Accepted Manuscript

Statistical and Hydrological Evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?

Xianwu Xue, Yang Hong, Ashutosh S. Limaye, Jonathan Gourley, George J. Huffman, Sadiq Ibrahim Khan, Chhimi Dorji, Sheng Chen

PII: DOI: Reference:	S0022-1694(13)00495-2 http://dx.doi.org/10.1016/j.jhydrol.2013.06.042 HYDROL 18973
To appear in:	Journal of Hydrology
Received Date:	5 October 2012
Revised Date:	6 June 2013
Accepted Date:	23 June 2013

Please cite this article as: Xue, X., Hong, Y., Limaye, A.S., Gourley, J., Huffman, G.J., Khan, S.I., Dorji, C., Chen, S., Statistical and Hydrological Evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?, *Journal of Hydrology* (2013), doi: http://dx.doi.org/10.1016/j.jhydrol.2013.06.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	Statistical and Hydrological Evaluation of TRMM-based
3	Multi-satellite Precipitation Analysis over the Wangchu Basin
4	of Bhutan: Are the Latest Satellite Precipitation Products
5	3B42V7 Ready for Use in Ungauged Basins?
6	
7	Xianwu Xue ^{1, 2} , Yang Hong ^{1, 2} , Ashutosh S. Limaye ³ , Jonathan Gourley ⁴ , George. J.
8	Huffman ⁵ , Sadiq Ibrahim Khan ¹ , Chhimi Dorji ⁶ and Sheng Chen ¹
9	1. School of Civil Engineering and Environmental Sciences, University of Oklahoma
10	2. Advanced Radar Research Center, National Weather Center, Norman, OK 73072
11	3. ZP11/ Earth Science Office, NASA Marshall Space Flight Center 320 Sparkman Dr.,
12	Huntsville, AL 35805
13	4. NOAA/National Severe Storms Laboratory, Norman, OK 73072
14	5. NASA Goddard Space Flight Center, Greenbelt, MD 20771
15	6. Department of Hydro-Met Services, Ministry of Economic Affairs, Bhutan
16	
17	
18	

Corresponding author address:

Yang Hong, Atmospheric Radar Research Center, National Weather Center suite 3630,

120 David L. Boren Blvd, Norman, OK 73072-7303

Tel.: 1-405-325-3644; Email: <u>yanghong@ou.edu</u>

19 Abstract

The objective of this study is to quantitatively evaluate the successive Tropical Rainfall 20 Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and 21 further to explore the improvements and error propagation of the latest 3B42V7 22 algorithm relative to its predecessor 3B42V6 using the Coupled Routing and Excess 23 Storage (CREST) hydrologic model in the mountainous Wangchu Basin of Bhutan. First, 24 the comparison to a decade-long (2001-2010) daily rain gauge dataset reveals that: 1) 25 3B42V7 generally improves upon 3B42V6's underestimation both for the whole basin 26 (bias from -41.15% to -8.38%) and for a $0.25^{\circ} \times 0.25^{\circ}$ grid cell with high-density gauges 27 (bias from -40.25% to 0.04%), though with modest enhancement of correlation 28 coefficients (CC) (from 0.36 to 0.40 for basin-wide and from 0.37 to 0.41 for grid); and 2) 29 3B42V7 also improves its occurrence frequency across the rain intensity spectrum. Using 30 the CREST model that has been calibrated with rain gauge inputs, the 3B42V6-based 31 simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and 0.25 32 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in 33 monthly scale), a comparable skill score with the gauge rainfall simulations. After 34 recalibrating the model with the respective TMPA data, significant improvements are 35 observed for 3B42V6 across all categories, but not as much enhancement for the already-36 well-performing 3B42V7 except for a reduction in bias (from -26.98% to -4.81%). In 37 summary, the latest 3B42V7 algorithm reveals a significant upgrade from 3B42V6 both 38 in precipitation accuracy (i.e., correcting the underestimation) thus improving its 39

40 potential hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in-situ gauges even without recalibration of the hydrological model by 41 the satellite precipitation, a compensating approach often used but not favored by the 42 hydrology community, particularly in ungauged basins. 43 44

Keywords: CREST Model; A-Priori Parameter Estimation; Hydrologic Modeling 45

MANU

Evaluation; Precipitation Estimation 46

48 **1 Introduction**

Precipitation is among the most important forcing data for hydrological models. It has 49 been arguably nearly impossible for hydrologists to simulate the water cycles over 50 regions with no or sparse precipitation gauge networks, especially over complex terrain 51 or remote areas. Recently, the satellite precipitation products such as TMPA (Huffman et 52 al., 2007), CMORPH (Joyce et al., 2004), PERSIANN (Sorooshian et al., 2000) and 53 PERSIANN-CCS (Hong et al., 2004) are starting to provide alternatives for estimating 54 rainfall data and also pose new challenges for hydrologists in understanding and applying 55 the remotely-sensed information. 56

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 57 Analysis (TMPA), developed by the National Aeronautics and Space Administration 58 (NASA) Goddard Space Flight Center (GSFC), provides a calibration-based sequential 59 scheme for combining precipitation estimates from multiple satellites, as well as monthly 60 gauge analyses where feasible, at fine spatial and temporal scales $(0.25^{\circ} \times 0.25^{\circ} \text{ and } 3)$ 61 hourly) over 50°N-50°S (Huffman et al., 2007). TMPA is computed for two products: 62 near-real-time version (TMPA 3B42RT, hereafter referred to as 3B42RT) and post-real-63 time research version (TMPA 3B42 V6, hereafter referred to as 3B42V6). 3B42V6 has 64 been widely used in hydrological applications (Bitew and Gebremichael, 2011; Bitew et 65 al., 2011; Khan et al., 2011a; Khan et al., 2011b; Li et al., 2012; Stisen and Sandholt, 66 2010; Su et al., 2008), however, its computation ended June 30th 2011 and 3B42V6 was 67 replaced by the new version (TMPA 3B42 V7, hereafter referred to as 3B42V7), which 68

