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a b s t r a c t

We use state-of-the-art public-domain Fortran codes based on the T-matrix method to

calculate orientation and ensemble averaged scattering matrix elements for a variety of

morphologically complex black carbon (BC) and BC-containing aerosol particles, with a

special emphasis on the linear depolarization ratio (LDR). We explain theoretically the

quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and

conclude that the measurement of this feature enables one to evaluate the compactness

state of BC clusters and trace the evolution of low-density fluffy fractals into densely

packed aggregates. We show that small backscattering LDRs measured with ground-

based, airborne, and spaceborne lidars for fresh smoke generally agree with the values

predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC

aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs

alternative particle models such as shape mixtures of BC spheroids or cylinders.

Published by Elsevier Ltd.

1. Introduction

Black carbon (BC) and BC-containing particles form a
climatically important category of tropospheric aerosols
exerting a direct radiative forcing of climate, inhibiting as
well as facilitating cloud formation, and reducing the
albedo of ice and snow surfaces, thereby affecting the
overall energy budget of the terrestrial climate system
[1–11]. They can also limit atmospheric visibility and
have a highly negative effect on human health [12].
Owing to the notoriously complex morphology of such
particles [13–30], theoretical modeling of their scattering
and absorption properties is a highly nontrivial task and
has often been based on approximate approaches with

poorly defined accuracy and range of applicability. How-
ever, the growing need for much improved knowledge of
BC and BC-containing aerosols and their climatic, ecolo-
gical, and visibility effects imposes strict limitations on
quantitative uncertainties in particle scattering and
absorption properties entering optical characterization
and remote sensing applications as well as atmospheric
radiation budget computations [31–42].

Electron microscope images of soot particles show
that they are emitted as complex chain structures (e.g.,
Ref. [16]), which tend to collapse upon humidification
and/or as the particles age (e.g., Refs. [17, 22, 24, 43]),
thereby changing their optical properties. Recently Ueda
et al. [28] classified soot-containing particles into five
major types: soot aggregates, dome-shaped particles,
particles having satellite structures, single nearly
spheroidal particles, and clusters of spheroidal units.
R.K. Chakrabarty et al. (private communication) have
conducted a literature survey and identified three major
biomass burning aerosol habits: fractal soot aggregates,
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individual and semi-externally mixed tar balls [25], and
carbonaceous super-aggregates [30] (we use the defini-
tions of external, semi-external, and internal mixtures of
particles according to Ref. [44]). One also encounters
situations when soot clusters are semi-externally or
internally mixed with other aerosol types [15, 27].

Some of the prevailing morphologies of BC and BC-
containing particles are illustrated in Fig. 1. One might
think that the extreme complexity of these morphologies
can limit one’s ability to compute the scattering and
absorption properties of realistic BC and BC-containing
aerosol models with requisite accuracy. Yet the rapid
growth of computer power coupled with the availability
of efficient numerically-exact computer solvers of the
Maxwell equations [45–48] has led to a recent explosion
in the number of papers based on first-principle compu-
tations. The (superposition) T-matrix method (TMM)
[46, 49–55] and the discrete dipole approximation
(DDA) [56, 57] (or the closely related volume integral
equation formulation [58, 59]) appear to be the most
frequently used techniques, as exemplified by Refs.
[60–87] and [87–95], respectively. However, other
approaches such as the finite difference time domain
method (FDTDM), the pseudo-spectral time domain
method, and the finite element—boundary integral tech-
nique are also gaining popularity [96–104].

It is commonly believed that the DDA and FDTDM
provide greater flexibility in modeling complex particle
morphologies. However, the currently available TMM
codes (e.g., Refs. [46, 51, 105–107]) enable one to easily
model the morphologies shown in Fig. 1a–d while provid-
ing much greater computational efficiency. Furthermore,

it is expected that the superposition TMM code described
in Ref. [105] will soon be extended to handle the internal
mixing scenarios exemplified by Fig. 1e. Perhaps the only
morphological detail that may defy the superposition
TMM codes is partial overlap of otherwise quasi-
spherical soot monomers resulting in so-called sintered
soot aggregates. However, the results of Ref. [87] suggest
that the effect of sintering on the scattering and absorp-
tion properties of soot aggregates is likely to be
insignificant.

