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Abstract. Fire emissions estimates have long been based on
bottom-up approaches that are not only complex, but also
fraught with compounding uncertainties. We present the de-
velopment of a global gridded (1◦ × 1◦) emission coeffi-
cients (Ce) product for smoke total particulate matter (TPM)
based on a top-down approach using coincident measure-
ments of fire radiative power (FRP) and aerosol optical thick-
ness (AOT) from the Moderate-resolution Imaging Spectro-
radiometer (MODIS) sensors aboard the Terra and Aqua
satellites. This new Fire Energetics and Emissions Research
version 1.0 (FEER.v1) Ce product has now been released
to the community and can be obtained from http://feer.gsfc.
nasa.gov/, along with the corresponding 1-to-1 mapping of
their quality assurance (QA) flags that will enable the Ce val-
ues to be filtered by quality for use in various applications.
The regional averages of Ce values for different ecosys-
tem types were found to be in the ranges of 16–21 g MJ−1

for savanna and grasslands, 15–32 g MJ−1 for tropical for-
est, 9–12 g MJ−1 for North American boreal forest, and 18–
26 g MJ−1 for Russian boreal forest, croplands and natu-
ral vegetation. The FEER.v1 Ce product was multiplied by
time-integrated FRP data to calculate regional smoke TPM
emissions, which were compared with equivalent emissions
products from three existing inventories. FEER.v1 showed
higher and more reasonable smoke TPM estimates than two
other emissions inventories that are based on bottom-up ap-
proaches and already reported in the literature to be too low,
but portrayed an overall reasonable agreement with another
top-down approach. This suggests that top-down approaches
may hold better promise and need to be further developed
to accelerate the reduction of uncertainty associated with fire
emissions estimation in air-quality and climate research and

applications. Results of the analysis of FEER.v1 data for
2004–2011 show that 65–85 Tg yr−1 of TPM is emitted glob-
ally from open biomass burning, with a generally decreasing
trend over this short time period. The FEER.v1 Ce product
is the first global gridded product in the family of “emission
factors”, that is based essentially on satellite measurements,
and requires only direct satellite FRP measurements of an
actively burning fire anywhere to evaluate its emission rate
in near-real time, which is essential for operational activities,
such as the monitoring and forecasting of smoke emission
impacts on air quality.

1 Introduction

Smoke emitted from biomass burning is composed of a wide
variety of particle and trace gas species that can influence
air quality, weather, and climate variability in a significant
way (e.g., Crutzen and Andreae, 1990; Andreae and Merlet,
2001; Randerson et al., 2006; Schultz et al., 2008). Among
other sources of important atmospheric constituents (natu-
ral and anthropogenic), open-air biomass burning is one of
the largest contributors of both gaseous and particulate emis-
sions to the atmosphere, and is estimated to be responsible
for 34–38 % and 40 % of the global loadings of total car-
bonaceous aerosols and black carbon (BC), respectively, as
well as 25 % of the total global carbon dioxide (CO2) in-
creases since pre-industrial times (e.g., Forster et al., 2007).
This is because open biomass burning occurs in most vege-
tated parts of the world annually, in the form of natural or
man-made burning of forests, savannas, peat lands, agricul-
tural residues, and other ecosystem types. It is recognized
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that an accurate understanding of smoke impacts can only be
accomplished through accurate estimates of fire emissions
(e.g., Langmann et al., 2009). Therefore, researchers have
invested considerable effort over the last several decades to
estimate smoke emissions at different spatial and temporal
scales from various types of biomes. Before the advent of
satellite remote sensing, smoke emissions were estimated
through small-scale biomass burning experiments, modeling,
or by approximation based on proxy data such as population
or cultural practices (e.g., Seiler and Crutzen, 1980; Hao and
Liu, 1994; Liousse et al., 1996). The satellite era has brought
significant improvement in biomass burning characterization
and emissions estimation (e.g., Dozier, 1981; Prins and Men-
zel, 1992; Justice et al., 1993, 2002; Cahoon et al., 1994;
Kaufman et al., 1998; Giglio et al., 2003, 2008; Wooster et
al., 2003, 2005; Ito and Penner, 2004; Ichoku and Kaufman,
2005; Ichoku et al., 2008, 2012; Schroeder et al., 2005, 2014;
van der Werf et al., 2006, 2010; Giglio, 2007; Roberts and
Wooster, 2008; Zhang et al., 2008; Reid et al., 2009; Vermote
et al., 2009; Kaiser et al., 2012).

Despite the considerable advancement achieved in satel-
lite remote sensing and atmospheric modeling during the last
couple of decades, there still remains a large uncertainty in
the overall atmospheric impacts of aerosols and certain short-
lived trace gases, particularly those originating from biomass
burning such as BC and carbon monoxide (CO) (e.g., Urban-
ski et al., 2011; Yurganov et al., 2011; Ichoku et al. 2012;
Bond et al., 2013). A major part of the uncertainty stems
from the fact that their emission from fires are still very
poorly constrained mainly due to the rather sporadic and
transient character of biomass burning, which makes it diffi-
cult to characterize experimentally (e.g., Forster et al., 2007,
Yokelson et al., 2011). This can be contrasted, for instance,
with emissions from industries and fossil-fuel burning, which
can be quantified in a fairly straightforward manner, as the
sources are generally stable and relatively easy to character-
ize. For instance, the global total fossil-fuel CO2 emissions
are accurate to within 10 % at a 95 % confidence interval
(e.g., Andres et al., 2012), whereas the uncertainty associ-
ated with biomass burning CO2 emissions is still not quantifi-
able because of lack of sufficient information (e.g., Andreae
and Merlet, 2001), although one could infer that it would be
as much as 100 % considering the propagation of uncertain-
ties from the various parameters that influence the emissions
estimates (van der Werf et al., 2010). Similar uncertainty ra-
tios exist for other types of particulate and gaseous emissions
from various source types (biogenic, industrial, volcanic) as
compared to biomass burning (e.g., Diehl et al., 2012; Bond
et al., 2013; Carslaw et al., 2013).

Many of the currently available biomass burning emis-
sions inventories and other related products, including those
derived from satellite data, are based on bottom-up ap-
proaches, whereby estimates of burned biomass are derived
from satellite-retrieved fire pixel counts, burned areas, and/or
fire radiative power (FRP), and are then multiplied by emis-

sion factors (EFs) of different smoke constituents derived
from laboratory or field experiments to obtain the smoke
emissions of these constituents (e.g., Chin et al., 2002, Ito
and Penner, 2004; Hoelzemann et al., 2004, Liousse et al.,
2004; Michel et al., 2005; van der Werf et al., 2006, 2010;
Generoso et al., 2007). Examples of such inventories that are
currently being used by the community include GFED (van
der Werf et al., 2006, 2010), GFAS (Kaiser et al., 2012),
FLAMBE (Reid et al., 2009), FINN (Weidinmyer et al.,
2011), and GBBEP-Geo (Zhang et al., 2012). Recent re-
search findings suggest that such bottom-up approaches lead
to severe underestimations particularly of smoke aerosols un-
less bias correction is applied through modeling (e.g., Li-
ousse et al., 2010; Kaiser et al., 2012). Top-down approaches
are starting to be investigated for deriving biomass-burning
emissions, sometimes in conjunction with model assimila-
tion (e.g., Sofiev et al., 2009; Kaiser et al., 2012; Darmenov
and da Silva, 2013). Although biomass burning emits several
dozens of particulate and gaseous species (e.g., Andreae and
Merlet, 2001; Akagi et al., 2011), this study is specifically
focused on smoke aerosol or total particulate matter (TPM)
emissions.

This paper presents the development of the first gridded
global top-down biomass burning aerosol emission coeffi-
cients product that is based strictly on locally collocated
satellite measurements of both fire radiative power (FRP)
and aerosol optical thickness (AOT). The original idea and
an initial algorithm were developed in Ichoku and Kauf-
man (2005) in which FRP and AOT retrieved from the
Moderate-resolution Imaging Spectro-radiometer (MODIS)
sensor aboard the NASA Terra and Aqua satellites were uti-
lized together with wind vectors from the National Cen-
ter for Environmental Prediction/National Center for Atmo-
spheric Research (NCEP/NCAR) meteorological reanalysis
data to generate smoke-aerosol emission coefficients (Ce in
kg MJ−1) for several biomass burning regions. Such top-
down emission coefficients are found to be useful, as simply
multiplying Ce by the satellite-retrieved FRP of a fire gives
the corresponding instantaneous TPM emission rate for that
fire. Likewise, in the case of consistent and frequent fire ob-
servations such as from a geostationary platform, multiply-
ing Ce by the time-integrated FRP (or fire radiative energy,
FRE) gives the TPM emission for that time interval. This
Ce × FRP (or Ce × FRE) emissions estimation approach and
variants of it have been subsequently developed and imple-
mented successfully in various regional studies (e.g., Jor-
dan et al., 2008; Henderson et al., 2008, 2010; Sofiev et al.,
2009; Vermote et al., 2009). However, the original Ichoku
and Kaufman (2005) algorithm has been substantially en-
hanced and used to generate a gridded global Ce product
using an updated algorithm and newer versions of FRP and
AOT data from MODIS as well as wind vectors from the
Modern Era Retrospective-Analysis for Research and Appli-
cations (MERRA) data sets (Rienecker et al., 2011) provided
by the NASA Goddard Global Modeling and Assimilation
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Office (GMAO). The newly generated gridded Ce data prod-
ucts are available at the NASA Fire Energetics and Emis-
sions Research (FEER) web site (http://feer.gsfc.nasa.gov/)
together with MODIS FRP data and links to other relevant
satellite FRP data.

Section 2 provides the background and theoretical basis
of the approach. Section 3 describes the characteristics of
the various input data (FRP, AOT, winds) used to calculate
Ce. Section 4 gives the full details of the updated method-
ology for deriving Ce and the associated uncertainty analy-
ses. Section 5 presents the use of the gridded Ce product to
estimate smoke particulate emissions over different regions
and comparisons with similar emission products, namely,
the Global Fire Emissions Database version 3.1 (GFED.v3:
van der Werf et al., 2006, 2010), the Global Fire Assimila-
tion System version 1.0 (GFAS.v1: Kaiser et al., 2012), and
the Quick Fire Emission Dataset version 2.4 (QFED.v2: van
Donkelaar et al., 2011; Darmenov and da Silva, 2013). Fi-
nally, Sect. 6 provides a summary and relevant concluding
statements.

2 Background and theoretical considerations

Traditionally, the amount of a given aerosol or trace-gas
species emitted from open biomass burning is derived by
multiplying that species’ emission factor (in grams of species
per kilogram of dry matter burned) by the mass of biomass
burned. The basic equation is of the form (e.g., Andreae and
Merlet, 2001):

Mx = EFx · Mbiomass, (1)

where Mx is the mass of emitted smoke species x, EFx is the
emission factor for the emitted species x, and Mbiomass is the
mass of the dry biomass burned.

A similar relationship to Eq. (1) was established by Ichoku
and Kaufman (2005) in which EFx is replaced with Cx

e ,
which is designated as the emission coefficient (for any given
species x), and Mbiomass is replaced with either FRE or its re-
lease rate Rfre (i.e., FRP). Thus,

Mx = Cx
e · FRE

or

Rx = Cx
e · Rfre, (2)

where Rx is the rate of emission of species x (expressed
in kg s−1) since Rfre is the FRE release rate expressed in
MJ s−1, or MW. Cx

e is therefore expressed in kg MJ−1. The
validity of the relationship in Eq. (2) has been verified in
a laboratory experiment, where satellite measurements of
fire energetics and smoke were replicated by burning small
biomass fuel samples in a burn chamber equipped with a gi-
ant smoke stack upon which the relevant instruments were

set up, and the retrieved FRP and AOT were used to derive
Ce for smoke aerosols (Ichoku et al., 2008b).

