, k. In this case, k equals to

2.0 for both episodes, indicating large influence of NOx emissions transported from

surrounding grid cells.

Results (Table 2) show the DS inversion scales up the NOx emissions in all seven20

regions, leading to higher estimates of modeled NO2 column densities (Figs. 4d and

5d) in most of the domain. However, especially in urban areas, the simulated NO2 col-

umn densities with inverted NOx emissions overshoot those observed by OMI. This

indicates that the ability of NOx to influence its own lifetime via changes in OH radical

concentrations results in significant nonlinearity between NO2 concentration and NOx25

emission that are neglected by the DS method. Use of inverted NOx emissions does re-

duce bias and error in simulating OMI observed column densities, while R2
gets worse
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(Table 3), indicating no improvement in the spatial distribution. The comparisons with

AQS ground measurements (Table 4) indicate that the inverted NOx emissions actually

deteriorate the simulations of ground-level NO2, with bias and error increasing by 70 %.

Similar results are shown in evaluating model performance against Moody Tower and

P-3 measurements: the DS inversion increases bias and error by approximately 30 %5

and 20 %, respectively.

3.3.2 DKF inversion

DKF inversion using the OMI NO2 measurements was conducted to constrain NOx

emissions from the seven designated regions. The monthly averaged (3 June to 1 July,

and 16 August to 15 September) OMI and CAMx NO2 column densities at 1–2 p.m.10

were used in the inversion. All modeling grids in the inversion area were covered by

the OMI NO2 measurement data. The DKF inversions were performed with 2116 data

points in one time step (1–2 p.m.). The scaling factors generated by inversion for each

region were applied to the NOx emission inventory hourly, since we assume that the 1–

2 p.m. NO2 column density is contributed by the NOx emissions from all previous hours,15

and the uncertainty in the bottom-up NOx emission inventory should be the same for

every time step. The satellite-based DKF inversions scale a priori NOx emissions by

factors ranging from 1.02 to 1.84 in almost all regions in both episodes (Table 2), ad-

hering to the specified uncertainty range of 0.5 to 2.0. The scaling factors tend to be

larger over the rural and small urban regions than over the urban DFW and HGB ozone20

nonattainment regions, where the inversions scale up emissions only slightly (factors

of 1.02 to 1.14). It results from the inversion attempts to compensate for the large

gap between higher observed than modeled NO2 over rural regions, despite varied

patterns over urban grid cells. One exception occurs in the NE Texas region in the

August–September episode (Table 2), which shows downward scaling (factor of 0.56).25

This reflects the inversion shifting emissions between NE Texas and the much larger

surrounding N rural region (Fig. 1); taken together, the net scaling factor for the two

regions in August–September is 1.72, consistent with the upward scaling of rural emis-
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sions throughout the two episodes. Apart from this anomaly, scaling factors for most

regions were consistent across the two episodes, varying by less than 15 %.

CAMx modeled NO2 column densities with the inverted NOx emissions (Figs. 4e and

5e) are increased by 3–55 % in all regions, but the increments are much more moder-

ate compared to the DS method inversion. The statistical results (Table 3) indicate that5

the DKF inversed NO2 are closer to OMI observations than the a priori case in terms

of 20 % less in bias and 10 % less in error, but without improvements in the spatial

distribution. The DS method scales up NOx emissions more than the DKF inversion

(Table 2), making the inversed NO2 concentrations have slightly less bias and error

(Table 3). However, the DKF inversed NO2 has better R2
than that of inversed by the10

DS method, indicating the DKF inversion method has better ability to retain the spatial

structure of NOx emissions. Each of the inversions using OMI NO2 data actually wors-

ens the model performance in simulating ground level NO2 concentrations (Table 4),

since the modeled ground NO2 using the base case emission inventory had already

been overestimated (Fig. 6). However, the DKF inversed NO2 only increases the bias15

and error by 30 % in simulating AQS NO2 (Table 4), by 5 % in simulating P-3 NO2

(Table 5), and by 8 % in simulating Moody Tower NO2, whereas greater deterioration

resulted from the DS inversion.

3.4 Top–down NOx emissions using ground AQS NO2

Ground-level AQS NO2 measurements were also used to drive DKF inversions of NOx20

emissions for the two modeling episodes. There are 37 ground measurement sites

in the designated inversion regions (Fig. 1), mostly located in the urban cores. The

N rural and S rural regions were excluded in this case because they contain too few

measurement sites. Correction factors from Eq. (11) were applied to the ground NO2

before using the data in the inversion.25

The base case simulations strongly overpredicted observed NO2 in the early morn-

ing and late afternoon during both modeling episodes (Fig. 6), when the model may

underestimate planetary boundary layer (PBL) heights (Kolling et al., 2013). To allevi-
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ate the influence from PBL heights, daily 24 h averaged NO2 levels were used in the

inversions.