In our previous publications [44, 64–66], we had used
the superposition TMM code described in Ref. [108] to
analyze the potential effects of aggregation and hetero-
geneity on light scattering and absorption by complex
tropospheric soot and soot-containing aerosols. The com-
putations described below are based on the new Fortran
90 version of the code which makes use of dynamic
memory allocation and vector arithmetic features that
enable efficient execution on both parallel and serial
machines [105, 109]. The primary objective of this paper
is to analyze in detail the dependence on the morphology
of BC aerosols of an important optical characteristic called
the linear depolarization ratio (LDR). This characteristic is
often measured in laboratory experiments [110, 111] and,
in the case of the exact backscattering direction, in lidar
remote-sensing research [112–115], but appears to be
studied inadequately on the basis of first-principle
numerical computations. Our paper is motivated by the
recent publication [98] in which the FDTDM was used to
compute the LDR for smoke clusters of up to four mono-
mers in order to analyze implications of depolarization
lidar observations from the Cloud—Aerosol Lidar and
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Fig. 1. (a) Transmission electron microscope (TEM) image of a soot cluster [29], (b) Scanning electron microscope image of a collapsed (fractal dimension

approaching 3) chamise smoke particle [24], (c) TEM images of nearly spheroidal soot particles [28], (d) TEM image of an aggregate formed by a soot cluster

and an ammonium sulfate particle [15] and (e) TEM image of internally mixed soot aggregates. Arrows show solid phases inside aqueous droplets [27].
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Infrared Pathfinder Satellite Observation (CALIPSO) satel-
lite [115]. We extend the analysis of Ref. [98] by con-
sidering a more comprehensive and representative set of
soot-particle models and using what we believe to be
more relevant refractive indices.

2. Basic definitions and notation

The key single-scattering characteristics of randomly
oriented particles forming a macroscopically isotropic and
mirror-symmetric turbid medium are the ensemble-
averaged scattering and extinction cross sections per
particle and the elements of the normalized scattering
matrix [46]. In the standard {I, Q, U, V} representation of
polarization, the normalized 4�4 Stokes scattering
matrix has the well-known block-diagonal structure [46]:

~F Yð Þ ¼

a1ðYÞ b1ðYÞ 0 0

b1ðYÞ a2ðYÞ 0 0

0 0 a3ðYÞ b2ðYÞ
0 0 �b2ðYÞ a4ðYÞ

2
66664

3
77775, ð1Þ

where 01rYr1801 is the scattering angle. The (1, 1)
element of the scattering matrix, a1(Y), is traditionally
called the phase function, satisfies the normalization
condition

1

2

Z p

0
dYsinYa1ðYÞ ¼ 1 ð2Þ

and describes the angular distribution of the scattered
intensity in the case of unpolarized incident light.

If the incident light is polarized linearly in the scatter-
ing plane then Qinc¼ Iinc and Uinc¼Vinc¼0. It is easily seen
that the corresponding angular distributions of the co-
polarized and cross-polarized scattered intensities are
given by

1

2
IscaþQ sca� �

p
1

2
a1 Yð Þþ2b1 Yð Þþa2 Yð Þ� �

, ð3Þ

1

2
Isca�Q sca� �

p
1

2
a1 Yð Þ�a2 Yð Þ½ �: ð4Þ

Therefore, the LDR can be defined according to

D Yð Þ ¼ a1ðYÞ�a2ðYÞ
a1ðYÞþ2b1ðYÞþa2ðYÞ : ð5Þ

For spherically symmetric scatterers, the LDR vanishes
owing to the identity a1(Y)�a2(Y). Otherwise it may
carry useful implicit information on particle morphologi-
cal properties.