Equations (1) and (2) are functionally very similar, and re-
lating the two would suggest that there is a linear relationship
between Mbiomass and FRE. Indeed, a series of field experi-
ments showed that FRE is proportional to Mbiomass in a linear
fashion, such that Mbiomass = 0.368(±0.015)· FRE, in which
the numeric coefficient (0.368 kg MJ−1) is designated as the
biomass consumption factor (Fc) (Wooster et al., 2005). The
Wooster et al. (2005) study indicated that the same relation-
ship is expected to hold for satellite observations when total
biomass consumed Mbiomass is substituted with the rate of
biomass consumption and FRE with Rfre. That relationship
has also been verified in laboratory experiments (Freeborn
et al., 2008; Ichoku et al., 2008b), and has been applied in
the estimation of Mbiomass over Africa using FRE derived by
integrating Rfre measurements from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) aboard the Meteosat
second generation (MSG) series of European geostationary
meteorological satellites (Roberts et al. 2005, 2011). Sim-
ilarly, as derived in Ichoku et al. (2008b), the mass-based
emission factor, EFx, in Eq. (1) is related to the FRE-based
emission coefficient Cx

e for any given fire-emitted species x

as

EFx = Cx
e
/
Fc, (3)

where Fc is the biomass consumption factor (Fc) defined in
Wooster et al. (2005).

This ability to relate the satellite-measured fire radiant
heat release rate Rfre and the top-down derived emission
coefficient Ce to physical quantities of combusted biomass
Mbiomass and its associated bottom-up smoke emission factor
EFx, respectively, is a major motivation buttressing the study
described in this paper. Currently, only a few generalized val-
ues of EFx are available for certain ecosystem types, which
is highly limiting given that EFx is likely to vary by location
in the same manner as fuel characteristics, even within the
same ecosystem type. Therefore, by using satellite-measured
Rfre and smoke aerosols to derive Ce globally as a gridded
product based on the developed top-down approach, it is not
only possible to compare these results with those based on
bottom-up approaches, but it can even lead to the develop-
ment of a gridded EFx product that would offer a much finer
spatial coverage and resolution than do the current products.

3 Data

The main data products used in generating the gridded Ce
are satellite measurements of FRP and AOT, as well as as-
similated wind fields from MERRA. Both the FRP and AOT
products used in this work are derived from the MODIS sen-
sors aboard the (1) Terra satellite launched in 1999 with local
equator crossing times of 10:30 a.m. and 10:30 p.m., and (2)
Aqua satellite launched in 2002 with local equator crossing
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times of 1:30 p.m. and 1:30 a.m. The analysis in this paper is
based on data covering the period between 2003 and 2010,
inclusive. The specific attributes of these products, such as
their spatial and temporal resolutions, versions, and uncer-
tainties are discussed in the following sub-sections. It should
be noted that MODIS data versions are essentially referred
to as data “collections”, a terminology that will be used
throughout this paper.

3.1 Fire radiative power

Active fire observation products from MODIS on Terra
(MOD14) and Aqua (MYD14) are provided at a nominal
spatial resolution of 1 km at nadir (Justice et al., 2002; Giglio
et al., 2003). FRP (or Rfre) is one of the main parameters pro-
vided within these products for every fire pixel detected. The
original formulation for derivation of Rfre was developed in
Kaufman et al. (1998, p. 32 226, Eq. (1)) as

Rfre = 4.34 × 10−19 ·
(
T 8

4 − T 8
4b,

)
(4)

where Rfre is the pixel fire radiative power (in W m−2), T4
is the fire pixel brightness temperature (in K) at the 4 µm
channel (3.96 µm for MODIS), and T4b is the 4 µm brightness
temperature of the background surrounding the fire pixel.

Equation (3) was used to derive FRP values from MODIS
up to the collection 4 data set released in 2004. Those collec-
tion 4 data were used for the Ichoku and Kaufman (2005)
study. Starting from collection 5, the right hand side of
Eq. (3) was multiplied by the area of each pixel to account for
the variation of ground pixel size with MODIS scan angle, re-
sulting in units of MW for Rfre (Giglio, 2010). The collection
5 FRP data set, which is the latest data version available at the
time of this study, has been used for the calculations reported
here. The potential effects that this change in FRP values has
on computed Ce is analyzed in Sect. 4.6. However, it is note-
worthy that FRP retrievals from MODIS have not yet been
validated, even though the uncertainty associated with the
detection of fire locations has been characterized using fire
detections at 30 m nominal spatial resolution from the En-
hanced Thematic Mapper Plus (ETM+) sensor aboard the
Landsat-7 satellite and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) aboard Terra
(e.g., Morisette et al., 2005a, b; Schroeder et al., 2008a, b).

3.2 Aerosol optical thickness

The AOT (τaλ) data used for this study were also re-
trieved from MODIS on Terra (MOD04_L2) and Aqua
(MYD04_L2) at 10 km spatial resolution at nadir. MODIS
measures AOT at 470, 550, 660, and 2100 nm wavelengths
(λ) over land, and at 470, 550, 660, 870, 1200, 1600, and
2100 nm wavelengths over ocean (e.g., Remer et al., 2005,
2008; Ichoku et al., 2005; Levy et al., 2010). However, only
the AOT data retrieved over land are used in this study,
since smoke from biomass burning can only be emitted over

land where fires normally occur, although this makes it dif-
ficult to get a sufficient amount of retrievals for fires oc-
curring very close to coastlines. Specifically, we use AOT
measurements at 550 nm wavelength, as this falls within the
mid-visible or green region of the electromagnetic spectrum,
which is the most commonly used wavelength region in
aerosol radiation studies. Unlike the FRP data, MODIS AOT
data have been extensively characterized and validated using
ground-based sun-photometer measurements from the global
Aerosol Robotic Network (AERONET, e.g., Holben et al.,
1998, 2001). However, as with the fire product, the collection
5 MODIS Level 2 Aerosol Product (http://modis-atmos.gsfc.
nasa.gov/C005_Changes/C005_Aerosol_5.2.pdf) was used
in this study instead of the collection 4 that was used in
Ichoku and Kaufman (2005). Detailed analyses of the effects
of this change in AOT data version and other factors on the
computed Ce results are presented in Sect. 4.6.

3.3 Wind vectors

The wind vectors used for this study were extracted from
MERRA’s inst3_3d_asm_Cp product provided at a spatial
resolution of 1.25◦× 1.25◦ and a temporal resolution of
3 h. The documentation for that product is available at
http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings/merra/
inst3_3d_asm_Cp.shtml. Wind data at pressure levels of
925, 850, and 700 mb, roughly corresponding to heights
above mean sea level (a.s.l.) of 750 m, 1.5 km, and 3 km,
respectively, were extracted and used for spatial aerosol data
analysis to derive smoke TPM emission rates. However, after
the analyses, the wind data at 850 mb (roughly 1.5 km a.s.l.)
were used to generate the final product as described in
Sect. 4 and in Ichoku and Kaufman (2005), because most
fires observable from satellite at ~1 km spatial resolution
in different parts of the world typically inject plumes to
heights of about 1.5±1.0 km above ground level (a.g.l.), with
the exception of very large fires (e.g., Lavoué et al., 2000;
Freitas et al., 2006; Kahn et al., 2007; Val Martin et al.,
2012; Yang et al., 2013).

3.4 Other data

Several other data types, products, and parameters were used
in this study. The global average aerosol mass extinction ef-
ficiency value of βe = 4.6 m2 g−1 that was used in Ichoku and
Kaufman (2005), based on the work of Reid et al. (2005), has
also been used in the current work. Coincident digital eleva-
tion model (DEM) data and ecosystem data were obtained
for each data point during processing for reference. DEM
data at 30 arcsec resolution (GTOPO30: https://lta.cr.usgs.
gov/GTOPO30) are provided by the US Geological Surveys
(USGS). We used the DEM data sets to determine the land-
surface elevation, land–sea mask, slope, and aspect. Ecosys-
tem data used in this work are from the 1 arcmin resolution
global ecosystem map of 2004 derived from MODIS (http:
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//modis-atmos.gsfc.nasa.gov/ECOSYSTEM/) using the In-
ternational Geosphere/Biosphere Program (IGBP) classifica-
tion scheme. Digitized smoke plume data from the Multi-
angle Imaging Spetro-Radiometer (MISR) INteractive eX-
plorer (MINX) tool (Nelson et al., 2008, 2013) were used
to evaluate the relationship between the wind direction from
MERRA and the actual plume direction as observed on the
MODIS imagery.

4 Methodology

The basic methodology for deriving the smoke-aerosol emis-
sion coefficients Ce from satellite measurements of Rfre and
τaλ was developed in Ichoku and Kaufman (2005). However,
although the basic structure and processing sequence of the
original algorithm have been maintained, several adjustments
and updates were required, in terms of both the algorithm and
input data, in order to generate the gridded products reported
in this paper.

4.1 Algorithm logic for Ce calculation

The logic progression within the algorithm to calculate Ce is
generally similar to that described in Ichoku and Kaufman
(2005) in that the first stage of the algorithm is completed
on a 10 km resolution aerosol-pixel level, followed by a sec-
ond stage where these units are aggregated within larger ar-
eas (1◦ × 1◦ regular grid in the present case), and then ending
with the actual calculation of Ce. The core of the algorithm is
outlined in this section and visualized in Fig. 1. The specific
details of the three analysis stages, including the main adjust-
ments and updates applied in the current study, are described
in Sects. 4.2, 4.3, and 4.4.

The first stage of the algorithm is designed to generate val-
ues of Rfre and Rsa (the smoke-aerosol emission rate) for
each aerosol pixel with detected fire(s). Fitting the MODIS
1 km resolution active fire data into the corresponding 10 km
resolution aerosol-pixel data is very straightforward because
both data sets originate from the same instrument on the same
platform and from the same original data product. Therefore,
the Rfre for a given aerosol pixel is derived as

Rfre =
Nf∑
i=1

FRPi , (5)

where FRP is the fire radiative power measurement of indi-
vidual active fire pixels, and Nf is the total number of active
fire detections within a given aerosol pixel.