has been reprocessed and available from 1998 to present. Previously, 3B42V6 has been 69 validated by several studies (Bitew and Gebremichael, 2011; Bitew et al., 2011; 70 Chokngamwong and Chiu, 2008; Islam and Uyeda, 2007; Jamandre and Narisma; Jiang 71 et al., 2012; Li et al., 2012; Mishra et al., 2010; Stisen and Sandholt, 2010; Su et al., 2008; 72 Yong et al., 2012; Yong et al., 2010), while the newly available 3B42V7 is evaluated in 73 tropical cyclone systems (Chen et al., 2013b) and the United States (Chen et al. 2013a 74 and Kirstetter et al. 2013), it has not been extensively statistically and hydrologically 75 validated in mountainous South Asian regions ... 76 Therefore, the objectives of this study are designed (1) to evaluate the widely used 77 globally-available, high-resolution TMPA satellite precipitation products over the 78 mountainous medium-sized Wangchu basin (3550 km²) in Bhutan, and more importantly 79 (2) to assess improvements of the latest upgrade version (3B42V7) relative to its 80 predecessor in terms of statistical performance and hydrologic utility. Additionally, this 81 study aims to shed light on the suitability of recalibrating a hydrological model with the 82 remotely-sensed rainfall information. The remainder of this paper is organized as follows: 83 Section 2 introduces the study area, the datasets used, and the methodology, including a 84 brief description of the CREST distributed hydrological model and its upgrade to the new 85 version (CREST Version 2.0). The results are discussed in Section 3, and then Section 4 86 draws the conclusions of this study. 87

2 Study Area, Data and Methodology

90 2.1 Study Area

The Wangchu Basin, with a total drainage area of approximately 3550 km² is located 91 within 89°6'- 89°46'E and 27°6'-27°51'N in the west of Bhutan (Figure 1). Wangchu 92 Basin is the most populous part of the country with about 3/5 of the population living in 93 1/5 of the basin area. The basin is equipped with one streamflow gauge at the outlet 94 Chhukha Dam Hydrological station and five rain gauge stations. The soil types are 95 dominated by Sandy Clay Loam (75.1%) and Loam (24.9%) based on the Harmonized 96 World Soil Database (HWSD v1.1) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). The 97 various vegetation types of this basin are composed of evergreen needleleaf forest 98 (48.1%), woodland (17.8%), open shrubland (9.7%), wooded grassland (8.2%), grassland 99 (7.6%) and other land-use types (less than 10%) (Hansen et al., 2000). 100

The northern periphery of the Wangchu Basin in the Himalayas has elevations over 101 6000 m and maintains an annual snowpack. Lower portions of the basin are drastically 102 different and are subject to a summer monsoon from May to October (Bookhagen and 103 Burbank, 2010). On average, the annual month with the greatest precipitation is July or 104 August with 161 to 546 mm/month based on the five rain gauge station data shown in 105 (Table 1), and the largest resulting streamflow occurs in June or August with 251m³s⁻¹. It 106 is possible that snowmelt contributes to a portion of this peak streamflow, but the 107 majority is driven by the summer monsoon rains. In this study, neither the precipitation 108 products nor the model explicitly deal with frozen precipitation. These are subjects 109

110	requiring additional investigation, especially in light of the forthcoming Global
111	Precipitation Measurement Mission (GPM), which aims to quantitatively estimate frozen
112	precipitation amounts.
113	Insert Figure 1 about Here
114	
115	2.2 In-situ and Satellite Precipitation Datasets
116	2.2.1 Gauged Precipitation and Discharge Data
117	Daily observed precipitation data are obtained from the Hydro-Met Services
118	Department of Bhutan from 2001 to 2010 for the 5 rain gauge stations located within the
119	Wangchu basin. In winter, frozen precipitation is reported in the form of water equivalent
120	and computed by melting the ice/snow with hot water in the standard vessel and
121	deducting the hot water volume from the total volume. The Thiessen polygon method is
122	used to interpolate the rain gauge data to the spatial distributed grid data fitting the model
123	grid resolution (30 arc-second) (Figure 1). We also obtained the daily discharge data at
124	the basin outlet for the same time period.

125 2.2.2 TMPA 3B42 Research Products

126 TMPA precipitation products are available in two versions: near-real-time version 127 (3B42RT) and post-real-time research version (3B42) adjusted by monthly rain gauge 128 data. The 3B42 products have two successive versions: version 6 and the latest version 7 129 (3B42V6 and 3B42V7). In this study, we evaluated and compared the two high-resolution 130 (3 hours and $0.25^{\circ} \times 0.25^{\circ}$) satellite precipitation products: 3B42V6 and 3B42V7.

131	The TMPA algorithm (Huffman et al., 2007) calibrates and combines microwave (MW)
132	precipitation estimates, and then creates the infrared precipitation (IR) estimates using the
133	calibrated MW. After this, it combines the MW and IR estimates to create the TMPA
134	precipitation estimates. MW data used in Version 6 are from the TRMM Microwave
135	Imager (TMI), Special Sensor Microwave Imager (SSM/I) F13, F14 and F15 on Defense
136	Meteorological Satellite Program (DMSP) satellites, and the Advanced Microwave
137	Scanning Radiometer-Earth Observing System (AMSR-E) on Aqua, and the Advanced
138	Microwave Sounding Unit-B (AMSU-B) N15, N16 and N17 on the NOAA satellite; IR
139	data collected by geosynchronous earth orbit (GEO) satellites, GEO-IR. The 3B42V6
140	also use other data sources: TRMM Combined Instrument (TCI) employed from TMI and
141	PR, monthly rain gauge data from GPCP $(1^{\circ \times 1^{\circ}})$ and the Climate Assessment and
142	Monitoring System (CAMS) $0.5^{\circ} \times 0.5^{\circ}$ developed by CPC. Based on the lessons learned
143	in 3B42V6, 3B42V7 includes consistently reprocessed versions for the data sources used
144	in 3B42V6 and introduces additional datasets, including the Special Sensor Microwave
145	Imager/Sounder (SSMIS) F16-17 and Microwave Humidity Sounder (MHS) (N18 and
146	N19) and Meteorological Operational satellite programme (MetOp) and the 0.07° Grisat-
147	B1 infrared data. All of these data can be freely downloaded from the website:
148	http://trmm.gsfc.nasa.gov/ and http://mirador.gsfc.nasa.gov.