At exactly the backscattering direction, b1(1801)¼0,
and so

D 1801ð Þ ¼ a1 1801ð Þ�a2 1801ð Þ
a1 1801ð Þþa2 1801ð Þ ¼ dL, ð6Þ

where dL is the conventional lidar linear depolarization
ratio [46, 112–115].

3. Numerical results and discussion

Using the (superposition) TMM, we calculated the LDR
for several BC and BC-containing aerosol morphologies
shown in Fig. 2. The fractal aggregate model satisfies the
following statistical scaling law [13, 14]:

N¼ k0
Rg

a

� �Df

, ð7Þ

where Rg, called the radius of gyration, is a measure of the
overall aggregate radius; the fractal prefactor k0 and the
fractal dimension Df define the compactness of the aggre-
gate, higher values corresponding to more compact clus-
ters; a is the mean monomer radius; and N is the number
of monomers in the fractal. Fig. 2b and c represents a
model of the post-collapse stage in the BC cluster evolu-
tion [17, 22, 24, 43], while Fig. 2e and f are intended to
model BC particles shown in Fig. 1c. The practical rele-
vance of the morphology shown in Fig. 2d is less certain at
this point, but its inclusion in the analysis is justified by
the relative ease of modeling and by potentially signifi-
cant remote-sensing and radiation-budget implications
[82].

We first calculated the LDRs for (i) low-density fractal
aggregates with a fractal dimension Df¼1.82 and prefac-
tor k0¼1.19, composed of 125 identical BC spherules with
a radius r¼20 nm; (ii) 125 BC spherules with a radius
r¼20 nm densely compacted inside a circumscribing
sphere with a radius Rc¼150 nm; (iii) 125 BC spherules
with a radius r¼20 nm randomly covering a larger non-
absorbing sulfate particle with a radius of Rs¼150 nm;
(iv) an equiprobable shape mixture of externally mixed
BC spheroids with axis ratios 1/2, 1/1.8, 1/1.6, 1/1.4, 1/1.2,
1.2, 1.4, 1.6, 1.8, 2; and (v) an equiprobable shape mixture
of externally mixed BC circular cylinders with diameter-
to-length ratios 1/2, 1/1.8, 1/1.6, 1/1.4, 1/1.2, 1, 1.2, 1.4,
1.6, 1.8, 2. The wavelength is fixed at 550 nm, the
refractive index of the soot particles is m¼1.75þ i0.435,
and the equal-volume-sphere radius Rve of the BC mate-
rial is 100 nm for all five particle morphologies. The latter
value represents the effective radius of BC aerosols

Fig. 2. Simulated soot and soot-containing aerosol habits: (a) fluffy fractal BC aggregates, (b) compact nearly-spherical BC aggregates, (c) compact nearly-

spheroidal BC aggregates, (d) host aerosol particles randomly coated with multiple soot spherules, (e) BC spheroids and (f) BC cylinders.
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adopted in the NASA Goddard Institute for Space Studies
general circulation model (A.A. Lacis, personal commu-
nication). The results for habits (i)–(iii) in Fig. 3a and c are
ensemble-averaged over 10 random realizations of each
morphological type in order to provide a more realistic
modeling of natural particle mixtures (cf. Refs. [76, 116])
and ensure smooth depolarization curves.

The numerical results for the five nonspherical habits
(i)–(v) are shown in Fig. 3a. A remarkable feature of the
depolarization curve for the low-density BC fractals is a
sharp maximum at YE901. To explain this feature, it is

instructive to recall the form of the normalized Stokes
scattering matrix for randomly oriented Rayleigh particles
with an anisotropic polarizability, including those with
shape-induced anisotropy [117–119]:

~FR Yð Þ ¼ 3

3yþ1

yþcos2Y �sin2Y 0 0

�sin2Y 1þcos2Y 0 0

0 0 3
2cosY 0

0 0 0 3
2cosY

2
666664

3
777775
:

ð8Þ
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Fig. 3. (a) The solid curves show the LDR (in %) vs. scattering angle Y for nonspherical BC and BC-containing aerosol habits (i)–(v) described in the main

text. In all cases the cumulative volume-equivalent-sphere radius Rve for the BC material is equal to 100 nm. The dashed green curve reproduces the

green curve from panel (b). (b) LDR (in %) vs. scattering angleY for BC bispheres with identical touching components and in random orientation. (c) As in

panel (a) but for Rve¼150 nm. (d) LDR (in %) vs. scattering angle Y for a single randomly oriented prolate BC spheroid with an aspect ratio of 2 and

Rve¼150 nm as well as for randomly oriented near-spheroidal clusters built of 20-nm radius BC monomers. In each case the N soot monomers populate a

prolate spheroidal volume with the same aspect ratio 2 and Rve¼150 nm. The BC refractive index is fixed at 1.75þ i0.435.
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Depending on the particle shape, the parameter y can vary
from 1 to 13, the former value corresponding to spheri-
cally symmetric particles. Eqs. (5) and (8) yield the
following formula for the Rayleigh LDR:

DR Yð Þ ¼ y�1

yþ1þ2cos 2Y
: ð9Þ

It is clear that DR(Y) vanishes for spherically symmetric
scatterers, but a degree of shape anisotropy causes a
symmetric maximum centered at YE901.

This conclusion is illustrated in Fig. 4 by depicting
DR(Y) for several values of y. The Rayleigh LDR behaves
like a delta function for y¼1.002, but the height of the
peak relative to the background decreases and its width
increases substantially by the time y reaches the value 2.

We can thus conclude that linear depolarization pro-
duced by the low-density BC fractals behaves as that of
randomly oriented Rayleigh scatterers with a weakly
anisotropic polarizability. This result is not surprising. In
the single-scattering approximation, wherein each mono-
mer is assumed to be excited only by the incident field
(see Chapter 7 of Ref. [120]), the LDR of a BC cluster
composed of spherical monomers would be exactly zero.
This implies that a non-zero LDR must result from elec-
tromagnetic interactions between the monomers [110].
However, the strongly absorbing nature of the BC mono-
mers acts to suppress multi-monomer interactions, which
makes it reasonable to assume that for a fluffy aggregate
the non-zero LDR is caused primarily by double-scattering
interactions between pairs of adjacent monomers, the size
parameter of such monomer doublets still being in the
Rayleigh domain. It is thus the shape-induced anisotropic
polarizability of these Rayleigh doublets that causes the
sharp side-scattering peak in the angular profile of the
LDR for fluffy BC fractals.

To substantiate this conclusion, we plot in Fig. 3b the
LDRs for two-sphere BC clusters with touching compo-
nents and in random orientation. Both spheres have the
same radius (20 or 25 nm) and the same refractive index
(1.75þ i0.435 or 1.95þ i0.79). All three LDR curves are
almost perfectly symmetric with respect to the 901
scattering angle and are described by anisotropy para-
meters y between �1.01 and �1.03 (cf. Fig. 4). Further-
more, the angular width of the green-curve maximum at
the D¼10% level in Fig. 3b is virtually the same as that of
the dashed curve in Fig. 4. The green curve from Fig. 3b is
reproduced as the dashed green curve in Fig. 3a. Although
the wings of the two green curves in Fig. 3a diverge owing
to the residual effects of multi-monomer interactions in
the N¼125 soot fractal, the angular profiles of the
corresponding side-scattering maxima are hardly distin-
guishable down to the D�5% level.

The multi-monomer interactions can be expected to
be much stronger in the case of a densely packed BC
aggregate owing to the fact that almost every monomer is
now surrounded by many closely positioned monomers
rather than being quasi-isolated. As a consequence, the
resulting LDR must be affected by the overall shape of the
cluster. It is seen indeed from Fig. 3a that packing the
same number of BC monomers into a compact nearly
spherical cluster reduces the magnitude of the depolar-
ization maximum by almost two orders of magnitude.
The maximum LDR value for habit (iii) is even smaller,
owing to the scattering dominance of the large spherical
host causing near-zero linear depolarization.