Derivation of Rsa is less straightforward and involves cal-
culations utilizing AOT and wind vectors in a 3 × 3 aerosol
matrix centered on the fire-affected aerosol pixel, as depicted
in Fig. 2. Since the plume can easily influence neighbor-
ing pixels, the 3 × 3 matrix is split into four quadrants, one
of which is deemed to be the “downwind quadrant” based

Figure 1. Flowchart of the core algorithm for deriving FEER.v1
emission coefficients (Ce) of smoke total particulate matter (TPM),
as outlined in Sect. 4.1, showing only the relevant input and output
variables/parameters and their associated equation numbers. This
does not include the various sensitivity studies, data selection, re-
finement, and filtration processes, as well as the post-processing
gap-filling and evaluation steps that are described in the rest of
Sect. 4.

on the wind direction, and the four pixels therein are as-
sumed to contain parts of the plume, whereas the remain-
ing five pixels are the background. The zonal (u) and merid-
ional (v) components of the wind vector at the 850 mb atmo-
spheric pressure level are used to calculate the wind speed
(WS = √

u2 + v2) and azimuth (θ = cos−1 [
v
/

WS
]
). The
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Figure 2. Spatial configuration of a 3 × 3 aerosol-pixel matrix lay-
out, whose central pixel contains fires, showing the four downwind
pixels (shaded red, quadrant IV) classified as having smoke, and the
five remaining upwind pixels (shaded blue) constituting the back-
ground. The downwind quadrant is determined by the wind direc-
tion. The pixel indices (0–8) shown in their bottom left-hand cor-
ners are defined by their scanning configuration, signified here by
the directions of line and sample coordinates. The sample direction
is along-scan and the line direction is along-track. (The background
image taken by Aqua/MODIS at 20:45 UTC on 1 July 2012 shows
the Fontenelle Fire in Wyoming, USA.)

azimuth is compared with the MODIS along-track direction
to determine the downwind quadrant in which the plume is
located (see Fig. 2). The AOT that is attributable to the fire(s)
within the central aerosol pixel can be determined as

τ f
a550 = τ t

a550 − τ b
a550, (6)

where the superscripts f, t, and b, respectively, designate the
fire-emitted, total, and background AOT at 550 nm wave-
length. The background AOT value, τ b

a550, is calculated as
the mean of the valid background AOT values (shown in blue
in Fig. 2), weighted by aerosol-pixel area. The fire-emitted
AOT, τ f

a550, is found by subtracting this mean τ b
a550 value

from τ t
a550 of each aerosol pixel in the downwind quadrant

(plume direction). Individual τ f
a550 values that are negative

are set to zero. Subsequently, an area-weighted average τ f
a550

value is calculated from the downwind aerosol pixels to rep-
resent the unit plume being analyzed. Thus,

τ f
a550 =

Naf∑
i=1

(
τ t

a550,i − τ b
a550

)
· Ai

∑Nat
j=1 Aj

, (7)

where A is the aerosol-pixel area, Nat is the number of valid
aerosol retrievals in the downwind quadrant, and Naf is the
number of valid aerosol retrievals in the downwind quadrant

whose τ t
a550 appropriately exceeds τ b

a550. This fire-emitted
AOT (τ f

a550) is converted to smoke-aerosol column mass den-
sity (Md in g m−2) as

Md = τ f
a550

/
βe, (8)

where βe (expressed in m2 g−1) is the smoke aerosol specific
extinction or mass extinction efficiency derived from Reid et
al. (2005). Using the total area of the four downwind pixels,
AT , the mass of smoke-aerosol emission is then calculated
by

Msa = Md · AT . (9)

Determining the smoke-aerosol emission rate Rsa requires
knowledge of how much time, T , it must have taken to emit
Md . For a given plume, T is assumed to be the time it would
take for the wind to clear all smoke aerosol from the down-
wind quadrant within the 3 × 3 aerosol-pixel matrix, and is
estimated as

T = L
/
WS, (10)

where L represents the length of the plume within the 3 × 3
aerosol-pixel matrix. In the case where there are multiple ac-
tive fire detections within one aerosol pixel, the plume dis-
tances are averaged to yield one value for L. Finally, the rate
of smoke-aerosol emission is estimated as

Rsa = Msa
/
T , (11)

where Rsa is expressed in kg s−1. Thus, paired values of Rfre
and Rsa are calculated for each fire-containing aerosol pixel
and collected into a “pixel-level” product, which is used in
the second stage to generate similar measurements at larger
scales.

The second stage of the algorithm involves aggregating the
pixel-level calculations of Rfre and Rsa to determine corre-
sponding values for larger areas or regions at each MODIS
overpass event. Since it is the aim of this study to render the
FEER.v1 Ce product in a 1◦ × 1◦ – grid configuration, corre-
sponding pixel-level Rfre and Rsa values within each 1◦ × 1◦
grid cell are aggregated as

Rfre =
∑

i
Ri

fre (12)

and,

Rsa =
∑

i
Ri

sa. (13)

Details of the implementation of this stage, including its
unique sensitivity analyses and data filtering processes, are
described in Sect. 4.3. The output is the “grid-level” data set
to be used for the third and final stage during which Ce is
actually derived.

The procedure to derive Ce is to generate a scatter plot
for each 1◦ × 1◦ grid cell using the Rfre and Rsa data calcu-
lated in the second stage for a specified time domain (in our
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Figure 3. Scatter plots of smoke emission rate (Rsa) against fire radiative power (FRP or Rfre) derived from both Terra and Aqua MODIS
observations during the period 2003–2010 for a 1◦ × 1◦ grid cell centered at (a) 1.5◦ S, 15.5◦ E, and (b) 22.5◦ N, 115.5◦ E. The latter
demonstrates the effect of removing outliers in such scatter plots. The outlier is identified in red and the blue line is the linear least-squares
regression fit through the remaining points, which in this case results in a Ce value of 0.0747 and an r2 value of 0.82. This is a great increase
over the case without the outlier removal process, whose regression line is shown in gray and has much lower values of both Ce (0.0128) and
level of confidence (r2 = 0.16).

case 2003–2010), with Rsa on the dependent axis. A mini-
mum of six points is allowed for a scatter plot, as we con-
sider six to be a minimally reasonable number of data points
for linear regression fitting. A zero-intercept regression line
(of the form y =mx, where y = Rsa and x = Rfre) is fitted to
the scatter plot for each grid cell (Fig. 3). The gradient m is
the coefficient of emission Ce and the goodness of fit is eval-
uated on the basis of the coefficient of determination (r2),
as will be described in Sect. 4.4. Hence, for grid cells with
good fits, Rfre only needs to be multiplied by Ce to derive the
smoke emission rate Rsa, even in near-real time, bearing in
mind the possibility of large biases due to the inherent differ-
ences in individual fire characteristics even within the same
fire regime (e.g., Schroeder et al., 2014).

4.2 First stage: pixel-level data analysis

The calculations of Rfre and Rsa begin at the pixel-level.
Several changes have been made in the current study rela-
tive to the original method described in Ichoku and Kaufman
(2005). In that paper, τ t

a550 was defined as the maximum AOT
measured in the 3 × 3 matrix, whereas τ b

a550 was defined as
the minimum AOT measured in the eight pixels immediately
surrounding the center pixel, regardless of the actual direc-
tion of the plume. That methodology should produce good
results when the plume is prominent and the background is
uniform and clear. Otherwise, such as when the plume is
thin or highly dispersed, or when plumes from a different
fire enter any of the aerosol pixels within the 3 × 3 matrix,
the result can be unpredictable. To characterize such situa-
tions, 240 digitized MISR plumes from fires that occurred
in Siberia in May 2003 were analyzed. The outlines of the
3 × 3 matrix of MODIS aerosol pixels centered on each fire
were delineated over a MISR true-color imagery, and the cor-

responding MODIS AOT values were recorded along with
wind directions from both MISR (observed) and MERRA
(modeled). For each of the 240 surveyed plumes, visual clas-
sifications were made with the help of the MISR fine (275 m)
spatial-resolution imagery to identify which 3 × 3 matrices
of MODIS aerosol pixels contained: plumes, clouds, haze, or
fires. Of the cases analyzed, 64 % had detected fires in the
surrounding pixels and 61 % had background smoke or haze.
These proportions can be quite different in other regions be-
cause fire density and smoke dispersion characteristics vary
by region, biome, and season. In particular, regions that typi-
cally have relatively smaller fire sizes, such as the African sa-
vannas, are likely to be more impacted by this phenomenon.
This significant percentage of extraneous aerosol contami-
nation can have an adverse impact on the determination of
τ t

a550 and τ b
a550, and consequently also on the accuracy of

τ f
a550 (see Eq. 7). For instance, in the Ichoku and Kaufman

(2005) method: (i) if a larger plume exists in a neighboring
pixel its AOT can be erroneously taken as the τ t

a550 for the
current plume, and (ii) unless any external smoke entering
into the 3 × 3 matrix affects every one of the aerosol pixels
similarly, the minimum AOT eventually used as τ b

a550 may be
much lower than the average background AOT. Furthermore,
in case (ii) τ t

a550 may be likely boosted to a higher value, po-
tentially resulting in the overestimation of τ f

a550 when τ b
a550

is subtracted from τ t
a550. To mitigate such situations in the

current study, the plume direction is first identified based on
the relative wind direction, as shown in Fig. 2, whereupon a
combination of the four downwind pixels are used to calcu-
late more realistic values of τ t

a550. Likewise, instead of using
the overall minimum AOT, the average AOT of the five up-
wind pixels are used to more realistically determine τ b

a550. It
is assumed that where smaller smoke plumes from fires in the
neighboring or external pixels are present, the distribution of

www.atmos-chem-phys.net/14/6643/2014/ Atmos. Chem. Phys., 14, 6643–6667, 2014



6650 C. Ichoku and L. Ellison: Global top-down smoke-aerosol emissions estimation

their effects among the four downwind and/or five upwind
aerosol pixels will tend to dilute the smoke contamination on
τ t

a550 and τ b
a550 values, thereby minimizing its impact on the

resulting τ f
a550 value. Cases that have more serious contami-

nation also have a good chance of being eliminated both by
the threshold requirements outlined in Sect. 4.3 and the out-
lier removal process described in Sect. 4.4. However, another
issue that can potentially affect the result, though it is not di-
rectly related to this τ f

a550 algorithm, is the fact that near-
source thick smoke plumes are occasionally misclassified
as clouds and therefore omitted in the collection 5 MODIS
aerosol product (e.g., Livingston et al., 2014; Schroeder et
al., 2014). For instance, if any of the four downwind pixels
in a 3 × 3 matrix has no AOT value, this could lead to un-
derestimation of τ f

a550 and consequently also of Msa and Rsa
for the specific plume unit being analyzed. Such situations
are expected to improve with future enhancements in aerosol
retrieval algorithms particularly close to smoke sources, but
the filtering and outlier removal processes implemented in
this study are helpful in the meantime.

One important condition in classifying downwind and up-
wind sections is that the wind direction needs to be correct.
The level of accuracy, however, is variable since the actual
requirement is that only the correct downwind quadrant is
identified. The MINX data set for Siberia in May 2003 also
makes the evaluation of this condition possible, and showed
that the success rate of using MERRA to correctly identify
the downwind quadrant was on the order of 80 %. This is an
acceptable rate, especially considering the fact that most of
the failed cases will likely be filtered out in the second stage
of the Ce algorithm (Sect. 4.3) due to a probable decrease in
τ t

a550 and increase in τ b
a550 such that τ f

a550 will be too low. It
should also be noted that there was no increase in accuracy
when data were matched to the closest plume injection level
as recorded in the MINX database than when only the 850 mb
pressure level data were used. This reaffirms the validity of
the use of wind data at 850 mb for generating the FEER.v1
Ce product, although since this is based only on data from
Siberia, it may not be ideal for other parts of the world where
smoke plumes are typically injected either much lower or
much higher than the 850 mb pressure level. Examples in-
clude the African Sahel region where fires are typically small
in sizes and inject plumes lower than 1 km (e.g., Yang et al.,
2013) and the Canadian boreal forest region where very large
fires can inject plumes higher than 2 km (e.g., Lavoué et al.,
2000; Val Martin et al., 2012).