149 **2.2.3 Evapotranspiration**

The potential evapotranspiration (PET) data used in this study are from the global dailypotential evapotranspiration database provided by the Famine Early Warning Systems

Network (hereafter referred FEWSPET) global 152 as data portal (see http://earlywarning.usgs.gov/fews/global/web/readme.php?symbol=pt). 153 FEWSPET is calculated from the climate parameter extracted from global data assimilation system 154 (GDAS) analysis fields, has 1-degree resolution, and covers the entire globe from 2001 to 155 the present. 156

157 **2.3 CREST Model**

The Coupled Routing and Excess Storage (CREST) Model (Khan et al., 2011a; Khan et 158 al., 2011b; Wang et al., 2011) is a grid-based distributed hydrological model developed 159 by the University of Oklahoma (http://hydro.ou.edu) and NASA SERVIR Project Team 160 (www.servir.net). It computes the runoff generation components (e.g., surface runoff and 161 infiltration) using the variable infiltration capacity curve (VIC), a concept originally 162 contained in the Xinanjiang Model (Zhao, 1992; Zhao et al., 1980) and later represented 163 in the VIC Model (Liang et al., 1994; Liang et al., 1996). Multi-linear reservoirs are used 164 to simulate cell-to-cell routing of surface and subsurface runoff separately. The CREST 165 model couples the runoff generation component and cell-to-cell routing scheme described 166 above, to reproduce the interaction between surface and subsurface water flow processes. 167 Besides the hydrologic and basic data (DEM, flow direction, flow accumulation, slope 168 etc.), the CREST model employs gridded precipitation and potential evapotranspiration 169 (PET) data as its forcing data. CREST Version 1.6 model has been applied at both global 170 (Wu et al., 2012) and regional scales (Khan et al., 2011a; Khan et al., 2011b) (more 171 applications can be found at website: http://eos.ou.edu and http://www.servir.net). 172

191	Insert Figure 2 about Here
190	
189	routing.
188	infiltration curve. Finally, two linear reservoirs are employed to simulate sub-grid cell
187	throughfall is separated into surface runoff and infiltration components by the variable
186	the precipitation is intercepted by a canopy to generate throughfall, and then the
185	Figure 2 (b) shows the vertical profile of hydrological processes in a grid cell. It shows
184	(a)). Table 1 shows 11 parameters and their descriptions, ranges and default values.
183	al., 1993) to enable automatic calibration of the CREST model parameters (see Figure 2
182	2 (a)); and 5) inclusion of the optimization scheme SCE-UA (Duan et al., 1992; Duan et
181	framework to accommodate research, development and system enhancements (see Figure
180	soil texture data based on a look-up table (Chow et al., 1988); 4) a modular design
179	The physically-based parameters, K_{sat} and WM, can be derived from land cover types and
178	priori model parameter estimates from high-resolution land cover and soil texture data.
177	uniform, semi-distributed, or distributed parameter values; 3) automatic extraction of a-
176	version (Wang et al., 2011); 2) model implementation with options of either spatially
175	parallel distribution techniques to make the model more efficient than the previous
174	features of the latest version are: 1) enhancement of the computation capability using
173	The CREST model used in this study is the upgraded version CREST V2.0. The main

Insert Figure 2 about Here

192

Insert Table 1 about Here

2.4 Evaluation Statistics 194

In order to quantitatively analyze the performance of 3B42V6 and 3B42V7 195 precipitation products against rain gauge observations and the effect on streamflow 196 simulation, three widely used validation statistical indices were selected in this study. The 197 relative Bias (%) was used to measure the agreement between the averaged value of 198 simulated data (in this study, we call both TMPA products and simulated streamflow as 199 "simulated data", "SIM" was used in the formulae) and observed data (such as rain gauge 200 and observed streamflow in this study, "OBS" was used in the formulae). The root mean 201 square error (RMSE) was selected to evaluate the average error magnitude between 202 simulated and observed data. We also use correlation coefficient (CC) to assess the 203 agreement between simulated and observed data. 204

205

$$Bias = \begin{bmatrix} \sum_{i=1}^{n} SIM_{i} - \sum_{i=1}^{n} OBS_{i} \\ \sum_{i=1}^{n} OBS_{i} \end{bmatrix} \times 100 \quad (1)$$
206

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (OBS_{i} - SIM_{i})^{2}}{n}} \quad (2)$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (OBS_i - SIM_i)^2}{n}}$$
(2)

$$207 \qquad CC = \frac{\sum_{i=1}^{n} \left(OBS_{i} - \overline{OBS}\right) \left(SIM_{i} - \overline{SIM}\right)}{\sqrt{\sum_{i=1}^{n} \left(OBS_{i} - \overline{OBS}\right)^{2} \sum_{i=1}^{n} \left(SIM_{i} - \overline{SIM}\right)^{2}}} \tag{3}$$

Where *n* is the total number of pairs of simulated and observed data; *i* is the *i*th values of 208 the simulated and observed data; \overline{SIM} and \overline{OBS} are the mean values of simulated and 209

210 observed data respectively. Nash-Sutcliffe Coefficient of Efficiency (NSCE) is also used

to assess the performance of model simulation and observation.

212
$$NSCE = 1 - \frac{\sum_{i=1}^{n} (OBS_i - SIM_i)^2}{\sum_{i=1}^{n} (OBS_i - \overline{OBS})^2}$$

213 **3 Results and Discussion**

214 **3.1 Comparison of Precipitation Inputs**

To better understand the impact of precipitation inputs on hydrologic models, the 215 accuracy of the satellite precipitation against the in-situ rain gauge observations should be 216 assessed first. This section compares the TMPA and gauge observations over the time 217 span of January 1, 2001 to December 31, 2010 considering the basin-average 218 precipitation and within a grid cell containing the dense rain gauge observations (Figure 219 1). Figure 3 shows that both 3B42V6 and 3B42V7 systematically underestimate, though 220 at different levels, with biases of -41.15% and -8.38% and CCs of 0.36 and 0.40 at daily 221 scale, respectively. Similar statistics are found at 0.25° grid-cell scale. Figure 4 indicates 222 that 3B42V6 largely underestimates with a bias of -40.25% and low CC of 0.37, while 223 3B42V7 has practically no bias (0.04%) and a relatively higher CC value 0.41. 224

- 225
- 226

Insert Figure 3 about Here

227

228

Insert Figure 4 about Here

230	Figures 3d and 4d present the inter-comparison of monthly precipitation estimates to
231	gain further information about the precision and variations at longer time scales. The
232	monthly data for both basin-based and grid cell-based analyses were accumulated from
233	daily data over the same time span from January 2001 to December 2010. At monthly
234	time scale, both the basin-based and grid cell-based data show that 3B42V7 has better
235	agreement with the monthly rain gauge data. Both Figure 3 and Figure 4 indicate that the
236	latest V7 algorithm significantly corrects the underestimation bias in its predecessor
237	version V6.
238	Figure 5 (a) and (b) show the frequency distribution of daily precipitation for different
239	precipitation intensities (PI) for the basin-averaged and the grid cell-based precipitation
240	time series, respectively. Figure 5 (a) shows that for the basin-averaged data, both
241	3B42V6 and 3B42V7 overestimate at the low PI range (less than 5 mm/day), but they
242	underestimate at the medium and high PI ranges. However, 3B42V7 is in better
243	agreement with the rain gauge observations than 3B42V6 for the basin-averaged
244	comparison across all PIs. Similarly, better agreement has been found in Figure 5 (b) for
245	the new Version-7 products at the grid cell scale, except for values greater than 30
246	mm/day where there is overestimation.
247	