The depolarization curves for the spheroid and cylin-
der shape mixtures in Fig. 3a are rather close to each
other and show the highest dL values. They also reveal
pronounced maxima at side-scattering angles which can
be explained by the size parameter of the particles still
being in the vicinity of the Rayleigh domain.

Fig. 3c parallels Fig. 3a, but the cumulative equal-
volume-sphere radius Rve of the soot material is now
150 nm; the number of monomers in models (i) and (ii) is
422; the radius of the circumscribing sphere in model
(ii) is 225 nm; and the radius of the sulfate host in model
(iii) is 260 nm. The other fractal parameters of model
(i) remain unchanged.

One can see that now the depolarization curves for the
spheroid and cylinder mixtures lack the pronounced
quasi-Rayleigh maximum at side-scattering angles and
reveal significantly increased backscattering values. The
likely explanation of this behavior is that the 50% increase
in the particle size moves their size parameter farther
from the Rayleigh domain. The curve for the fluffy fractal
aggregate is hardly different from that in Fig. 3a, which is
consistent with the above explanation of its quasi-
Rayleigh origin. Finally, models (ii) and (iii) produce very
low LDR values, which, again, is an expected consequence
of strengthened electromagnetic interactions for the
nearly spherical model (ii) and increased scattering dom-
inance of the spherical sulfate host in model (iii).

Fig. 5a compares the LDRs for randomly oriented
fractal soot aggregates at a wavelength of 550 nm. The
fractal parameters Df and k0 are fixed at 1.82 and 1.19,
respectively, thereby representing the mean values
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Fig. 4. Linear depolarization DR(Y) (in %) vs. scattering angle for

randomly oriented Rayleigh particles with an anisotropic polarizability.

M.I. Mishchenko et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 123 (2013) 135–144 139



0.01

0.1

1

10

100

N = 5
10
25
50

100
200
300
500

m = 1.75+i0.435

r = 20nm

m = 1.95+i0.79

r = 20nm

m = 1.95+i0.79

r = 25nm

0.01

0.1

1

10

100

N = 5
10
25
50

100
200
300
500

m = 1.75+i0.435

r = 20nm

Rc = 250nm

m = 1.95+i0.79

r = 20nm

Rc = 250nm

0.01

0.1

1

10

N =  50
100
150
200
250
300
350

m = 1.75+i0.435

r = 20nm

Rs = 250nm

m = 1.95+i0.79

r = 20nm

Rs = 250nm

m = 1.75+i0.435

r = 100nm

Rs = 1000nm

0 30 60 90 120 150 180

Scattering angle (deg)

0.01

0.1

1

10

N =  50
100
150
200

r = 25nm

Rs = 250nm

0 30 60 90 120 150 180

Scattering angle (deg)

r = 50nm

Rs = 500nm

0 30 60 90 120 150 180

Scattering angle (deg)

r = 75nm

Rs = 750nm

Fig. 5. (a) LDR (in %) vs. scattering angleY at a wavelength of 550 nm for different low-density fractal models. (b) As in panel (a), but for groups of N soot

monomers uniformly distributed throughout a spherical volume having a radius of Rc¼250 nm. (c) LDRs for a sulfate host randomly coated with N soot

spherules. The wavelength is 550 nm in the left-hand and middle panels and 628 nm in the right-hand panel. The refractive index of the host sulfate

particle is 1.44. (d) LDR increase with increasing r and Rs. The wavelength is fixed at 628 nm, and the refractive indices are 1.44 for the sulfate host

and 1.75þ i0.435 for the BC spherules.
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obtained by Sorensen and Roberts [121] in their diffusion-
limited cluster aggregation simulations. The refractive
index m is equal to 1.75þ i0.435 in the left-hand panel
and to 1.95þ i0.79 in the middle and right-hand panels.
The BC monomer radius r is equal to 20 nm in the left-
hand and middle panels and increases to 25 nm in the
right-hand panel. The number of monomers in the fluffy
fractal clusters varies from 5 to 500.