Another measure taken to minimize uncertainty in the
pixel-level analysis relative to the original algorithm in
Ichoku and Kaufman (2005) is the use of the wind vectors in
the derivation of the distance (L) the plume travels within the
analysis unit (the 3 × 3 aerosol-pixel matrix). The original
method equates L to the square root of the central aerosol-
pixel area without considering the actual relative positions
of the individual 1 km resolution fire pixels within the 10 km
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Figure 4. Probability density functions of plume time (Eq. 10) for
different filter configurations (Table 2) used in data screening and
selection for generating Ce scatter plots.

resolution aerosol pixel. The new algorithm takes into ac-
count the relative positions of these fire pixels within the cen-
tral aerosol pixel in estimating the distance traveled by each
smoke plume from its source (center of the fire pixel) to the
edge of the 3 × 3 aerosol-pixel matrix (see Fig. 2). L is ex-
tended to the edge of the 3 × 3 pixel matrix, instead of only
to the edge of the central aerosol pixel, to prevent any ambi-
guity in L from introducing large errors in Rsa calculations
(Eqs. 10 and 11), particularly when the fire is very close to
the downwind edge of the central aerosol pixel. Therefore,
provided the smoke plume follows MERRA’s wind direc-
tion at 850 mb, it is believed that the derived values for L

and consequently T , Rsa, and Ce will be much more accu-
rate. Although conceptually this algorithm change is an im-
portant improvement, however, for relatively small fires and
low wind-speed situations, plumes may not reach the edge of
the 3 × 3 aerosol-pixel matrix, resulting in overestimation of
L and consequently T (Eq. 10). Figure 4 shows the proba-
bility density functions (PDF) of the plume time, T , for the
four data-filter settings (00000, 10000, 11000, 11 300: low-
est to highest quality) used in this study, as explained later
in Sect. 4.3. Overall, the maximum probability for T lies in
the range of 45–55 min, with a gradual decrease beyond the
peak. For such large time periods of Rsa estimation, the fire
that emitted τ f

a550 may have changed significantly relative to
the FRP value recorded at the time of observation. This is the
weakness of using the instantaneous and simultaneous ob-
servations of a fire and corresponding plume based on a rela-
tively low spatial-resolution aerosol product. However, if the
spatial resolution of the input aerosol product improves (as is
currently being developed by the MODIS aerosol team), this
issue will be alleviated.

Lastly, in the original algorithm by Ichoku and Kaufman
(2005), single values of Rsa and Rfre were calculated for large
regions or areas (in this case 1◦ × 1◦ grid cells) involving
multiple fire/plume units only after the upstream variables
had been aggregated into these regions. That approach has
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Figure 5. Selected 1◦ × 1◦ grid cells for a sensitivity analysis on Ce
scatter plots and values based on using different threshold param-
eters and settings are identified on this MODIS true-color image.
These sites were selected with the intention of maintaining diversity
in location, fire type, biome, number of data points, and expected
goodness-of-fit of linear regression.

been modified in the current implementation to minimize its
vulnerability to errors that may be inherent in the aggrega-
tion processes preceding the calculations. In the current al-
gorithm, the pixel-level analysis is continued up until the cal-
culation of Rsa and Rfre for each fire/plume unit. This allows
for flexibility in the use and aggregation of these products at
different scales and corresponding uncertainty estimation. In
the current work, the values of Rsa and Rfre generated at the
pixel-level are aggregated into the 1◦ resolution grid cells for
creating scatter plots.

4.3 Second stage: gridded data analysis

The creation of a gridded product at 1◦ resolution arises from
the need for derivation of a gridded smoke emission coeffi-
cient Ce that would be available for use in generating emis-
sions wherever fires occur around the world for various types
of applications and modeling. Because the pixel-level smoke-
aerosol emission rates parameter (Rsa) simply reports values
for all aerosol pixels containing fire regardless of the qual-
ity of the aerosol retrievals, the development of this grid-
ded product necessitates a methodology for removing invalid
or erroneous data, which is accomplished through the use
of thresholds applied to selected parameters. These are de-
scribed in Table 1, along with the purpose for using each one
of them.

To determine appropriate thresholds for these parameters,
several 1◦ × 1◦ grid cells were selected around the globe
from a variety of biomass burning regions to conduct sensi-
tivity analyses using data from the full time period of 2003–
2010 (Fig. 5). The selections were made by examining ran-
dom grid cells spread out throughout the entire globe and
manually ensuring that the final selection maintained diver-
sity in location, fire type, biome, number of data points,

and expected goodness-of-fit of linear regression. Data con-
tained within these sample grid cells were used to perform
a dynamic, detailed analysis of the calculations described in
Sect. 4.1 (and illustrated in Fig. 1) to quickly generate differ-
ent emission coefficients. For each site, these algorithmic cal-
culations to aggregate pixel-level values of Rfre and Rsa into
the grid cell and to calculate Ce were applied inside an Excel
workbook, where provisions were made for a user to control
the threshold parameters listed in Table 1. Each threshold pa-
rameter was varied and studied in different combinations as
their effects on the final results were visualized. The calcula-
tions were followed through all the way to the scatter plots of
Rsa and Rfre, and a linear least-squares regression line pass-
ing through the origin was fitted, resulting in values of Ce. In
this way, the corresponding change in the look of the scatter
plot and in the value for Ce due to varying threshold settings
was observed in real time. Thus, the results were dynamic in
nature and allowed for proficient sensitivity analysis at each
of the sites.

A five-digit code was developed to represent the different
combinations of the threshold settings, as designated in the
header row of Table 2. Each digit within the five-digit code
represents one set of parameters that are changed, and the
digit number represents different settings for those param-
eters. Thus, the 00000 setting represents the case when no
filtering is applied to the data set at all, except the standard
requirement that there be valid retrievals of Rfre (F_power)
and Rsa. A basic set of parameters were selected as a com-
mon improvement in all the selected sites, identified as a “1”
for the first digit in the settings code (i.e., 10000 is a set-
ting with only these basic settings turned on). These basic
parameters are (Tables 1 and 2) the scan angle of the aerosol
pixel, the wind speed, the number of available surrounding
aerosol retrievals, the lowest AOT quality assurance flags
specified for selecting the upwind and downwind aerosol pix-
els, and the number of valid AOT retrievals of the upwind
and downwind pixels. The second digit of value “1” (i.e.,
11000) represents the elimination of cloud contamination by
setting A_cloud_fraction_mean to 0. This setting produced
the largest single noticeable improvement across the board,
not only in reduced point scatter, but also in improved re-
gression line fits. The third digit setting corresponds to the
next set of thresholds used to impose restrictions on extreme
minima in the main parameters contributing to the calcula-
tion of Ce, namely τ f

a550 (A_AOT550_fire) and Rfre. Over
the course of examining sufficient threshold values to use
for these parameters, two values for each parameter were
selected for further testing with all the sites collectively,
creating four possible combinations: “1” (τ f

a550 > 0.01 and
Rfre > 15 MW), “2” (τ f

a550 > 0.01 and Rfre > 20 MW), “3”
(τ f

a550 > 0.02 and Rfre > 15 MW), and “4” (τ f
a550 > 0.02 and

Rfre > 20 MW). This was motivated by the realization that
extremely low τ f

a550 and Rfre values within a 10 km × 10 km
aerosol pixel would be too close to the noise level to be good
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Table 1. List of parameters that are used for data filtering in the gridded product development step described in Sect. 4.3 (parameter-name
prefixes “A”, “F” and “M” indicate whether a parameter belongs to the MODIS Aerosol, MODIS Fire, or MERRA Meteorological data sets,
respectively.)

Parameter Description Purpose

A_scan_angle The scan angle of the aerosol pixel. Eliminate the effect of pixel overlap, which adds too
much complexity in determining total and upwind AOT
values.

M_wind_speed The wind speed from MERRA. Eliminate slow air mass that would escalate T and make
Rsa very small.

A_retrievals_nearby The number of available aerosol retrievals immediately
surrounding the center pixel.

Ensure the pixel is not along the edge of the MODIS
scene (granule), and that no nearby feature prevents
aerosol retrieval.

A_AOT550_fire Fire-emitted AOT at 550 nm (i.e., total – background
AOT at 550 nm).

Eliminate cases where the plume signal is weak relative
to the background.

A_QA_AOT_total The smallest QA used in selecting total AOT from the
downwind pixels.

Allow flexibility to specify desired range of AOT quality
flags.

A_QA_AOT_bkgd The smallest QA used in selecting background AOT
from the upwind pixels.

Reduce uncertainty in background (upwind) AOT mea-
surements.

A_AOT550_retr_total The number of valid downwind aerosol retrievals. Ensure that enough valid pixels are available for accu-
rate total AOT determination.

A_AOT550_retr_bkgd The number of valid upwind aerosol retrievals. Ensure that enough valid pixels are available for accu-
rate background AOT determination.

A_cloud_frac_mean Mean cloud fraction of the 3 × 3 aerosol-pixel matrix
for unit plume analysis.

Reduce the chances of cloud being falsely identified as
smoke and vice versa, or cloud obscuration of fire.

F_pcounts The number of MODIS fire pixels inside the center
aerosol pixel.

Optimize number of fire pixels within aerosol pixel for
accurate FRP total.

F_pcounts_nearby The number of MODIS fire pixels in surrounding 8
aerosol pixels.

Eliminate uneven contamination of AOT by emissions
from nearby fires.

F_pcounts_DW3 The number of fire pixels in three downwind pixels (ex-
cluding center).

Eliminate contamination of target plume by those from
nearby fires.

F_power The cumulative FRP value of all fires within the center
aerosol pixel.

Limit small fires and underestimated FRP values that
can cause large errors.

Rsa The rate of smoke emission. Limit invalid values or cases with insignificant amounts
of smoke production

for useful analysis. However, between the two values of the
τ f

a550 threshold tested, 0.02 was adopted as more realistic for
further analysis because it is closer to the absolute compo-
nent (i.e., 0.05) of the expected AOT retrieval error ± (0.05
+ 15 %) from MODIS over land (e.g., Levy et al., 2010).
Also, by observing the effect of different choices of Rfre
thresholds on the sites collectively, it became visually appar-
ent that using Rfre > 15 MW was the better solution (com-
pared to 20 MW). The fourth digit setting is used for con-
trolling the number of MODIS fire pixels within the center
aerosol pixel (F_pcounts), with “1” and “2” designating one
and two-or-more fire pixels, respectively. It was noted that
setting F_pcounts ≥ 2 seems to produce similar effects on
Ce scatter plots as setting the minimum FRP value because
both tend to eliminate small fires that potentially have under-
estimated FRP values. The fifth digit corresponds to thresh-
olds imposed on fire pixel counts like the fourth digit ex-
cept that it refers to surrounding aerosol pixels in the 3 × 3
aerosol-pixel matrix other than the central one. Two param-
eters are used: setting “1” counts all the fire pixels within
all eight aerosol pixels immediately surrounding the cen-
tral one (F_pcounts_nearby), and setting “2” counts all the

fires within the downwind pixels excluding the central one
(F_pcounts_DW3). This last setting was studied as a pos-
sible method to ensure that there is no background aerosol
contamination from spurious plume sources that are not well
dispersed within the 3 × 3 aerosol-pixel matrix.

Table 3 shows a summary of the overall sensitivity of each
parameter to the various threshold settings in Table 2. The
analysis was based on global MODIS-Aqua retrievals for the
first day of each month in 2010, for which the total num-
ber of retrievals over this data set without any filtering was
43 211, whereas the number of valid retrievals (after apply-
ing the 00000 filter to ensure that valid values exist for both
Rsa and Rfre) was 28 494. Thus, roughly 34 % of the recorded
data is invalid. The values in the table are the percentages of
the data remaining after applying each of the thresholds. It is
evident that the amount of available data severely decreases
as more and more restrictions are applied. Therefore, a much
more detailed analysis was required in order to determine the
best choice in settings to use in the final product. After a care-
ful evaluation of the different filters, considering their effects
on the point scatter on plots of Rsa against Rfre and the as-
sociated correlations of the linear regression fitting vis-à-vis
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Table 2. Value ranges of the threshold parameters in Table 1 and the combinations of their threshold settings used to derive the different
five-digit filter configurations (00000, 10000, 11000, etc.) that were applied in screening out potentially erroneous or corrupted data during
the grid-level data analysis described in Sect. 4.3.