To address the overprediction of ground-level NO2, the ground-based inversions

sharply reduce a priori NOx emissions by applying scaling factors of 0.30 to 0.57

(Table 2). The reductions in NOx emissions reduce model error relative to the AQS5

(Table 4) and Moody Tower NO2 observations on an hourly basis, as well as NO2 ob-

served by the P-3 aircraft (Table 5), but may be too sharp, as they lead negative bias

in predicting NO2 from the AQS monitors (Table 4) and the P-3 aircraft measurements

(Table 5). More moderate scaling factors are obtained if the inversion is conducted with

data only from a midday window (9 a.m.–2 p.m.) when PBL heights are less problematic10

(not shown). However, scaling factors still remain far below 1.0 and show up to factor

of two inconsistencies between the two episodes.

3.5 Impacts on O3 simulations

O3 concentrations and their sensitivities to changes in emissions are calculated for both

modeling episodes using the a priori and each of the a posteriori emission inventories.15

The scaled up NOx emissions from the satellite-based DKF inversion (Table 2) lead

to 1–7 ppb higher modeled 8 h (10 a.m.–6 p.m.) O3 concentrations over most of the

domain in the June episode (Fig. 7, top row). Largest increases occur over NE Texas

and N rural regions (Fig. 1), where the a priori simulation shows O3 to be most sensitive

to NOx (Fig. 7, middle row) and where the satellite-based DKF inversion scaled up20

emissions by large amounts.

The a priori simulation shows O3 to be primarily sensitive to NOx over most of the

domain, but VOC-limited in the core of the Houston region and with joint sensitivity to

NOx and VOC in Dallas, Austin, and San Antonio (Fig. 7, left column). The satellite-

based inversion increases NOx emissions and thus shifts the O3 formation chemistry25

toward being more VOC sensitive (Fig. 7, middle column). Over much of the domain,

O3 sensitivity to VOC increases by a factor of about 1.5. The slight increases in O3 sen-

sitivity to NOx occur because the semi-normalized sensitivity coefficients represent the
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local slope of O3-emissions response scaled to a 100 % change in emissions. As the

satellite-based inversion scales up NOx emissions, these semi-normalized coefficients

increase, even though the impacts per ton of NOx decrease.

The ground-based DKF inversion leads to O3 reductions of 3–8 ppb over urban re-

gions (Fig. 7, top right), where it scales down emissions (Table 2), and less changes5

over rural regions where emissions were left unchanged due to lack of NO2 monitors.

The reduction in urban NOx makes O3 less sensitive to VOC emissions as expected

(Fig. 7, bottom right). However, the impact on sensitivity to NOx is mixed. In urban areas

which are transitional between NOx-limited and NOx-saturated conditions, the reduc-

tion in NOx emissions pushes the chemistry toward more NOx-limited conditions and10

thus increases the sensitivities. In downwind regions which are already NOx-limited,

the sensitivities decline because there are now less NOx emissions contributing to the

semi-normalized coefficients.

Model performance in simulating hourly AQS ground-level observations of O3 indi-

cates that the bias and error slightly worsened when each of the a posteriori inventories15

are used in place of the a priori inventory (Table 6). The largest deterioration comes

from the DS inversion as the bias and error increase by around 10 %, likely because

this inversion method does not retain the spatial structure of emissions from the a pri-

ori inventory. For the other inversions, the changes in bias and error are too slight to

determine if performance is meaningfully impacted.20

4 Conclusions

Inverse modeling has been performed using either NO2 column densities observed by

OMI satellite or ground-level NO2 concentrations observed by AQS monitors to con-

strain the NOx emissions for two regulatory attainment modeling episodes in Texas.

Two inversion methods, DS and DKF, are applied to the OMI NO2 data, and the DKF25

method is also applied to the ground-level NO2 data. Pseudodata test results validate

that the DKF method effectively captures known perturbations in CAMx simulations.
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Two missing NOx sources in the upper troposphere, lightning and aircraft NOx emis-

sions, are added into the base case NOx emission inventory, contributing 14 % and

6 % to the total NOx emissions for the June episode, and 7 % and 6 % for the August–

September episode, respectively. The underestimated soil NOx emissions are doubled

from the base case, adding an additional 8 % NOx emission to the base case for both5

episodes. The additional NOx emissions increase the modeled NO2 column densities

mostly at rural areas and improve the inversion performance with the OMI NO2, but not

with the ground NO2.