Insert Figure 5 about Here

250 **3.2 Streamflow Simulation Scenarios**

251	Although different precipitation products vary in accuracy and spatiotemporal
252	resolutions, they might have similar hydrological prediction (i.e., streamflow simulation)
253	skill after re-calibrating the model using the respective precipitation products (Jiang et al.,
254	2012; Stisen and Sandholt, 2010). In the previous section, we compared the 3B42V6 and
255	3B42V7 precipitation products against the rain gauge observations; the next step is to
256	evaluate how these two TMPA products affect streamflow simulations. Their hydrological
257	evaluation is performed under two scenarios:
258	I. In-situ gauge benchmarking: Calibrate the CREST model with five years of rain
259	gauge data (January 2001 through December 2005). Then, replace the rain gauge
260	forcing with precipitation from 3B42V6 and 3B42V7 for an independent
261	validation period from January 2006 through December 2010 using the rain
262	gauge-calibrated model parameters.
263	II. Product-specific calibration: Recalibrate the CREST model using the 3B42V6 and
264	3B42V7 precipitation data, respectively, over the same calibration period and then
265	use the product-specific parameter sets to simulate streamflow over the same
266	validation period as Scenario I.
267	Scenario I, gauge benchmarking, is widely used by the hydrological community
268	especially over gauged basins, while Scenario II is arguably deemed as an alternative for

application to ungauged basins where only rainfall from remote-sensing platforms areavailable for use.

271

272 3.2.1 Scenario I: CREST Benchmarked by In-situ Gauge Data

273 1) Rain Gauge Calibration and Validation

The CREST model parameters are calibrated using rain gauge inputs for the period 274 from January 2001 to December 2005 using the automatic calibration method (SCE-UA) 275 by maximizing the NSCE value between the simulated and observed daily streamflow. 276 The calibrated model is subsequently validated for the period from January 2006 to 277 December 2010. Figure 6 compares the simulated streamflow forced by rain gauge data 278 with the observed streamflow in terms of time series plots and exceedance probability 279 plots at daily and monthly scales. Figure 6 (a) and (b) show that general agreement exists 280 between the observed and simulated streamflow. However, the simulated streamflow 281 consistently underestimates the peaks, especially in the validation period and in relatively 282 low flow seasons as well. The exceedance probabilities in Figure 6 (c) and (d) also show 283 underestimation at low and high streamflow observations, while the simulations match 284 relatively well in the intermediate ranges. As summarized in Table 2 and Table 3, the 285 statistical indices show that there is very good agreement between the simulated and 286 observed hydrographs in the calibration period for both daily and monthly time scale, and 287 reasonable simulations occurred in the validation period as well. Based on the criteria of 288 the statistical indices in Moriasi et al. (2007), the model calibration and validation results 289 indicate that the CREST model is well benchmarked by the in-situ data at the daily and 290 monthly time scale, so it can be used to evaluate the utility of the satellite precipitation 291

292 products for hydrological prediction (i.e., streamflow) in this basin.

293Insert Figure 6 about Here294Insert Table 2 about Here295Insert Table 3 about Here

296 2) Impacts of satellite precipitation forcing

The gauge-benchmarked model is then forced by the TMPA 3B42V6 and 3B42V7 297 products from 2001 to 2010 using the model parameters calibrated by rain gauge data 298 during the period from 2001 to 2005. Figure 7 and Figure 8 compare the daily and 299 monthly time series of the simulated and observed hydrographs for both the calibration 300 and validation periods. While 3B42V6 largely missed the high peak flows at both daily 301 and monthly time series, 3B42V7 adequately captured a majority of the peak flows. 302 especially at the smoothed monthly scale. The daily and monthly statistical comparisons 303 in Table 2 and Table 3 show that the daily and monthly simulations forced by rain gauge 304 data had better skill (NSCE=0.76/0.91, BIAS=-9.73%/-9.75%, CC=0.89/0.96) than those 305 based on 3B42V6 and 3B42V7 in the calibration period, which is expected. Interestingly, 306 the 3B42V7-forced model simulations had very similar to and slightly better performance 307 compared to the rain gauge-forced simulations in the validation period. A likely 308 explanation is one of the rain gauge stations (i.e. the Dochula) had missing data from 309 September 2006 to December 2010, which apparently degrades the hydrologic skill of 310 this product. Overall, simulations forced by 3B42V7 were a significant improvement 311 over 3B42V6. This clearly shows the improvements of the new version-7 algorithm upon 312

its predecessor V6 products both statistically and now hydrologically.

- 314
- 315

Insert Figure 7 about Here

316

317 **3.2.2** Scenario II: CREST calibrated by individual TMPA products

To further assess the effects of TMPA 3B42 (V6 and V7) products on streamflow, 318 the CREST model is recalibrated and validated with 3B42V6 and 3B42V7 for the same 319 period as Scenario I. This scenario is often used as an alternative strategy for remote 320 sensing precipitation over ungauged basins. As shown in Figure 8, all simulations are 321 significantly improved after the recalibration, and they capture most of the daily and 322 monthly peak flows. Comparatively, the CREST model simulations based on 3B42V7 323 inputs have better skill than those based on 3B42V6. As summarized in Table 2 and Table 324 3, simulations have good statistical agreement with observed streamflow at daily and 325 monthly scale. 326

The statistical indices of daily NSCE, Bias and CC in Table 2 were selected for visual comparison of the two modeling scenarios. Figure 9 indicates that the productspecific recalibration in Scenario II has obviously improved the NSCE and CC values and reduced the Bias values for both the calibration and validation periods. It is noted that the recalibration forcing with 3B42V7 in Scenario II has much higher NSCE and smaller Bias than 3B42V6, and very comparable CC values, all of which improved upon the rain gauge-benchmarked model.

