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[1] We describe a new algorithm to retrieve SO2 from
satellite-measured hyperspectral radiances. We employ the
principal component analysis technique in regions with no
significant SO2 to capture radiance variability caused by both
physical processes (e.g., Rayleigh and Raman scattering and
ozone absorption) and measurement artifacts. We use the
resulting principal components and SO2 Jacobians calculated
with a radiative transfer model to directly estimate SO2

vertical column density in one step. Application to the
Ozone Monitoring Instrument (OMI) radiance spectra in
310.5–340 nm demonstrates that this approach can greatly
reduce biases in the operational OMI product and decrease
the noise by a factor of 2, providing greater sensitivity
to anthropogenic emissions. The new algorithm is fast,
eliminates the need for instrument-specific radiance correction
schemes, and can be easily adapted to other sensors. These
attributes make it a promising technique for producing long-
term, consistent SO2 records for air quality and climate
research. Citation: Li, C., J. Joiner, N. A. Krotkov, and
P. K. Bhartia (2013), A fast and sensitive new satellite SO2

retrieval algorithm based on principal component analysis:
Application to the ozone monitoring instrument, Geophys. Res.
Lett., 40, doi:10.1002/2013GL058134.

1. Introduction

[2] Sulfur dioxide (SO2) is an important pollutant gas that
can have profound impacts on the Earth’s environment. It is a
designated criteria air pollutant in many countries, and also a
precursor of sulfate aerosols that can significantly affect air
quality and climate [e.g., Charlson et al., 1992]. With a rela-
tively short atmospheric lifetime, the average surface concen-
tration of SO2 spans several orders of magnitude between
polluted and pristine regions [Chin et al., 2000]. On the other
hand, from time to time, sizable transient SO2 plumes can
travel into remote oceanic areas [e.g., Hsu et al., 2012].
Given this large inhomogeneity in its distribution, it is imper-
ative to develop capabilities of measuring SO2 globally with
good accuracy and precision over relatively small spatial and
temporal scales.

[3] Satellite measurements of global SO2 pollution have un-
dergone substantial improvements over the past 10–15 years
owing to the launch of several hyperspectral UV-Visible in-
struments. Among them is the Ozone Monitoring Instrument
(OMI), a Dutch-Finnish sensor flying on NASA’s Aura space-
craft that provides daily global coverage at high spatial resolu-
tion (13� 24 km2 at nadir) [Levelt et al., 2006]. The
operational OMI level-2 (L2) planetary boundary layer (PBL)
SO2 data are produced using the Band Residual Difference
(BRD) method that utilizes three selected wavelength pairs to
maximize sensitivity to PBL pollution [Krotkov et al., 2006].
While useful for monitoring strong anthropogenic sources
[e.g., Fioletov et al., 2011; Li et al., 2010], the OMI PBL
SO2 product suffers from the effects of random instrument noise
as well as systematic biases [e.g., Lee et al., 2009]. A back-
ground correction and multiyear pixel averaging can help to
mitigate these issues but may introduce new biases and restrict
the time resolution of data analyses [Streets et al., 2013]. Other
methods, such as the Iterative Spectral Fitting (ISF) algorithm
[Yang et al., 2009], have had some success improving the qual-
ity of OMI SO2 retrievals [e.g., He et al., 2012]. Operational
implementation of the ISF algorithm, however, has proved dif-
ficult owing to the amount of computation involved in the radi-
ative transfer calculations for many wavelengths, and the
empirical corrections required to remove retrieval artifacts.
[4] In this study, we introduce a fundamentally different

approach to retrieve SO2 from OMI-measured radiance and
irradiance data. Our method is based on principal component
analysis (PCA), a statistical technique often employed to
reduce dimensionality while retaining the information content
of a multivariate data set, by transforming it into a subspace
spanned by a set of orthogonal vectors (principle components,
PCs). PCA has been applied to compress data and retrieve
temperature and moisture profiles from high-resolution infra-
red satellite instruments [e.g., Huang and Antonelli, 2001].
Guanter et al. [2012] and Joiner et al. [2013] used PCA-based
approaches to retrieve terrestrial chlorophyll fluorescence from
satellite and ground-based spectral data. As demonstrated
below, our algorithm shares a similar general framework with
these approaches and can significantly improve the quality of
OMI SO2 retrievals as compared with the current operational
PBL product.