Parameter Range 00000 10000 11000 11100 11200 11300 11400 11310 11320 11321 11322

A_scan_angle [0,55] < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30
M_wind_speed [0,∞] > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2
A_retrievals_nearby [0,8] = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8
A_AOT550_fire [0,5.05∗] > .01 > .01 > .02 > .02 > .02 > .02 > .02 > .02
A_QA_AOT_total [0,3] ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1
A_QA_AOT_bkgd [0,3] ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1
A_AOT550_retr_total [0,4] = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4
A_AOT550_retr_bkgd [0,5] = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5
A_cloud_frac_mean [0,100] = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
F_pcounts [1,100] = 1 ≥ 2 ≥ 2 ≥ 2
F_pcounts_nearby [0,800] = 0
F_pcounts_DW3 [0,300] = 0
F_power [0,≈ 20 500∗] > 0 > 0 > 0 > 15 > 20 > 15 > 20 > 15 > 15 > 15 > 15
Rsa [0,∞] > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0

∗ Value estimated from computations based on sensor specifications and observation geometry.

the percentage of available valid data, 11300 was selected
for generating the final Ce product. Table 3 reports that only
about 10 % of the available valid data is used to generate Ce
with the 11300 setting, but the confidence in the resulting Ce
values is increased by a satisfactory amount while retaining
enough data for product development.

This systematic data filtration process in conjunction with
the algorithmic improvements in τ f

a550 calculations described
in Sect. 4.2 have resulted in about a 67 % drop globally in
τ f

a550 (which directly affects Rsa and Ce), as will be seen in
Table 6. This is a significant improvement over the Ichoku
and Kaufman (2005) method, whose Ce values were found
to be overestimated (Sofiev et al., 2009; Kaiser et al., 2012),
as discussed in Sect. 4.6. However, these results are still sus-
ceptible to uncertainty and bias, as fires located in the neigh-
boring aerosol pixels are not specifically accounted for. Al-
though a provision was made to filter out such cases, this
was not implemented because of high data reduction without
a significant improvement in the result. This step will be re-
evaluated for possible implementation in future versions of
the FEER Ce algorithm.

4.4 Third stage: generation of smoke emission
coefficients

Scatter plots of Rsa against Rfre were generated for each
1◦ × 1◦ grid cell, as illustrated in Fig. 3, using all available
MODIS data for the period of 2003–2010 after filtering as
described in Sect. 4.3. Scatter plots with fewer than six data
points were discarded. A linear least-squares regression line
passing through the origin was fitted to each scatter plot, and
the slope and coefficient of determination (r2) were calcu-
lated. The slope is the Ce value for that grid cell. However,
the general equation of r2 for a regular linear least-squares
regression analysis cannot be used for this zero-intercept fit-

ting approach. Instead, going back to the derivation of r2 and
making the correct adjustments, the appropriate equation de-
scribed in Eisenhauer (2003) was used for our situation.

Although the process of using thresholds to remove inac-
curate data as described in Sect. 4.3 has been successful at
retaining the relatively higher quality Rsa and Rfre data se-
ries for derivation of reliable Ce, in some cases there remain
examples where a few erroneous data points that are not suc-
cessfully detected and filtered out can constitute outliers and
cause large errors in this process (e.g., Fig. 3b). Such out-
liers potentially originate from undetected errors in the data
source, such as when the existence of clouds is undetected by
the cloud detection algorithm. In the Fig. 3b example, when
contrasted with Fig. 3a, only one outlier out of a total of 18
data points cause r2 to be as low as 0.16, and Ce to be lower
than the expected value by a factor of six. Although the effect
of removing outliers is usually not as drastic as this example,
the importance of applying a filter in order to remove out-
liers from these scatter plots before generating the final Ce
product is evident.

The process of identifying a robust outlier removal al-
gorithm proved to be non-trivial. Regression analysis as-
sumes linearity, independence, homoscedasticity, and nor-
mality. Residual plots produced from data similar to those of
Fig. 3 show violations of at least one of these requirements,
the most persistent being the non-normality of Rsa versus
Rfre scatter plots due to the persistent positive skewness of
the residuals. This characteristic seems to render most if not
all mainstream outlier algorithms unusable for the current
study. Wisnowski (2001) describes a few highly respected
multiple outlier detection algorithms, some of which were
tested and found to produce many false alarms with our Rsa
vs Rfre scatter plots. It became increasingly apparent that a
custom outlier algorithm would have to be developed specif-
ically for these data sets. A detailed empirical study was
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Table 3. Percentages of all available data that meet the threshold requirements in Table 2. These numbers were derived using the global
coverage of MODIS-Aqua retrievals for the first day of each month in 2010. The number of retrievals over this data set totaled 43 211,
whereas the number of valid retrievals (where “F_power” and “Rsa” are both greater than zero, see setting 00000 in Table 2) totaled 28 494.
The last row (“ % of Valid”) shows the overall percentages based on the 00000 setting, which gives an estimate using only valid data. Values
are color-coded in different shades of red < 15 %, 15 % < orange < 50 %, 50 % < yellow < 70 %, green > 70 %.
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A_scan_angle  60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 

M_wind_speed  84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7 

A_retrievals_ 

nearby 
 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 

A_AOT550_fire    47.6 47.6 34.7 34.7   34.7 34.7 34.7 34.7 

A_QA_AOT_total  70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 

A_QA_AOT_bkgd  70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 

A_AOT550_retr_

total 
 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 

A_AOT550_retr_

bkgd 
 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 

A_cloud_fraction

_mean 
  52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1 

F_pcounts        59.8 40.2 59.8 40.2   

F_pcounts_ 

nearby 
           24.9  

F_pcounts_DW3             47.5 

F_power 100. 100. 100. 81.0 71.2 81.0 71.2 100. 100. 81.0 81.0 81.0 81.0 

Rsa 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9 

% of Total 65.9 23.2 17.5 8.8 7.5 6.2 5.3 9.3 8.3 1.8 4.4 0.8 2.1 

% of Valid 100 35.2 26.6 13.4 11.3 9.5 8.1 14.1 12.5 2.8 6.7 1.2 3.2 

undertaken to fully understand the variety of point distribu-
tions that can occur in our data sets and their potential im-
pacts on Ce and r2 resulting from the linear regression fitting
in order to develop a robust outlier removal algorithm that
would be optimal for our data set. The central idea behind
the resulting outlier algorithm is to compare the fraction of
mean squared error (MSE) measurements between the scatter
plot with all points and without potential outliers against an
empirically developed function in order to properly identify
outliers. This outlier algorithm was then applied to 110 test
scatter plots, each of which was manually assigned to one of
15 identified scatter-point distribution categories, in order to
rate its performance. Overall, outliers were correctly identi-
fied and removed in 75 % of the 110 cases tested, although
three of the 15 types of scatter-point distributions showed

a high failure rate. However, the fact that 75 % of available
linear regression lines with outlier contamination can be rec-
tified using this algorithm is still a vast improvement over the
conventional outlier removal algorithms that were tested.

When this outlier algorithm is applied to the full data set
from both Terra and Aqua, the outlier detection rate is very
consistent at around 30 %, regardless of the filter setting (as
described in Sect. 4.3) that is used. If these outliers are cor-
rectly identified, then combined with the earlier conclusion
that 75 % of contaminated grid cells are identified by the al-
gorithm, it is deduced that roughly 40 % of all grid cells con-
tain outliers. Figure 6 offers an informative display of how
the application of this outlier algorithm impacts the final Ce
product. After outlier removal, the distribution of Ce values
shifts noticeably towards higher values. This would be the
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Figure 6. Percentages of binned Ce values from all scatter plots
based on Aqua-MODIS data and the 11300 filter (see Tables 1, 2,
and 3) before and after outlier removal. Ce appears to have shifted
towards higher values overall.

expected behavior for successful outlier detection since out-
liers below the regression line (and close to the independent
axis) have a very significant influence on the linear least-
squares fit as compared to outliers above the line and close to
the dependent axis.

Initially, the scatter plots and associated linear regression
fitting and calculations were done separately for Terra and
Aqua data. Although a majority of the plots showed agree-
ment between Terra and Aqua, we decided to combine them
for deriving the final Ce product. This combination offered
two advantages: (1) it increased the number of data points
on scatter plots with an insufficient amount of data due to
the filtering performed above (Sect. 4.3) such that Ce val-
ues could be determined, and (2) it avoided the necessity to
develop methods of conducting weighted averaging between
two independent Ce values for each grid cell. The resulting
Ce product is shown in Fig. 7 along with its corresponding
r2 map.

4.5 Gap filling and quality assurance

This polished Ce product presented in Sect. 4.4 and Fig. 7
offers the advantage of including only the highest confidence
data, since it is based on the stringent 11300 filter and outlier-
removal processes. However, the tight constraints imposed
by these processes have the effect of limiting the data suitable
for the final product generation, such that many parts of the
world that are known to be affected by fire do not have Ce
values generated, despite the efforts to increase coverage by
combining Terra and Aqua data into one input stream. The
concern of having incomplete coverage is that if a significant
fire event were to occur in an important region, it may not
be possible to make even a rough estimation of the smoke
emission rates. Therefore, it is evident that some sort of filled
product is needed.

The possibility of a gap-filled product whereby missing Ce
values would be determined by interpolation using surround-
ing existing values for similar land cover types was initially

pursued. However, this procedure could not be applied at first
because the gaps are quite extensive in certain areas, with un-
reasonably great distances between the grid cells that need to
be filled and those containing valid data from which their
values can be interpolated. Thus, gaps were first filled in,
as much as possible, using Ce values based on successively
lower filter settings starting from the 11300 setting (see Ta-
bles 2 and 3) such that those with higher quality but less data
are utilized before moving to those with lower quality and
more data. To account for the differences in quality intro-
duced by this procedure, a quality assurance (QA) product is
provided in conjunction with the filled Ce product, to serve
as an indication of its reliability as well as to give users flex-
ibility in the application of this product.

The compilation process begins with the 11300-filter-
based Ce product, which is the highest confidence product,
and progressively fills in missing data with products of lesser
confidence: first 11000, then 10000 and finally 00000. The
outlier removal algorithm has been applied to all except the
00000 product. A QA flag of 0 is assigned to the lowest con-
fidence product (i.e., 00000) and steps up to 3 for the high-
est confidence product (i.e., 11300). Ce values of the 11300
product with r2 ≥ 0.7 are assigned the highest QA value of 4.
In order to account for cases of low data availability during
this filling process, grid cells that are already filled may be
replaced with values from the lesser confidence product un-
der certain conditions. The decision to replace such existing
values is determined based on the number of data points used
to determine Ce for the previously filled value, Nf, and for the
new value, Nn, and based on their respective r2 values, such
that the conditions,

Nf < Nlimit; Nn > Nf;r2
n > r2

f (14)

must all be met, where Nlimit represents the minimum num-
ber of data points needed to confidently fit a linear regression
line, set to 30, which is the conventional minimum sample
size for statistical significance. It is pertinent to recall that
any scatter plot with less than the bare minimum of six data
points is discarded. If Eq. (14) is satisfied for a given grid
cell, then the Ce value in the current grid cell of the new (less
filtered) product is substituted for the existing value in the
filled product. Likewise, the QA of the filled data is replaced
with that of the new data.