The DS inversions tend to overshoot the OMI-observed NO2 column densities since

this linear inversion method ignores the nonlinear influence of NOx on its own lifetime.10

The iterative approach of the DKF inversion avoids this problem, but fails to substan-

tially improve the spatial correlation of modeled and observed NO2 levels since it ap-

plies only a single scaling factor to each inversion region.

The overall tendency of the model to underpredict OMI observed NO2 column den-

sities and to overpredict AQS observed ground NO2 concentrations leads to conflicting15

results between the inversions. It is difficult to determine which observations provide

a more reliable basis for the inversions, since none of the inversions improve model

performance against independent data such as aircraft-observed NO2 or ground-level

O3 concentrations. Whether this indicates that the a priori inventory is the best avail-

able representation of NOx emissions, or that tuning of the base model led to its better20

performance, is impossible to determine. Nevertheless, this suggests that inverse mod-

eling of NOx emissions should for now remain a complement to SIP modeling efforts

rather than a substitute for traditional bottom-up inventories.

The AQS ground NO2 measurements face limitations due to the inaccuracies of the

molybdenum converter method, and because the mostly urban measurement sites may25

be unrepresentative of the entire region. In addition, model shortcomings in simulating

PBL heights may strongly bias the inversions based on ground-level observations.

For the satellite data, several factors could explain the more spatially smeared and

higher rural NO2 in the satellite observations than the base model which drove the up-

17497



ACPD
13, 17479–17517, 2013

Inverse modeling of
Texas NOx emissions

W. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

ward scaling of emissions. Our inclusion of lightning and aircraft NOx emissions and

doubling of soil NOx emissions narrowed but did not eliminate the discrepancy. A higher

resolution OMI NO2 product (retrieved with small pixels and high resolution a priori pro-

file) has been shown to enhance NO2 column densities in urban areas and reduce them

in rural areas (Russell et al., 2011), which would more closely resemble the modeled5

distribution. Lin et al. (2012) highlighted several uncertain model parameterizations

that impact model predictions of NO2 column density for a given emissions inventory.

For example, lowering the rate constant of the NO2 +OH reaction to match the rate of

Mollner et al. (2010) would lead to a longer NOx lifetime and reduce the gap between

modeled urban and rural NO2 concentrations. Henderson et al. (2011) suggested that10

better representation of acetone and organic nitrates in the CB05 mechanism could

help address its underprediction of NO2 in the remote upper troposphere. Future work

could explore how combinations of these adjustments influence satellite-based inver-

sions.

The upcoming DISCOVER-AQ campaign by NASA in fall 2013 will provide verti-15

cally resolved measurements of NOx from repeated aircraft spirals in the Houston re-

gion. This may help resolve some of the discrepancies noted here between inversions

driven by ground-based and satellite-based NO2 observations. The future Tropospheric

Emissions: Monitoring of Pollution (TEMPO) mission, using a geostationary satellite

with high spatial and temporal measurement capabilities, could provide a richer data20

source to drive the NOx inversions. Future work could also conduct inversions based

on emission categories rather than emission regions, to explore potential errors in the

emission inventory on a component rather than location basis.
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Table 1. Arbitrary perturbation factors for pseudodata testing.

Source Region Perturbation factor

HGB 1.8

DFW 0.6

BPA 1.6

NE Texas 0.7

Austin and San Antonio 1.4

N rural 1.5

S rural 0.8
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Table 2. Scaling factors for each region from different inversions.

Source 3 Jun to 1 Jul 2006 16 Aug to 15 Sep 2006

Region

Base NOx Priori NOx Scaling factor relative to priori Base NOx Priori NOx Scaling factor relative to priori

emission emission
a

(unitless) emission emission (unitless)

(td
−1

) (td
−1

) (td
−1

) (td
−1

)

Posteriori Posteriori Posteriori Posteriori Posteriori Posteriori

OMI-based OMI-based Ground-based OMI-based OMI-based Ground-based

DS inversion DKF inversion DKF inversion
b

DS inversion DKF inversion DKF inversion

HGB 374 455 1.46 1.12 0.37 382 436 1.56 1.03 0.57

DFW 335 435 1.36 1.02 0.34 314 412 1.47 1.14 0.47

BPA 81 97 2.23 1.83 0.49 86 98 2.02 1.75 0.42

NE 141 164 2.33 1.84 0.49 155 174 1.69 0.56 0.51

Texas

Austin 252 319 1.55 1.28 0.30 248 302 1.82 1.70 0.40

and San

Antonio

N rural 522 823 1.93 1.67 – 543 759 2.00 1.98 –

S rural 472 728 1.83 1.52 – 489 668 2.04 1.72 –

a
Adds lightning and aircraft NOx, and doubled soil NOx emissions to the base case.

b
Conducted with 24 h averaged ground-level NO2 data.
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Table 3. Performance of CAMx in simulating OMI-observed NO2 column densities.