2. Methodology

2.1. General Framework

[5] To illustrate our approach, we start from the widely used
differential optical absorption spectroscopy (DOAS) method
for trace gas retrievals. If there are n gases with absorption cross
sections σg(λ) at a given wavelength λ, the Sun-normalized
Earthshine radiance at the top of the atmosphere (TOA),
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I(λ)/I0(λ), can be modeled with the weak absorption Beer-
Lambert law [e.g., Platt and Stutz, 2008] as

1n
I λð Þ
I0 λð Þ

� �
¼ � ∑

n

g¼1
Sgσg λð Þ � P λð Þ � RRS λð Þ; (1)

where I(λ) and I0(λ) are the Earthshine radiance and solar
irradiance at TOA, respectively, Sg is the number density
of gas g along the optical path (slant column density, SCD),
P(λ) is a polynomial term representing broadband effects in-
cluding atmospheric Rayleigh and aerosol/cloud Mie scatter-
ing and surface reflectance, and RRS(λ) is a term to account
for the rotational-Raman scattering (also known as the Ring
effect). Sg can be estimated through least squares fitting that
minimizes the differences between the measured and
modeled radiance spectra (i.e., left- and right-hand sides of
equation (1)). It may then be converted to a vertical column
density (Ωg or VCD) with an estimate of the air mass factor
(AMF). The AMF is typically calculated at a single wave-
length based on a prescribed vertical profile of gas g along
with other assumptions.
[6] Uncertainties in the DOAS fitting can arise from inaccu-

rate modeling of the various physical processes in equation (1)
as well as artifacts in the radiance measurements (e.g., stray
light). For example, the rotational-Raman effect is very diffi-
cult to model accurately in the SO2-relevant spectral window
since it involves the filling-in of both telluric and solar lines
and is sensitive to cloud properties. The measurement artifacts
often require the addition of an effective absorber term in the
fitting, but modeling of them can also be quite complicated
and may or may not fit the formulation in equation (1). As with
the DOAS method, the BRD and ISF algorithms also rely on
empirical, instrument-specific corrections to the radiance data
in order to reduce retrieval noise and biases.
[7] Instead of attempting to model all these various factors,

we propose to replace them with characteristic features
derived directly from the measured Sun-normalized radi-
ances. In this algorithm, the PCA technique is applied to
the radiance data to extract a set of PCs that capture most of
measurement-to-measurement variation of the radiances
(in the absence of the signal of interest). For our problem,
we may use data from a region presumed free of SO2 (e.g.,
the equatorial Pacific). Then, the derived PCs will capture
physical and measurement details other than those associated
with SO2 absorption. The PCs are ordered so that the first PC
explains the most of variance, the second PC explains the
second most of variance, and so on. A set of nν PCs (νi) can
be used along with the sensitivity of the radiances to the SO2

column (SO2 Jacobians, ∂N=∂ΩSO2) to form a forward model:

N ω;ΩSO2ð Þ ¼ ∑
nv

i¼1
ωivi þΩSO2

∂N
∂ΩSO2

; (2)

whereN is a measuredN value spectrum (N(λ) =�100� log10
(I(λ)/I0(λ)). For polluted regions with actual SO2 signals, the
forward model can be inverted through standard least squares
fitting to simultaneously retrieve the VCD of SO2 (ΩSO2) and
the coefficients of the PCs (ω). Note that an assumption here is
that a linear combination of PCs calculated from SO2-free re-
gions can well describe the non-SO2 affected radiances in
SO2-polluted areas. In most cases this assumption should hold
true given the relatively weak absorption by SO2 outside of

polluted regions. The use of SO2 Jacobians for the entire fitting
window also removes the step for converting SCD to VCD
using an AMF.

2.2. Application to the OMI Instrument

[8] OMI level 1B (L1B) radiance and irradiance data in the
spectral window of 310.5–340 nmwere used in this study, to-
gether with the VCD of O3 (ΩO3) from the L2 OMTO3 product
[Bhartia and Wellemeyer, 2002]. This spectral window
includes the strong SO2 absorption band at 310.8 nm
and minimizes potential interferences due to stray light
at shorter wavelengths. Our experiments also showed that
the inclusion of wavelengths> 340 nm had no discernible
impacts on retrievals. To better account for the orbit-to-
orbit measurement artifacts, we analyzed data from one
orbit at a time. Because the 60 cross-track positions
(rows) of OMI are individual detectors (and essentially
different instruments), we also treated each row of each
orbit separately and filtered out pixels with slant column
O3 (SO3)> 1500 DU (Dobson unit, 1 DU = 2.69� 1016

molecules/cm2); large SO3 can diminish the measurement
sensitivity to SO2. SO3 was calculated from ΩO3, the solar
zenith angle (θ0), and the viewing zenith angle (θ),

SO3 ¼ ΩO3 sec θ0ð Þ þ sec θð Þð Þ: (3)