334

335 **3.3 Discussion of parameter compensation effect from Scenario II**

Table 4 shows the optimum parameter sets forced by 3B42V6 and 3B42V7, relative 336 to the gauge forcing, for the calibration period from 2001 to 2005 using the SCE-UA 337 algorithm. Note that the parameter values of Ksat and WM are spatially distributed but 338 have been basin-averaged and summarized in Table 4. It shows that 3B42V7-calibrated 339 parameters have less deviation from the gauge-calibrated parameter values than 3B42V6. 340 For example, RainFact is the adjustment factor of the precipitation either due to canopy 341 interception or bias. Table 4 shows that 3B42V6 increases the RainFact value from 0.87 342 to 1.34, to compensate its underestimation as shown in Figure 3 and Figure 4, while 343 3B42V7's estimated value (0.98) is closer to 1 and the Gauge value (0.87). Another 344 example is KE, the ratio of potential evapotranspiration to the satellite PET data. Table 4 345 reveals that 3B42V6 demands a reduced KE value from 0.10 to 0.05 in order to partition 346 more precipitation into runoff while 3B42V7 only slightly increases it from 0.10 to 0.13, 347 possibly to partially offset the above RainFact increase, amongst other parametric 348 interactions. The third example is Ksat, the soil saturated hydraulic conductivity. Table 4 349 shows that the Ksat of 3B42V6 reduced from 56.90 to 33.09 while V7 only changed 350 slightly from 56.90 to 52.73. Regarding the mean water capacity, WM, 3B42V6 351 decreased from 166.50 to 142.71 to hold less water in the soils while 3B42V7 did not 352 change much from the gauge-calibrated value, which is presumably closer to the truth. It 353 also shows the overland flow coefficient, coeM, the average channel flow speed, coeR, 354

the overland flow recession coefficient, KS, and the interflow recession coefficient, KI, all had reduced values to retain more water in the river basin after recalibrating the parameters to both of the satellite products. Not surprisingly, Table 4 also shows some opposite changes of values such as KE for 3B42V7 and coeS, the surface-interflow conversion factor, for both 3B42V6 and 3B42V7, resulting in a slight decrease in streamflow.

In addition to the analysis of the parameters properties, water balance analysis is 361 another important indicator for analyzing the effect of the parameter recalibration. Thus 362 the difference of water balance components over 10-year (2001-2010) simulations is 363 further examined using rain gauge and TMPA 3B42 rainfall, respectively. In CREST 364 model, the water balance budgeting partitions the precipitation after canopy interception 365 into actual evapotranspiration (ET), runoff depth (i.e. streamflow) and water storage 366 change (ΔS), as shown in Figure 10. As expected, precipitation is the dominant runoff 367 generation input so in Figure 3, all satellite rainfall forced simulations underestimated the 368 streamflow compared to rain gauge results in scenario I. However, in scenario II, the 369 model was recalibrated with respective satellite rainfall, the increased partition of the 370 satellite driven streamflow simulations comes at the expense of a significant decrease of 371 water storage due to the effect of the parameters value changes (shown in figure 10). In 372 the gauge rainfall driven simulations, 27.90% of precipitation will be stored in this basin, 373 however, 26.43% (27.18%) of precipitation is water storage in scenario I while 8.95% 374 (16.09%) in scenario II for 3B42V6 (3B42V7). 375

From the above discussion, it is clear that the overall effect of the recalibrated 376 parameter sets is to largely compensate for rainfall underestimation in 3B42V6 while less 377 so for 3B42V7. The effect of arriving at a very similar simulation with different 378 combinations of parameter settings has been called "Equifinality" of the hydrological 379 model (Aronica et al., 1998; Beven and Freer, 2001; Zak and Beven, 1999). This study 380 clearly shows how different parameter settings can compensate for errors in the satellite 381 rainfall forcing and can thus improve model predictions of streamflow. It is possible that 382 the current model structural deficiency, i.e., not accounting for snowmelt process, is 383 compensated by the model re-calibration. However, this parameter compensation effect 384 comes with the price of having a locally optimized model with parameter values 385 unrepresentative of reality. This might limit the model's predictive capability at internal 386 sub-basins, or under different initial conditions. This is particularly concerning under 387 scenarios involving climate change. In any case, the recalibration strategy could be 388 especially problematic for 3B42V6 (Bitew and Gebremichael, 2011; Jiang et al., 2012), 389 however the 3B42V7 product gives higher confidence for use in ungauged basins even 390 without the need for recalibration. 391

- 392
- 393

Insert Table 4 about Here

- 394
- 395

396 4 Summary and Conclusions

Satellite precipitation products are very important for regional and global hydrological studies, particularly for remote regions and developing countries. This study first focuses on statistically assessing the accuracy of the TMPA 3B42V6 product vs. its latest successive version 3B42V7, and then hydrologically evaluates their streamflow prediction utility using the CREST distributed hydrologic model in the mountainous Wangchu Basin of Bhutan.

The two versions of TMPA satellite products are statistically compared with a 403 decade-long (2001-2010) rain gauge dataset at daily and monthly scales. In general, 404 3B42V7 consistently improves upon 3B42V6's underestimation both for the whole basin 405 (bias improved from -41.15% to -8.38%) and for a 0.25°×0.25° grid cell with high-406 density gauges (bias improved from -40.25% to 0.04%), though with modest 407 enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for entire basin and from 408 0.37 to 0.41 for the grid cell). 3B42V7 also improves upon 3B42V6 in terms of 409 occurrence frequency across the rain intensity spectrum. Apparently the results show that 410 the new algorithm 3B42V7 has much improved accuracy upon 3B42V6, in concert with 411 other studies in different areas (Chen at al. 2013ab and Kirstetter et al. 2013). The 412 improvement from V6 to V7 is mainly a combination of three factors: 1) the enhanced 413 TMPA Level-2 retrieval algorithms (Chen et al. 2013a and Kirstetter et al. 2013), 2) 414 incorporation of the global gauge network (i.e. GPCC) data with improved climatology 415 and anomaly analysis (Huffman et al., 2011), and 3) additional satellite observations 416

417 incorporated (Huffman and Bolvin, 2012)..