Upon realizing that it is difficult in practice to achieve
measurement accuracies for D(Y) significantly better
than a percent, one has to conclude from Fig. 5a that the
sensitivity of the LDR to parameters of fluffy BC clusters is
rather weak. Perhaps the only detectable manifestation of
multi-monomer interactions in the fluffy BC fractals is the
widening of the side-scattering peak with increasing N.
Also noticeable are larger dL values for the soot clusters
with m¼1.95þ i0.79.

Fig. 5b is intended to further test our hypothesis of the
quasi-Rayleigh origin of the side-scattering peak in LDR
curves for low-density clusters of small BC monomers.
The idea is to keep the radius of the circumscribing sphere
Rc fixed while increasing the number of uniformly dis-
tributed monomers from 5 to 500, thereby varying the
expected packing-density effect on D(Y). The wavelength
is fixed at 550 nm.

One can see that if N¼5 then the average distance
between the monomers is so large that the electromag-
netic interaction between the monomers is weak and
cannot cause LDRs approaching 100%. N¼10 maximizes
the double-scattering contribution and causes LDR values
reaching 90%. Further increase in the number of BC
monomers increases the multiple-scattering contribution
and eventually results in a densely packed cluster having
a nearly spherical shape and LDRs smaller than 1%.

Fig. 3d compares the LDRs for a single randomly oriented
prolate BC spheroid with an aspect ratio of 2 and Rve¼150 nm
with those for randomly oriented near-spheroidal clusters
built of a number N of 20-nm radius BC monomers (see
Fig. 2c). In each case the soot monomers are packed into a
prolate spheroidal volume with the same aspect ratio 2 and
the same equal-volume-sphere radius Rve¼150 nm using the
cluster-generation procedure described in Ref. [122]. The BC
refractive index is taken to be 1.75þ i0.435. It is seen that
with growing N, the cluster LDR approaches that of the
homogeneous BC spheroid. In particular, the height of the
side-scattering maximum decreases while its width increases,
and the backscattering LDR significantly increases. These traits
are consistent with the growing strength of electromagnetic
interactions between multiple densely packed monomers and
the resulting dependence of the LDR on the overall cluster
nonsphericity.

Fig. 5c and d depicts the LDRs for the aerosol model
shown in Fig. 2d, i.e., a larger sulfate particle coated with
N soot spherules. One can see that it takes BC spherule
radii in excess of 30 nm to generate LDR values signifi-
cantly exceeding 1%.

4. Concluding remarks

The results of our extensive TMM computations show
that the measurement of the LDR over the entire range of

scattering angles can be a powerful means of morpholo-
gical characterization of BC and BC-containing particles.
In particular, the detection and profiling of the quasi-
Rayleigh maximum at side-scattering angles can help
evaluate the compactness state of BC clusters and trace
the evolution of low-density fluffy fractals into densely
packed aggregates. Of course, more research is needed to
analyze factors that can potentially influence the unique-
ness and accuracy of optical particle characterization
based on measurements of the LDR angular profile. In
particular, it is unclear whether a priori information on
particle chemistry is required and whether a degree of
monomer polydispersity can affect data interpretation.

Backscattering lidar measurements can also carry use-
ful information. For example, on the basis of high spectral
resolution lidar measurements, Burton et al. [123] have
concluded that dL at 532 nm for fresh smoke is typically
very low (less than 2–5%) and also typically lower than for
more aged smoke. This result is consistent with the
magnitude and variability of previous lidar observations
of smoke by Sassen [112]. The CALIPSO data also showed
volume (including molecular and particulate) lidar LDRs
�2% for South-African smoke [124]. These lidar data are
generally consistent with low dL values produced by fluffy
fractals in Figs. 3a, c, and 5a as well as by densely packed
near-spheroidal aggregates in Fig. 3d. To reproduce larger
lidar LDRs typical of the aged smoke (3–8%), one would
need to use alternative particle models such as shape
mixtures of BC spheroids and cylinders and/or large host
aerosols covered with relatively large BC spherules. Need-
less to say, more theoretical and experimental work is still
required to draw more definitive conclusions.
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