Statistical 3 Jun to 1 Jul 2006 16 Aug to 15 Sep 2006

Parameters

Base Priori
c

Posteriori Posteriori Base Priori Posteriori Posteriori

case OMI-based OMI-based case OMI-based OMI-based

DS inversion DKF inversion DS inversion DKF inversion

R2
0.62 0.61 0.42 0.54 0.63 0.48 0.40 0.51

NMB
a −0.47 −0.30 0.087 −0.12 −0.54 −0.33 0.13 −0.12

NME
b

0.48 0.32 0.22 0.23 0.55 0.39 0.32 0.28

a
Normalized mean bias.

b
Normalized mean error.

c
Adds lightning and aircraft NOx, and doubled soil NOx emissions to the base case.
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Table 4. Performance of CAMx in simulating AQS Ground-level NO2
a
.

Statistical 3 Jun to 1 Jul 2006 16 Aug to 15 Sep 2006

Parameters

Base Priori Posteriori Posteriori Posteriori Base Priori Posteriori Posteriori Posteriori

case OMI-based OMI-based Ground-based case OMI-based OMI-based Ground-based

DS inversion DKF inversion DKF inversion DS inversion DKF inversion DKF inversion

R2
0.55 0.54 0.49 0.51 0.52 0.50 0.49 0.43 0.44 0.47

NMB 0.82 0.91 1.66 1.30 −0.16 0.35 0.42 1.10 0.72 −0.24

NME 0.96 1.03 1.71 1.37 0.48 0.63 0.67 1.21 0.91 0.48

a
Hourly AQS data was used to compare with modeled NO2 at corresponding locations.
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Table 5. Performance of CAMx in simulating P-3 aircraft-observed NO2.

Statistical 16 Aug to 15 Sep 2006
a

Parameters

Base Priori Posteriori Posteriori Posteriori

case OMI-based OMI-based Ground-based

DS inversion DKF inversion DKF inversion

R2
0.23 0.23 0.25 0.22 0.22

NMB 0.10 0.10 0.46 0.15 −0.14

NME 0.99 0.99 1.24 1.02 0.86

a
Comparison available for only four days (31 August, 11 September, 13 September, and

15 September 2006).
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Table 6. Performance of CAMx in simulating AQS hourly ground-level O3.

Statistical 3 Jun to 1 Jul 2006 16 Aug to 15 Sep 2006

Parameters

Priori Posteriori Posteriori Posteriori Priori Posteriori Posteriori Posteriori

OMI-based OMI-based Ground-based OMI-based OMI-based Ground-based

DS inversion DKF inversion DKF inversion DS inversion DKF inversion DKF inversion

R2
0.61 0.61 0.63 0.58 0.50 0.52 0.51 0.46

NMB 0.01 0.12 0.02 0.04 0.38 0.49 0.41 0.40

NME 0.29 0.37 0.30 0.30 0.47 0.58 0.50 0.48
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Fig. 1. 12 km CAMx modeling domain for eastern Texas (black square), inversion regions

(shaded), ground AQS NO2 monitoring sites (blue triangles), and Moody Tower (red circle).
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Fig. 2. Schematic diagram of Kalman filter inversion process.
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Fig. 3. Pseudodata test showing that the DKF inversion accurately adjusts the NOx emissions

from the perturbed case (a) to the a posteriori case (b) to match the desired base NO2 column

densities. Similar performance is found for the 13–22 August test period.
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Fig. 4. Monthly averaged (3 June to 1 July) tropospheric NO2 vertical columns at 1–2 p.m. from

(a) OMI observations, and from CAMx simulations using (b) base case emissions inventory,

(c) a priori emission inventory (with additional lightning, aircraft, and soil NOx), and OMI-based

inverted NOx emissions using (d) DS and (e) DKF methods.
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Fig. 5. Same as Fig. 4, but for the August–September episode.
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Fig. 6. Daily variations of modeled (solid line) and observed (dashed line) ground NO2 concen-

trations for the June (red) and August–September (blue) episodes. Note: NO2 concentrations

were taken by averaging monthly data for all sites.
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Fig. 7. Monthly 8 h (10 a.m.–6 p.m.) averaged ground-level O3 concentrations (top), O3 sensi-

tivity to NOx (middle), and O3 sensitivity to VOC (bottom) for the a priori case (left column), and

differences (a posteriori minus a priori) for the OMI-based (middle column) and ground-based

(right column) DKF inversions in the June episode. The August–September episode shows

similar results.
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