Finally, as many of the gaps remaining in the filled prod-
uct as possible are filled using the Ce values in nearby grid
cells with identical land cover types. Land cover type may
vary significantly within a grid cell at the spatial resolution
of 1◦ × 1◦ used in this product, which can cause issues es-
pecially since the dominant land cover type within a given
grid cell may very well not be the one that burns most of-
ten. Thus, the MODIS ecosystem classification map for 2004
at 1 arcmin resolution was used to develop a custom land
cover product at 1◦ × 1◦ resolution that reports the dominant
fire-prone land cover type, which is used in the following
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Figure 7. (a) The coefficient of emission (Ce) product based on MODIS 2003–2010 FRP and AOT observations from Terra and Aqua, after
applying the 11 300 filter setting (Table 2) and outlier removal processing steps described in Sects. 4.3 and 4.4., respectively, and (b) the
corresponding coefficient of determination (r2) map.

analysis. Grid cells that are potentially vegetated (not com-
pletely classified as water, barren, or snow/ice) are identified
as candidates for gap-filling, and carefully analyzed. First, a
15 × 15 grid cell box is drawn around each candidate grid
cell, and all grid cells with valid Ce within this box and
whose fire-prone land cover type is identical to that of the
center grid cell are selected. The QA values of these selected
grid cells are observed, and the highest minimum QA value
(QAmin) is set such that there will be at least eight total qual-
ified grid cells with QA ≥ QAmin. If this condition cannot be
met, then no gap-filling procedure is completed in that case.
This QA requirement is a method of balancing quantity with
quality of data to get the most certainty in the results. Then,
starting with a 3 × 3 box centered around the grid cell whose
Ce is being filled, the box is expanded only as necessary
(up to a maximum of 15 × 15 window) until it contains at
least eight grid cells that have valid Ce values, the same fire-
prone land cover type, and QA values greater than or equal to
QAmin. If there are a sufficient number of grid cells that meet
these criteria, the Ce values of these grid cells are averaged
and used to fill in the missing value. The gap-filled grid cell
is assigned a QA value of zero, irrespective of those of the
source grid cells.

The final global 1◦ × 1◦ gridded Ce product (Fig. 8a) has
much better spatial coverage than the original (Fig. 7). The
land areas that are not covered seem to comprise only desert
and snow/ice regions, except for the farthest reaches of east-
ern Russia where the last gap-filling procedure did not have a
large enough extent to fill that area. Nevertheless, this prod-
uct provides sufficient coverage for nearly 100 % of all veg-
etation fires that might occur around the globe. Furthermore,
the corresponding QA and r2 products (Fig. 8b, c) provide
the user with parameters for determining how accurate the
Ce in a given area might be. Table 4 shows the relative QA
and r2 distribution of all 13919 grid cells with Ce values.
With the exception of the grid cells whose QA equals zero,
the majority of grid cells within each QA category are either
in the 0.7–1 or 0.5–0.7 r2 range. Therefore, a user can apply
the QA (and r2) values as a filter to select only the Ce val-
ues that meet or exceed the minimum quality requirement for

Table 4. The distribution of FEER.v1 Ce product QA flags among
different coefficients of determination (r2) ranges. The “N/A” cat-
egory is for the 1◦ × 1◦ grid cells that have been filled in using the
gap-filling process due to lack of sufficient data (and therefore lack
an r2 value). The r2 range containing the most grid cells is shown
in boldface type for each QA flag.

r2

QA 0.7 –1 0.5 –0.7 0.3 –0.5 0 –0.3 N/A Total

4 1745 0 0 0 - 1745
3 0 1646 773 182 - 2601
2 548 420 321 155 - 1444
1 378 395 291 119 - 1183
0 243 470 921 1556 3756 6946

Total 2914 2931 2306 2012 3756 13 919

specific applications. On the other hand, if a major fire occurs
in a grid cell with a QA value of zero, an emissions estimate
can still be derived, as long as the user recognizes that it is in
fact a low-confidence estimate. This Ce product is being re-
leased as the Fire Energetics and Emissions Research version
1 (FEER.v1) product.

4.6 Relative evaluation of the FEER.v1 Ce product

Although there is no equivalent “ground truth” data to
validate the new FEER.v1 gridded Ce product, the lat-
ter still requires a certain level of evaluation to determine
where it stands in the spectrum of existing comparable
products/parameters. This was done by comparing the new
FEER.v1 Ce data to regional values of Ce that were reported
for 19 different regions in Table II of Ichoku and Kaufman
(2005), hereafter referred to as “IK05”. Since the FEER Ce
product is gridded at 1◦ × 1◦, it became necessary to generate
a comparative set of average Ce values that fit the 19 regions
for comparison against the IK05 values. Simply averaging
the Ce grid cells within each region is unrealistic due to the
fact that the spatial distribution of fires within each region is
non-uniform and the certainty of the Ce varies. Therefore, a
weighted average of Ce based on the number of fires within
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Figure 8. (a) The gap-filled, combined Terra and Aqua, global 1◦ × 1◦ coefficient of emission (Ce) product along with (b) the corresponding
quality assurance (QA) map and (c) the coefficient of determination (r2) map. These products were based on MODIS 2003–2010 observations
of FRP and AOT from Terra and Aqua.

each grid cell and also on the QA was used to generate the
mean and standard deviation of the Ce values within each
region.

Table 5 shows that the Ce average values from the
FEER.v1 product are distinctly lower than those of IK05 by
a factor of 2–4.5, with the exception of East Kazakhstan,
where they are practically equal. It is pertinent to mention
that Ichoku and Kaufman (2005) estimated that Ce values
were probably overestimated by a factor of 2, and Sofiev
et al. (2009) by applying a more rigorous plume dispersion
modeling found Ce values that were lower than those of IK05
by a factor of 2 to 3. Kaiser et al (2012) also found values
that were lower than those of IK05. The fact that those sub-
sequent studies, including the current study, produced lower
values than those of IK05, confirms that IK05 values were
indeed probably overestimated and suggests that those from
the current study are more realistic. The change from IK05 to
the current study can be categorized into two types, namely,
algorithms and input data versions/sources. It is necessary
to characterize these two types of change independently in
order to determine their relative contributions (as will be re-
ported in Table 6).

To account for the effects of using new input data ver-
sions/sources, an updated version of the IK05 product (here-
after referred to as IKu) was generated by ingesting the
new data being used in the current study into an algorithm
that matches that of IK05 as closely as possible. Recall that
the IK05 Ce values were based on the MODIS collection 4
FRP and AOT products, with wind data from the NCEP re-
analysis data set (GDAS1). By contrast, the IKu Ce values
are based on the MODIS collection 5 FRP and AOT prod-
ucts, with wind data from the MERRA reanalysis data set.
Differences in Ce from IK05 to IKu should only be due to
changes in data versions and sources, whereas the effects of
the algorithmic alterations described in Sect. 4.2 can be iso-
lated by comparing IKu to FEER.v1.

Using the relationships defined in Sect. 4.1, it is evident
that

Ce ∝ Rsa

FRP
(15)

∝ Msa

T · FRP
∝ Msa · WS

L · FRP
∝ Md · A · WS

L · FRP
∝ τf · A · WS

L · FRP
.

In other words, Ce is directly proportional to the fire-emitted
AOT (τ f

a550), aerosol-pixel area and wind speed, but inversely
proportional to the plume length and FRP. Three of the
five variables on the right-hand side of Eq. (15) (τ f

a550, WS
and FRP) have updated data sources in FEER.v1, and three
(τ f

a550, A and L) have updated derivations. However, both
A and L, which are dependent on each other, can be ad-
justed together here to emulate the IK05 algorithm such that
A would be equal to the area of only one aerosol pixel, and
L would be halved (using IK05 definitions, LIK05

/
LFEER =√

A
/√

4A = 0.5). These adjustments are made for the fol-
lowing analysis. If the ratio of a variable in FEER.v1 to the
same in IK05 is represented by R, then

RCe = Ce,FEER

Ce,IK05
=

(
τf·A·WS
L·FRP

)
FEER(

τf·A·WS
L·FRP

)
IK05

= Rτf · RWS

RL · RFRP
. (16)

Equation (16) quantifies the change in Ce due to both input
source and algorithmic alterations from IK05 to FEER.v1.
Changes in only data sources from IK05 to IKu are captured
in the relationship:

RCe = Rτf · RWS

RFRP
(17)

because the calculation of L does not involve the use of data
from different sources. The relationship that quantifies the
algorithmic changes from IKu to FEER.v1 is given by

RCe = Rτf

RL

(18)
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Table 5. Estimates of regional FRE-based smoke-aerosol emission coefficients (Ce) from MODIS are shown here for different regions using
both the original method as reported in Ichoku and Kaufman (2005) and version 1 of the new FEER Ce product (FEER.v1).

Region Description
PM emission coefficients

(kg MJ−1)

IK05 FEER.v1
calculated mean st.dev.

Savanna and grassland regions

Brazil-Cer Brazil Cerrado savanna region 0.048 0.016 0.009
S. America South America below 20◦ S 0.061 0.020 0.013
W. Africa West Africa 0.059 0.021 0.012
Zambia Zambia in southern Africa 0.076 0.018 0.005

Tropical forest regions

Borneo Borneo Island of Indonesia 0.079 0.032 0.019
Brazil-For Brazil tropical forest region 0.063 0.019 0.009
Celebes-Moluccas Celebes and Moluccas Islands, Indonesia 0.068 0.028 0.020
Congo Congo tropical forest, Africa 0.048 0.015 0.006

Boreal forest regions

Alaska Alaska 0.020 0.012 0.016
Canada Canada below 70◦ N (excluding Quebec) 0.020 0.012 0.013
Quebec Quebec and eastern Ontario 0.020 0.009 0.021
Siberia Siberia North of 60◦ N 0.057 0.024 0.018

Cropland/natural vegetation regions

Moscow Moscow and environs 0.100 0.026 0.011
S. Russia Southern Russia 0.084 0.018 0.007
St. Petersburg St. Petersburg and environs 0.104 0.023 0.009

Unclassified

Europe Europe (excluding Russia) 0.056 0.024 0.017
E. Kazakhstan East Kazakhstan 0.018 0.019 0.011
Mongolia Mongolia 0.033 0.022 0.014
Philippines The Philippines 0.127 0.039 0.024

because the way in which FRP and wind speed are calculated
remains the same between the two algorithms.

The relationships shown in Eqs. (16), (17) and (18) can be
utilized to test whether the differences between the IK05, IKu
and FEER.v1 product data sets can fully explain the change
in Ce between IK05 and FEER.v1 shown in Table 5 as well
as to identify the main factor responsible for the change –
change in algorithm or the input data version/source. The
only available data from the original IK05 data set cover rel-
atively short time periods (Terra: 25 June 2002 to 4 October
2002, and Aqua: 25 June 2002 to 31 December 2002). The
fact that these ranges do not cover a full year means that any
seasonal differences that may exist will be lost and will there-
fore cause the resulting data to be biased low or high. Nev-
ertheless, these 2002 data sets were used to estimate RCe ,
by first pairing corresponding individual data points in the
IK05, IKu and FEER.v1 data sets. The ratios between IK05
and IKu, between IKu and FEER.v1, and between IK05 and

FEER.v1 were calculated for each data point for AOT, wind
speed, FRP, and plume length. Subsequently, the ratio of Ce
was calculated for each data point pair according to Eq. (16)
for the transition from IK05 to FEER.v1, Eq. (17) for the
transition from IK05 to IKu, and Eq. (18) for the transi-
tion from IKu to FEER.v1. To appropriately represent these
matched data points and ratios in a uniform fashion within
the spatial domains outlined in Table 5, they were binned
into a global grid at a spatial resolution of 0.5 × 0.5◦ and
then filtered according to the appropriate settings reported in
Table 2 using the QA values from the FEER.v1 Ce product
in Fig. 8. Finally, the median of those ratios within each grid
cell was retrieved, and the mean of these values (weighted
identically as was done in Table 5 for Ce) within each region
were reported, as displayed in Table 6.