For the hydrological evaluation, two scenario-based calibration and validation 418 experiments are conducted over the same 10-year time span. Scenario I, in-situ gauge 419 benchmarking, is widely used by the hydrological community especially over gauged 420 basins, while Scenario II, input-specific recalibration, is arguably deemed as an 421 alternative for application to ungauged basins where only remote-sensing rainfall data 422 may be available for use. In Scenario I, the 3B42V6-based simulation shows lower 423 hydrologic prediction skill in terms of NSCE (0.23 at daily scale and 0.25 at monthly 424 scale) while 3B42V7 performs fairly well (0.66 at daily scale and 0.77 at monthly scale), 425 a comparable skill score with the simulations using the gauge benchmark. For the 426 precipitation-specific calibration in Scenario II, significant improvements are observed 427 for 3B42V6 across all statistics. These enhancements are not as obvious for the already-428 well-performing 3B42V7-calibrated model, except for some reduction in bias (from -429 26.98% to -4.81%). This behavior is consistent with previous studies (Bitew and 430 Gebremichael, 2011; Bitew et al., 2011; Jiang et al., 2012). This study offers unique 431 insights into 3B42V6 and 3B42V7 products in a mountainous South Asian basin. 432

In concert with several other studies by Chen et al 2013a and Kirstetter et al 2013 in the US and Chen et al 2013b in the tropics, this study also reveals the latest 3B42V7 algorithm has a noticeable improvements from 3B42V6 both in terms of accuracy (i.e., correcting the underestimation) and in its promising hydrological, even with or without recalibration of the hydrological model with respective rainfall inputs. The parameter

438	compensation effect is often recognized but still used by the hydrology community. This
439	approach has been noted to be problematic due to unrealistic parameter settings which
440	may ultimately limit the model's predictive capability under conditions of climate change
441	and differing initial conditions.
442	
443	Acknowledgements
444	The current study was supported by the NASA/Marshall Space Flight Center Grants
445	NNM11AB34P and NNMi2428088Q to the University of Oklahoma.
446	
447	References
448	Aronica, G., Hankin, B. and Beven, K.J., 1998. Uncertainty and equifinality in calibrating
449	distributed roughness coefficients in a flood propagation model with limited data.
450	Advances In Water Resources, 22(4): 349-365.
451	Beven, K.J. and Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation
452	in mechanistic modelling of complex environmental systems using the GLUE
453	methodology. Journal Of Hydrology, 249(1-4): 11-29.
454	Bitew, M.M. and Gebremichael, M., 2011. Evaluation of satellite rainfall products
455	through hydrologic simulation in a fully distributed hydrologic model. Water
456	Resources Research, 47(6): W06526.
457	Bitew, M.M., Gebremichael, M., Ghebremichael, L.T. and Bayissa, Y.A., 2011.
458	Evaluation of High-Resolution Satellite Rainfall Products through Streamflow

459	Simulation in a Hydrological Modeling of a Small Mountainous Watershed in
460	Ethiopia. Journal Of Hydrometeorology, 13(1): 338-350.
461	Bookhagen, B. and Burbank, D.W., 2010. Toward a complete Himalayan hydrological
462	budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on
463	river discharge. J. Geophys. Res., 115(F3): F03019.
464	Chen, Sheng et al., 2013a. Evaluation of the Successive V6 and V7 TRMM Multi-
465	satellite Precipitation Analysis Over the Continental United States. Water
466	Resources Research. (Conditionally accepted)
467	Chen, Y., Ebert, E.E., Walsh, K.J.E. and Davidson, N.E., 2013b. Evaluation of TRMM
468	3B42 Precipitation Estimates of Tropical Cyclone Rainfall using PACRAIN Data.
469	Journal of Geophysical Research: Atmospheres, doi: 10.1002/jgrd.50250
470	(accepted for publication).
471	Chokngamwong, R. and Chiu, L.S., 2008. Thailand Daily Rainfall and Comparison with
472	TRMM Products. Journal of Hydrometeorology, 9(2): 256-266.
473	Chow, V.T., Maidment, D.R. and Mays, L.W., 1988. Applied Hydrology. McGraw-Hill
474	series in water resources and environmental engineering. McGraw-Hill, Inc., New
475	York.
476	Duan, Q., Sorooshian, S. and Gupta, V., 1992. Effective and efficient global optimization
477	for conceptual rainfall-runoff models. Water Resour. Res., 28(4): 1015-1031.
478	Duan, Q.Y., Gupta, V.K. and Sorooshian, S., 1993. Shuffled complex evolution approach
479	for effective and efficient global minimization. Journal of Optimization Theory

480	and Applications, 76(3): 501-521.
481	FAO/IIASA/ISRIC/ISSCAS/JRC, 2009. Harmonized World Soil Database (version 1.1),
482	FAO, Rome, Italy and IIASA, Laxenburg, Austria.
483	Hansen, M.C., Defries, R.S., Townshend, J.R.G. and Sohlberg, R., 2000. Global land
484	cover classification at 1 km spatial resolution using a classification tree approach.
485	International Journal Of Remote Sensing, 21(6): 1331 - 1364.
486	Hong, Y., Hsu, KL., Sorooshian, S. and Gao, X., 2004. Precipitation Estimation from
487	Remotely Sensed Imagery Using an Artificial Neural Network Cloud
488	Classification System. Journal Of Applied Meteorology, 43(12): 1834-1853.
489	Huffman, G.J., Bolvin, D.T., Nelkin, E. and Adler, R.F., 2011. Highlights of Version 7
490	TRMM Multi-satellite Precipitation Analysis (TMPA). In: C.K.a.G.H. Eds
491	(Editor), 5th Internat. Precip. Working Group Workshop, Workshop Program and
492	Proceedings. Reports on Earth Sys. Sci., 100/2011, Max-Planck-Institut für
493	Meteorologie, Hamburg, Germany.
494	Huffman, G. J., and D. T. Bolvin, 2012. TRMM and other data precipitation data set
495	documentation, Laboratory for Atmospheres, NASA Goddard Space Flight Center
496	and Science Systems and Applications.
497	Huffman, G.J. et al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA):
498	Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales.
499	Journal of Hydrometeorology, 8(1): 38-55.
500	Islam, M.N. and Uyeda, H., 2007. Use of TRMM in determining the climatic