In Table 6, column 1 (highlighted yellow) shows ob-
served changes in Ce from IK05 to FEER.v1. The subse-
quent columns outline the process of deriving the predicted
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Table 6. The observed changes of Ce and intermediate parameters from the original Ichoku and Kaufman (2005) method (IK05) to FEER.v1
is shown here for the regions listed in Table 5. The values in the yellow highlighted column on the left-hand side are the observed changes
in Ce from IK05 to FEER.v1 from Table 5. The subsequent columns outline the sample size and mean parameter changes during the process
of deriving the predicted changes in Ce from IK05 to FEER.v1 according to Eqs. (16), (17), and (18), the results of which are highlighted in
orange and yellow. The “IK ⇒ FEER.v1” on the first header row indicates that both the IKu to FEER.v1 and IK05 to FEER.v1 transitions
are included in the columns beneath. Both Terra and Aqua data were used in these calculations.

Region 

Ce 
(FEER/
IK05) 

IK05 => IKu IK => FEER.v1 

N FRP WS AOT 

Ce 
(IKu/ 
IK05) N FRP WS L 

AOT 
(FEER
/IKu) 

AOT 
(FEER
/IK05) 

Ce 
(FEER
/IKu) 

Ce 
(FEER
/IK05) 

Savanna and grassland regions 
Brazil-Cer 0.33 851 1.61 0.88 0.99 0.56 295 1.48 0.97 0.85 0.35 0.38 0.41 0.26 
S. America 0.32 897 1.57 0.86 0.99 0.55 385 1.44 0.91 0.79 0.32 0.31 0.41 0.23 
W. Africa 0.35 766 1.60 1.02 0.96 0.62 565 1.50 1.03 0.82 0.35 0.32 0.43 0.25 
Zambia 0.23 518 1.59 0.79 0.99 0.50 470 1.46 0.90 0.85 0.35 0.32 0.41 0.19 
Tropical forest regions 
Borneo 0.40 193 1.34 1.03 1.02 0.82 98 1.26 1.03 0.83 0.29 0.35 0.35 0.37 
Brazil-For 0.29 832 1.50 0.72 1.04 0.51 391 1.50 0.83 0.83 0.31 0.36 0.38 0.21 
Celebes-
Moluccas 0.41 116 1.28 0.66 0.99 0.52 81 1.25 0.86 0.81 0.30 0.30 0.38 0.25 

Congo 0.31 913 1.65 0.91 1.00 0.56 621 1.50 1.04 0.84 0.33 0.32 0.40 0.21 
Boreal forest regions 
Alaska 0.62 26 2.32 1.14 1.00 0.55 12 2.01 1.14 0.81 0.29 0.25 0.36 0.21 
Canada 0.58 65 2.39 0.99 0.97 0.46 31 2.36 0.93 0.82 0.33 0.35 0.41 0.20 
Quebec 0.46 54 2.10 0.82 0.98 0.43 35 1.83 0.85 0.82 0.28 0.23 0.34 0.14 
Siberia 0.42 290 1.65 0.86 0.98 0.53 174 1.63 0.87 0.82 0.32 0.27 0.39 0.18 
Cropland/natural vegetation regions 
Moscow 0.26 123 1.38 1.01 1.00 0.76 60 1.32 1.09 0.85 0.29 0.29 0.34 0.26 
S. Russia 0.21 101 1.59 0.94 0.97 0.60 62 1.42 1.03 0.85 0.34 0.29 0.40 0.23 
St. Petersburg 0.23 58 1.33 1.02 1.01 0.78 35 1.27 1.20 0.84 0.30 0.30 0.35 0.29 
Unclassified 
Europe 0.43 544 1.49 0.94 0.96 0.64 172 1.40 0.97 0.84 0.29 0.29 0.35 0.24 
E. Kazakhstan 1.06 431 1.72 1.01 0.86 0.55 152 1.50 1.09 0.84 0.30 0.27 0.37 0.21 
Mongolia 0.67 149 1.59 0.91 0.88 0.54 46 1.62 0.96 0.85 0.31 0.31 0.36 0.24 
Philippines 0.30 20 1.17 0.86 0.89 0.68 6 1.06 0.87 0.79 0.23 0.19 0.29 0.22 
               

Global avg.  13312 1.62 0.90 0.98 0.56 6452 1.48 1.00 0.83 0.33 0.32 0.40 0.22 

changes in Ce from IK05 to FEER.v1 according to Eqs.
(16), (17), and (18), the results of which are shown in
the last column (highlighted yellow). Both Terra and Aqua
data were used in these calculations. The two main pro-
cess changes have been separated out: columns 2–6 (labeled
“IK05 ⇒ IKu”) clearly showing the effect of altering only the
data inputs, and columns 7–14 (labeled “IK ⇒ FEER.v1”)
showing both the effect of altering only the algorithm
(IKu ⇒ FEER.v1) and the combination of algorithm alter-
ation and data updates (IK05 ⇒ FEER.v1). From the result-
ing maps showing the global variation in ratios of τ f

a550, WS,
FRP, and L, it was apparent that the change in each variable
is uniform throughout the globe. On average, the change in
Ce due to differing data sources is about a 40 % decrease
(column 6), mostly from the change in FRP from collec-
tion 4 to 5 (i.e., without and with multiplication by fire-pixel
area, respectively), whereas the algorithm alterations cause
about a 60 % decrease in Ce (column 13), resulting in an

overall decrease in Ce of about 80 % globally (column 14).
Even though these combined effects of data-source and al-
gorithm changes are slightly overcompensating compared to
the observed differences listed in column 1, it can be stated
that the observed reduction in Ce values between the IK05
and FEER.v1 is indeed realistic. The changes in wind speed,
plume distance and FRP due to algorithmic changes are small
relative to the large change in AOT. Therefore, most of the
change in Ce is attributable to the change in fire-emitted
AOT (τ f

a550). Figure 9 shows the global distribution of τ f
a550

changes due to data version/source change (i.e., from IK05
to IKu, Fig. 9a) and due to algorithm change (i.e., from IKu
to FEER.v1, Fig. 9b). Interestingly, when the new collection
5 AOT data are used in lieu of collection 4, τ f

a550 actually in-
creases in most cases around the globe, confirming that the
lower Ce values from IK05 to FEER.v1 due to AOT is very
strongly attributable to the change in the τ f

a550 algorithm. In
fact, the ratios of τ f

a550 in the data-source part are very near
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Figure 9. The ratio of fire-emitted AOT values at 550 nm wavelength (τ f
a550) between the new (FEER.v1) and old (IK05) products mapped

on a 0.5 × 0.5◦ global grid. The changes in τ f
a550 are due only to (a) upgrading the data source from collection 4 to collection 5, and

(b) algorithmic changes.

unity (column 5, Fig. 9a), whereas in the algorithm alteration
part it is around 0.3 (columns 11 and 12, Fig. 9b). It is per-
tinent to recall that the τ f

a550 algorithmic changes mainly in-
volve (1) using wind direction to determine which AOT val-
ues to classify as plume or background, and (2) taking the
average of the upwind AOT values (instead of just the min-
imum value) as the background in an effort to account for
contamination from external aerosols. Although these modi-
fications have resulted in a severe change in the derived τ f

a550,
this change translates to increased confidence in Ce.

5 Emissions calculation results

The new FEER.v1 Ce product is used to demonstrate the top-
down derivation of emission rates and totals from satellite
measurements of FRP. The resulting emissions are compared
against other emission inventories to gain a general under-
standing for how model simulations will change when using
this new FEER.v1 inventory.

5.1 Emissions estimates (rates and totals)

The FEER.v1 Ce product is used to derive smoke-aerosol
emissions by simple multiplication, as represented in Eq. (2)
and the associated discussion. When Ce (kg MJ−1) is mul-
tiplied directly by FRP (in MW or MJ s−1), instantaneous
emission rates (in kg s−1) are derived, whereas when mul-
tiplied by FRE (in MJ) representing a finite (e.g., daily,
monthly, or yearly) time period, the result is emission totals
(in kg) for that time period. Generating a global FRE prod-
uct for use in this analysis is not straightforward due to the
fact that semi-continuous measurements of unsaturated FRP
around the entire globe is not currently available, though it
is expected that this situation will improve within the next
decade or so, given the anticipated launches of different geo-
stationary and polar-orbiting satellite missions by some of
the major space agencies. However, to closely compare emis-
sions based on the new FEER.v1 Ce product with other emis-
sions products, this study uses FRP data from the 0.5◦ × 0.5◦
gridded monthly data set derived from MODIS observations

aboard the Terra and Aqua satellites as part of the GFAS.v1
product (http://gmes-atmosphere.eu/fire, Kaiser et al., 2012).

The GFAS.v1 values of monthly average FRP in W m−2

were simply multiplied by the number of days in each calen-
dar month to get FRE in J m−2, as was done in the GFAS.v1
algorithm (Kaiser et al., 2012). Such derivation of monthly
average FRE based on only four or less MODIS fire obser-
vations a day (from Terra and Aqua satellites) result in high
uncertainty, as it cannot capture the fire diurnal cycle. How-
ever, that is currently the only feasible way to obtain FRE
globally. Higher-frequency (sub-hourly) observations from
a few available geostationary satellite sensors that measure
FRP have different characteristics and produce an average of
17–38 % underestimation relative to MODIS coincident FRP
observations (Roberts et al., 2005; Xu et al., 2010). More-
over, a combination of these geostationary FRP data still
does not provide global coverage, as some large biomass-
burning regions, including Siberia, Central Asia, and India,
are left uncovered (Zhang et al., 2012). Since the GFAS.v1-
based FRE data are global, publicly available, and being used
in the European Union’s Monitoring Atmospheric Composi-
tion and Climate (MACC) project (http://gmes-atmosphere.
eu/fire), they were considered appropriate for use in de-
riving emissions using the FEER.v1 Ce product to enable
comparison with existing emissions inventories, as described
below. Therefore, these GFAS.v1 monthly FRE values at
0.5◦ × 0.5◦ resolution were multiplied by the FEER.v1 Ce
product at 1◦ × 1◦ resolution to obtain the monthly emissions
of smoke aerosols around the globe at 0.5◦ × 0.5◦ resolution.
Then, the monthly emissions for all months of a calendar
year were summed up to get yearly emissions estimates, such
as the 2010 example shown in Fig. 10.

5.2 Comparison with other emissions inventories

The FEER.v1 monthly emissions were compared with some
of the existing emissions products – GFED.v3, GFAS.v1, and
QFED.v2 – as a way of evaluating the FEER.v1 emissions
within the context of these existing global emission invento-
ries that are currently used by the research and operational
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Figure 10. FEER.v1 emissions estimates of total particulate mat-
ter (TPM) for all of 2010 on a 0.5◦ × 0.5◦ resolution global grid.
These values are generated from Eq. (2), using the FEER.v1 Ce
product in conjunction with FRE data derived by multiplying the
GFAS.v1 monthly average FRP data by the total number of days in
each month.

communities. It should be noted that there are a few dis-
similarities between these products. First, like FEER.v1,
QFED.v2 is based on the top-down approach using satel-
lite measurements of both aerosols and FRP, whereas both
GFED.v3 and GFAS.v1 are based on the bottom-up approach
using literature-extracted emission factors (EF) to multiply
burned biomass estimates from satellite observations of FRP
(GFAS.v1) or fire pixel counts and burned areas (GFED.v3).
Secondly, the emissions values used for comparison from
both GFED.v3 and GFAS.v1 represent the smoke TPM emis-
sions, whereas for QFED.v2, whose product exists as the
component species of smoke aerosols, the closest equivalent
product is particulate matter < 2.5 µm aerodynamic diameter
(PM2.5). The ratio of PM2.5 to TPM (by ratioing their cor-
responding emission factors) is estimated to range between
65 % and ∼ 100 % depending on ecosystem type (e.g., An-
dreae and Merlet, 2001; Akagi et al., 2011). Thus, ideally,
smoke PM2.5 emissions (from QFED.v2) for a given area
and time period should be expected to be lower than the cor-
responding TPM emissions (from FEER.v1, GFED.v3, and
GFAS.v1). These different data sets were aggregated region-
ally according to the regional biomass burning partitions pro-
vided in Kaiser et al. (2012) as delineated in Fig. 11, and
plotted as time series annual total smoke TPM emissions
(Fig. 12).

All the emissions products portray similar temporal pat-
terns, with lows and highs occurring in the same years, for
both the global and regional plots (Fig. 12). This may be
due at least in part to the fact that all products are influ-
enced by MODIS fire-pixel counts, either directly or indi-
rectly. GFAS.v1 emissions are generally equal to those of
GFED.v3, because the former was scaled to match the latter
(Kaiser et al., 2012). Globally, GFED.v3 and GFAS.v1 each

Figure 11. Regional partitions as defined in Kaiser et al. (2012)
that are used in this paper to compare FEER.v1 emissions with
GFED.v3, GFAS.v1, and QFED.v2 emission inventories. The back-
ground MODIS true-color image shows fire locations (red dots) de-
tected by MODIS from both Terra and Aqua for all of 2010, to il-
lustrate the global spatial distribution of annual fire occurrence.

constitutes only about 55 % of the FEER.v1 annual TPM
emissions. Since the GFAS.v1 FRE data set was also used for
FEER.v1, it follows that the large difference between their
emission products stem from the relative magnitudes of the
Ce used to generate them. Furthermore, given that it was al-
ready established that the TPM emissions in GFAS.v1 (and
by inference also in GFED.v3) need to be boosted by a fac-
tor of 2–4 to match realistic global distributions of aerosols, it
follows that FEER.v1 Ce results are probably closer to realis-
tic values. However, although the QFED.v2 emissions repre-
sent only PM2.5, which should be lower than TPM, paradox-
ically, it is slightly higher than FEER.v1 global TPM emis-
sions.

The relationship between the FEER.v1 emissions and
those of GFED.v3, GFAS.v1, and QFED.v2 portrays signif-
icant regional differences, as indicated by the regional plots
in Fig. 12. In North America (NAme), incidentally, FEER.v1
emissions seem to agree closely with those of GFED.v3
and GFAS.v1, whereas QFED.v2 (though only PM2.5) shows
double the values of the former three TPM emissions in-
ventories. Not surprisingly, out of all the regions, NAme
has the largest distribution of the lowest QA and r2 values
for the FEER.v1 Ce values, as shown in Fig. 8. We suspect
that FEER.v1 Ce values are severely underestimated in this
NAme region probably because, among other possible rea-
sons, the gap-filled areas are quite extensive with very low
QA values that may have tended toward underestimation. On
the other hand, QFED.v2 appears to have been overestimated
in northern and southern Asia (NAsi and SAsi), perhaps due
to contamination from the persistent regional pollution, since
QFED.v2 is based on regional aerosol observations in con-
trast to FEER.v1, which is based on near-source AOT mea-
surements. Similarly, GFED.v3 is probably overestimated in
tropical Asia (TAsi) only in 2002 and 2006, although the
investigation of possible reasons for these two anomalous
years is beyond the scope of this paper.
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Figure 12. Time series of yearly total global and regional emissions of total particulate matter (TPM) in Tg from 2000–2012 for FEER.v1,
GFED.v3, QFED.v2 and GFAS.v1, depending on data availability for this study. QFED.v2 values (dotted line) are for PM2.5. The regions
represented are delimited on the map in Fig. 11.

6 Summary and conclusions

This study has presented a first attempt at providing Ce –
an index that is similar to EF – for every 1◦ × 1◦ cell con-
taining burnable vegetation globally. Whereas EF is used to
multiply burned biomass estimates to calculate emissions, Ce
is the equivalent parameter used to multiply time-integrated
satellite measurements of FRP to estimate emissions. Thus
the FEER.v1 global gridded Ce product developed in this
study for TPM emissions estimation has several important
attributes, of which the most significant are that it (1) is
the first global gridded product in the family of “emission
factors”, whereas existing products specify one value per
ecosystem type; (2) requires only direct satellite measure-
ments of FRP or its time-integrated FRE to generate emis-
sion rates or totals, respectively, whereas regular EF values
still require estimation of burned biomass through an intri-
cate process fraught with high uncertainty; and (3) is the
only variable in the family of “emission factors” that does
not require pre-determination of the ecosystem type of an
actively burning fire to evaluate its emission rate in near-real
time, which is essential for operational activities, such as the
monitoring and forecasting of smoke emission impacts on air
quality.

Although the FEER.v1 global gridded Ce product was
based on the original approach proposed by Ichoku and
Kaufman (2005), this study implemented significant im-
provements in all stages of the product development. The lat-
est available versions (collection 5) of both the aerosol and
fire products from MODIS were used, along with MERRA
meteorological data from the GEOS-5 global assimilation
model. The identification of near-source plume and back-
ground pixels from the MODIS AOT data set was based
on actual wind directions from MERRA. Rigorous methods
were used to determine the valid ranges of all parameters uti-
lized in the algorithm, in order to limit the effects of spuri-
ous errors and uncertainties from measurements and assump-
tions. These updates in data versions and algorithm resulted
in an overall decrease in regional average Ce values by a fac-
tor of 2–4.5 relative to those of Ichoku and Kaufman (2005).
This decrease seems reasonable, as observed by recent stud-
ies that evaluated those Ce values based on model analyses
(e.g., Sofiev et al., 2009; Kaiser et al., 2012). Nevertheless,
the FEER.v1 global gridded Ce product may still contain sev-
eral limitations and uncertainties, which may be due to vari-
ous factors, such as (1) uncertainties in the satellite retrievals
of AOT and FRP, (2) omission of smaller fires or even larger
fires that are mostly smoldering with significant smoke emis-
sion but limited radiant energy signal below the MODIS de-
tection limit, (3) possibility of erroneously including external
aerosols to specific plumes being analyzed or having large
variations in the aerosol background surrounding the plume,
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(4) smoke underestimation due to the erroneous masking
out of near-source thick smoke plumes as cloud during the
aerosol retrieval process, (5) lack of knowledge of plume in-
jection heights, (6) use of wind vectors at 850 mb globally,
(7) uncertainty in the MERRA wind vectors used in the cal-
culations of smoke emission rate and trajectory, (8) assump-
tion of a single value of smoke-aerosol mass extinction ef-
ficiency globally, and (9) uncertainties due to the gap-filling
process of the FEER.v1 global gridded Ce product. There-
fore, there is need to find ways of validating this product.
Fortunately, the fact that this global Ce product is anchored
on a geographically fixed grid system makes validation much
more feasible than is the case for existing EF values whose
geographical attributes may have been lost, thereby making
them difficult to replicate or to trace to a specific geographic
domain. Thus, for the FEER.v1 global gridded Ce product,
deliberate effort could be made to conduct field experiments
within any 1◦ × 1◦ grid cell for use in validating its Ce value.

Pending the validation of this FEER.v1 global gridded
Ce product in a representative sample of locations, perhaps
through the use of observations in conjunction with regional
modeling, QA flags (ranging from 0 to 4 in increasing order
of quality) have been provided with the product to guide the
user in using this product for different applications. These
QA flags were based on several qualitative and quantitative
considerations including the r2 from the zero-intercept lin-
ear least-squares regression fitting of smoke-aerosol emis-
sion rates against FRP. A corresponding gridded map of r2

is also provided for reference. Thus, a user desiring to de-
rive only high-quality emissions can use the QA as a filter
to select only the Ce values with the highest quality required,
while the corresponding r2 value can give a general idea as to
whether this QA is based on quantitative or qualitative con-
siderations. On the other hand, if a fire occurs in a grid cell
for which emissions estimates are needed to determine the
general smoke trajectory without the need for precise quan-
titative estimates of concentrations, even Ce values having a
QA value of zero can be used to accomplish the desired task.

The FEER.v1 global gridded Ce product was used to gen-
erate global and regional total emissions of TPM, which
were compared against existing emissions inventories, in-
cluding GFED.v3, GFAS.v1, and QFED.v2. The FEER.v1
annual total TPM emissions are low in North America, where
they had comparable magnitudes as those of GFED.v3 and
GFAS.v1, each of which was about half of the PM2.5 emis-
sions from QFED.v2. Pending validation, with the exception
of the North America, FEER.v1 and QFED.v2 seem com-
parable in most regions relative to GFED.v3 and GFAS.v1
emissions, which are considered low. Since GFED.v3 and
GFAS.v1 products are based on bottom up approaches (with
regards to the determination of the emission factors used),
whereas FEER.v1 and QFED.v2 are based on top-down ap-
proaches (in relation to the emission coefficients used), it
is reasonable to assume that top-down approaches based
on satellite measurements would yield smoke distributions

that have a closer resemblance to satellite observations of
aerosols. Therefore, it is recommended that increased ef-
fort be made toward further enhancement of top-down ap-
proaches, not only for aerosol emissions, but also for gaseous
emissions. It is hoped that this approach will become more
and more accurate and beneficial with continued improve-
ment in the satellite retrievals of these aerosols and gases.

The FEER.v1 Ce product, which is currently based on
2003–2010 MODIS observations, will certainly require fu-
ture updates as new, improved, and more representative data
inputs become available from other relevant sources. Further-
more, even in places where the current Ce values are reason-
ably accurate, over time, changing land-cover conditions and
fire regimes will invariably necessitate the revision of these
Ce values, which may indicate diurnal, seasonal, annual or
longer-term temporal variability. Future studies will reveal
the approaches required to ensure optimal accuracy in time
and space.

The current study has been focused on the development
of a global gridded Ce product for smoke TPM because it is
based on the total columnar AOT parameter as retrieved from
satellite observations. Although it is recognized that mod-
eling activities often require smoke-aerosol speciation into
its various components such as organic carbon (OC), BC,
or PM2.5, it was beyond the scope of this study to derive
emission coefficients for these smoke constituent species,
as it would have involved several assumptions (with asso-
ciated compounding uncertainties) to estimate any one of
them from satellite AOT retrievals. However, the user of the
FEER.v1 TPM Ce product may optionally estimate corre-
sponding Ce values for any of the other smoke-aerosol con-
stituents by multiplying with their emission ratios relative to
TPM. Such emission ratios can be obtained from the litera-
ture or derived from the constituent emission factors, which
are also available in the literature depending on ecosystem
type (e.g., Andreae and Merlet, 2001; Akagi et al., 2011).
Indeed, the FEER.v1 global gridded TPM Ce product devel-
oped in this paper represents a versatile foundational product
that can lead to several important advances in fire emissions
research and applications.
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