501	characteristics of rainfall over Bangladesh. Remote Sensing of Environment,
502	108(3): 264-276.
503	Jamandre, C.A. and Narisma, G.T., Spatio-temporal validation of satellite-based rainfall
504	estimates in the Philippines. Atmospheric Research(0).
505	Jiang, S. et al., 2012. Comprehensive evaluation of multi-satellite precipitation products
506	with a dense rain gauge network and optimally merging their simulated
507	hydrological flows using the Bayesian model averaging method. Journal of
508	Hydrology, 452-453(0): 213-225.
509	Joyce, R.J., Janowiak, J.E., Arkin, P.A. and Xie, P., 2004. CMORPH: A Method that
510	Produces Global Precipitation Estimates from Passive Microwave and Infrared
511	Data at High Spatial and Temporal Resolution. Journal Of Hydrometeorology,
512	5(3): 487-503.
513	Khan, S.I. et al., 2011a. Hydroclimatology of Lake Victoria region using hydrologic
514	model and satellite remote sensing data. Hydrol. Earth Syst. Sci., 15(1): 107-117.
515	Khan, S.I. et al., 2011b. Satellite Remote Sensing and Hydrologic Modeling for Flood
516	Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic
517	Prediction in Ungauged Basins. Geoscience and Remote Sensing, IEEE
518	Transactions on, 49(1): 85-95.
519	Li, XH., Zhang, Q. and Xu, CY., 2012. Suitability of the TRMM satellite rainfalls in
520	driving a distributed hydrological model for water balance computations in
521	Xinjiang catchment, Poyang lake basin. Journal Of Hydrology, 426-427(0): 28-38.

522	Liang, X., Lettenmaier, D.P., Wood, E.F. and Burges, S.J., 1994. A simple hydrologically
523	based model of land surface water and energy fluxes for general circulation
524	models. J. Geophys. Res., 99(D7): 14415-14428.
525	Liang, X., Wood, E.F. and Lettenmaier, D.P., 1996. Surface soil moisture
526	parameterization of the VIC-2L model: Evaluation and modification. Global and
527	Planetary Change, 13(1–4): 195-206.
528	Mishra, A., Gairola, R.M., Varma, A.K. and Agarwal, V.K., 2010. Remote sensing of
529	precipitation over Indian land and oceanic regions by synergistic use of
530	multisatellite sensors. J. Geophys. Res., 115(D8): D08106.
531	Moriasi, D.N. et al., 2007. Model Evaluation Guidelines For Systematic Quantification
532	Of Accuracy In Watershed Simulations. ASABE, 50(3): 885-900.
533	Sorooshian, S. et al., 2000. Evaluation of PERSIANN System Satellite-Based Estimates
534	of Tropical Rainfall. Bulletin of the American Meteorological Society, 81(9):
535	2035-2046.
536	Stisen, S. and Sandholt, I., 2010. Evaluation of remote-sensing-based rainfall products
537	through predictive capability in hydrological runoff modelling. Hydrological
538	Processes, 24(7): 879-891.
539	Su, F., Hong, Y. and Lettenmaier, D.P., 2008. Evaluation of TRMM Multisatellite
540	Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La
541	Plata Basin. Journal of Hydrometeorology, 9(4): 622-640.
542	Wang, J. et al., 2011. The coupled routing and excess storage (CREST) distributed

543	hydrological model. Hydrological Sciences Journal, 56(1): 84-98.
544	Wu, H., Adler, R.F., Hong, Y., Tian, Y. and Policelli, F., 2012. Evaluation of Global Flood
545	Detection Using Satellite-Based Rainfall and a Hydrologic Model. Journal of
546	Hydrometeorology, 13(4): 1268-1284.
547	Yong, B. et al., 2012. Assessment of evolving TRMM-based multisatellite real-time
548	precipitation estimation methods and their impacts on hydrologic prediction in a
549	high latitude basin. Journal Of Geophysical Research, 117: D09108.
550	Yong, B. et al., 2010. Hydrologic evaluation of Multisatellite Precipitation Analysis
551	standard precipitation products in basins beyond its inclined latitude band: A case
552	study in Laohahe basin, China. Water Resources Research, 46(7): W07542.
553	Zak, S.K. and Beven, K.J., 1999. Equifinality, sensitivity and predictive uncertainty in the
554	estimation of critical loads. The Science of The Total Environment, 236(1-3):
555	191-214.
556	Zhao, R.J., 1992. The Xinanjiang model applied in China. Journal Of Hydrology, 135(1-
557	4): 371-381.
558	Zhao, R.J., Zhuang, Y.G., Fang, L.R., Liu, X.R. and Zhang, Q.S., 1980. The Xinanjiang
559	Model, Hydrological Forecasting Proceedings Oxford Symposium. IAHS
560	Publication, Oxford University, pp. 351-356.
561	
562	
563	

Figure

ACCEPTED MANUSCRIPT

Figure 1 Wangchu Basin Map. (a) Location of Bhutan and the surrounding countries. (b) 2 Location of Wangchu Basin in Bhutan and its elevation. (c) Map of Wangchu Basin, rain 3 gauges, streamflow station, topography, Thiessen polygons applied to the rain gauge data 4 and the $0.25^{\circ} \times 0.25^{\circ}$ grids of the satellite rainfall estimates. 5 6 7

Figure 5 Occurrence frequencies of rain gauge, 3B42V6 and 3B42V7 for a) basin-

averaged data and b) single grid cell (Grid32).

19

data, c) exceedance probabilities using daily data from 2001.1.1 to 2010.12.31) and d)

27

exceedance probabilities using monthly data.

Figure 10 Relative change of the water balance components using rain gauge and

satellite rainfall based on ten-year annual averages (2001-2010) hydrological simulations

in scenarios I and II

MonthDechulaDrukgyel DzongNamjayling HaaDSC_ParoChhukha $m^3 s^{-1}$ Jan1419012826Feb49189241823Mar1761726331525Apr3465329543438May36810560695755Jun39027912312481111Jul 546 359185183 199 222Aug383 368191161 103 251 Sep32621710812077180Oct182116717763109Nov101134352Dec4912134	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Infonture Betikha Dochula Drukgyel Dzong Namjayling Haa DSC_Paro Chhukha m³ s ⁻¹ Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec	Monun Betikha Dochula Drukgyel Dzong Namjayling Haa DSC_Paro Chhukha m³ s ⁻¹ Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec	Month		Ra	in Gauge (mm	/month)		Streamflow Station
Jan1419012826Feb49189241823Mar1761726331525Apr3465329543438May36810560695755Jun39027912312481111Jul 546 359185183199222Aug383 368 191161103251Sep32621710812077180Oct182116717763109Nov101134352Dec4912134	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jan 14 19 0 12 8 26 Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Ivionui –	Betikha	Dochula	Drukgyel Dzong	Namjayling Haa	DSC_Paro	Chhukha m ³ s ⁻¹
Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 <u>4</u> 3 52 Dec <u>4</u> 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb 49 18 9 24 18 23 Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 -4 3 52 Dec 4 9 1 2 1 34	Jan	14	19	0	12	8	26
Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar1761726331525Apr3465329543438May36810560695755Jun39027912312481111Jul 546 359185183 199 222Aug383 368191161 103 251 Sep32621710812077180Oct182116717763109Nov101134352Dec4912134	Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar 176 17 26 33 15 25 Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Feb	49	18	9	24	18	23
Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr 346 53 29 54 34 38 May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Mar	176	17	26	33	15	25
May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May 368 105 60 69 57 55 Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Apr	346	53	29	54	34	38
Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun 390 279 123 124 81 111 Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	May	368	105	60	69	57	55
Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul 546 359 185 183 199 222 Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul <u>546</u> 359 185 183 <u>199</u> 222 Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jun	390	279	123	124	81	111
Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 <u>368</u> <u>191</u> <u>161</u> 103 <u>251</u> Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug 383 368 191 161 103 251 Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Jul	<u>546</u>	359	185	183	<u>199</u>	222
Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep 326 217 108 120 77 180 Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Aug	383	<u>368</u>	<u>191</u>	<u>161</u>	103	<u>251</u>
Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct 182 116 71 77 63 109 Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Sep	326	217	108	120	77	180
Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Nov 10 11 3 4 3 52 Dec 4 9 1 2 1 34	Oct	182	116	71	77	63	109
Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Dec 4 9 1 2 1 34	Nov	10	11	3	-4-	3	52
							Dec	4	9	1	2	1	34
				G									
				C C C									
				G		G							
				G		6	6						
						G	6						
							C						

Table 1 Monthly observed precipitation and runoff averaged from 2001 to 2010

2 Table 2 Parameters to be calibrated in CREST V2.0, their description, ranges and de	efault
---	--------

3

values

Precipitation Products				0001101100				
Products		Scenar	rio I			Scenar	io II	
	NSCE	Bias(%)	CC	RMSE	NSCE	Bias(%)	CC	RMSE
		(Calibra	tion Peric	od			
Gauge	0.76	-9.73	0.89	45.38	-	-	-	-
3B42V6	0.23	-52.94	0.80	81.99	0.63	-1.70	0.80	56.55
3B42V7	0.66	-26.98	0.86	54.65	0.78	-4.81	0.88	43.94
			Validat	tion Perio	d			
Gauge	0.59	-29.59	0.83	57.85	-	- 6		-
3B42V6	0.17	-57.78	0.78	82.98	0.65	-8.67	0.81	54.00
3B42V7	0.63	-25.15	0.83	55.26	0.72	-3.02	0.86	47.72
	R		0					

Table 3 Comparison of daily observed and simulated streamflow under two calibration 5

Products NSCE Bias(%) CC RMSE NSCE Bias(%) CC RMSE Calibration Period Gauge 0.91 -9.75 0.96 25.18 - <t< th=""><th>Precipitation</th><th></th><th>Scenar</th><th>rio I</th><th></th><th></th><th>Scenar</th><th>io II</th><th></th></t<>	Precipitation		Scenar	rio I			Scenar	io II	
Calibration Period Gauge 0.91 -9.75 0.96 25.18 3B42V6 0.25 -53.01 0.88 72.08 0.75 -1.66 0.87 41.41 3B42V7 0.77 -27.06 0.94 39.76 0.91 -4.83 0.95 25.41 Validation Period Gauge 0.70 -29.59 0.88 43.63 3B42V6 0.19 -57.81 0.89 71.35 0.79 -8.65 0.89 36.29 3B42V7 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	Products	NSCE	Bias(%)	CC	RMSE	NSCE	Bias(%)	CC	RMSE
Gauge 0.91 -9.75 0.96 25.18			(Calibra	tion Peric	od			
3B42V6 0.25 -53.01 0.88 72.08 0.75 -1.66 0.87 41.41 3B42V7 0.77 -27.06 0.94 39.76 0.91 -4.83 0.95 25.41 Validation Period Gauge 0.70 -29.59 0.88 43.63 3B42V6 0.19 -57.81 0.89 71.35 0.79 -8.65 0.89 36.29 3B42V7 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	Gauge	0.91	-9.75	0.96	25.18	-	-	-	-
3B42V7 0.77 -27.06 0.94 39.76 0.91 -4.83 0.95 25.41 Validation Period Gauge 0.70 -29.59 0.88 43.63 3B42V6 0.19 -57.81 0.89 71.35 0.79 -8.65 0.89 36.29 3B42V7 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	3B42V6	0.25	-53.01	0.88	72.08	0.75	-1.66	0.87	41.41
Validation Period Gauge 0.70 -29.59 0.88 43.63 - - - 3B42V6 0.19 -57.81 0.89 71.35 0.79 -8.65 0.89 36.29 3B42V7 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	3B42V7	0.77	-27.06	0.94	39.76	0.91	-4.83	0.95	25.41
Gauge 0.70 -29.59 0.88 43.63				Validat	tion Perio	d			
3B42V6 0.19 -57.81 0.89 71.35 0.79 -8.65 0.89 36.29 3B42V7 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	Gauge	0.70	-29.59	0.88	43.63	-	-		-
<u>3B42V7</u> 0.80 -25.25 0.94 35.58 0.89 -3.08 0.95 26.53	3B42V6	0.19	-57.81	0.89	71.35	0.79	-8.65	0.89	36.29
	3B42V7	0.80	-25.25	0.94	35.58	0.89	-3.08	0.95	26.53

Table 4 As in Table 3, but for monthly data

Table 5 CREST model parameter values calibrated with different precipitation inputs for 8

the calibration perio	d of January	2001-Decembe	r 2005
-----------------------	--------------	--------------	--------

Parameters	Gauge	3B42V6	3B42V7
RainFact	0.87	1.34	0.98
Ksat	56.90	33.09	52.73
WM	166.50	142.71	166.52
В	1.48	1.48	1.48
IM	0.20	0.20	0.20
KE	0.10	0.05	0.13
coeM	88.05	63.67	67.95
coeR	2.68	1.33	1.44
coeS	0.43	0.47	0.67
KS	0.99	0.71	0.78
KI	0.20	0.13	0.14

Highlights

Comprehensively evaluated the latest satellite precipitation algorithm TMPA V6 and V7

The new V7 provides more accurate spatiotemporal distribution than its predecessor V6

V7 also provides improved hydrologic utility even without conventional recalibration

Promising potential application of the latest V7 in ungauged basins across the world