[9] After data screening, about 900–1300 pixels of various
cloud fractions remained in each row for the PCA. We tested
a few different sets of input spectra for generating the PCs:
(1) the N value spectra, (2) the N value spectra normalized
against 340 nm, and (3) the N value spectra after a fitted sec-
ond-order polynomial were subtracted from each spectrum.
As the retrievals of SO2 were generally very similar for these
different PCAs, hereafter we focus on the first method.
[10] Given the presence of transient SO2 plumes, one

challenge is how to differentiate between SO2-free and
SO2-polluted regions. We note that for the vast majority
of pixels, SO2 absorption is normally not strong enough to
cause significant changes in the radiances. It is thus unlikely
for the PC(s) associated with or affected by SO2 absorption
(vSO2) to be among the first few leading PCs, even if PCA is
conducted on an entire row without first screening out pol-
luted scenes. As long as nv is sufficiently small to exclude
vSO2 from equation (2), reasonable initial estimates of
SO2 (ΩSO2_ini) can be obtained. A second step PCA can then
be applied to pixels with small ΩSO2_ini (in this study the
threshold was set at ±1.5 standard deviations for each
orbit/row) to extract a new set of PCs to update equation
(2), followed by updated retrievals of SO2. This step can be
repeated. We found that the changes in the retrieved SO2 gen-
erally became very small within two iterations. We conducted
the second step PCA and retrievals for three segments of each
row: a “tropical” region with SO3< 100 DU+min(SO3), and
two regions north and south of it. The resulting PCs for each
segment more closely matched the measurements than the
PCs acquired using the entire row. The use of these regionally
derived PCs reduced retrieval biases.
[11] Another important consideration is how to determine

nv, the number of PCs to use in equation (2). Too few PCs
will lead to large biases in SO2 while too many may cause
over fitting. Our test results indicated that in most cases, at
least 20–30 PCs were necessary, while occasionally in the
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presence of relatively strong SO2 signals, no more than 8 PCs
could be used. Instead of using a constant nv, we determined
it for each row by checking the correlation between PCs
(after the fifth) and the SO2 Jacobians. For example, if signif-
icant correlation at the 95% confidence level existed between
the ith PC and SO2 Jacobians, only the preceding i-1 PCs
would be included. We found this to be an effective way to
prevent the inclusion of vSO2 and collinearity in equation
(2). To maintain computational efficiency, an upper limit of
30 was set for nv. The differences in SO2 due to the use of a
greater upper limit (e.g., 50) were found to be marginal, espe-
cially for polluted areas.
[12] The VLIDORT radiative transfer code [Spurr, 2008]

was employed to calculate SO2 Jacobians. To facilitate the
comparison between the new algorithm and the operational
PBL product, we used the same fixed atmospheric profiles
as in the operational algorithm, and also assumed the same
surface albedo (0.05), surface pressure (1013.25 hPa), fixed
solar zenith angle (30°), and viewing zenith angle (0°). For
SO2, a climatological profile over the summertime eastern

U.S. was used. For O3 and temperature, the OMTO3 standard
midlatitude profiles with ΩO3 = 325 DU were used. Details
can be found in Krotkov et al. [2006]. In the future, we plan
to expand the look-up table for SO2 Jacobians to more realis-
tically account for different measurement conditions. It
should also be noted that while the PCA was conducted for
pixels of all-sky conditions, we focus on relatively cloud-free
scenes in the following sections, given that the calculated
SO2 Jacobians are not suitable for cloudy conditions.

3. Results

[13] As an example, Figures 1a–1c show the typical first
few leading PCs extracted from the N value spectra of an en-
tire row. The first PC essentially represents the mean spec-
trum of all the pixels. The second PC closely follows the
spectral feature of the O3 cross section, suggesting that O3

absorption is a dominant contributor to the variance in the
window. The third PC may be related to the surface contribu-
tion. It is difficult to assign a well-defined geophysical mean-
ing to the fourth, the fifth, and the following PCs, but they
probably reflect the rotational-Raman effect or various mea-
surement artifacts such as the wavelength shift between radi-
ance and irradiance spectra. The residuals from two different
least squares fittings for a pixel near Hawaii are also shown in
Figure 1d. While the same set of 30 PCs were used in both
fittings, only one (red line) included the SO2 Jacobians. As
can be seen from the figure, the inclusion of SO2 Jacobians
had little effects at wavelengths> 320 nm, but substantially
reduced the residuals in the strong SO2 absorption bands at
310.8 and 313 nm. The initial estimate of SO2 in the pixel
was 2.21 DU, implying the influence of a nearby volcano.
[14] Figure 2 compares the global monthly mean SO2 for

August 2006 from the PCA algorithm and the operational
OMI L2 PBL SO2 product. The new algorithm largely re-
duces the systematic biases in the operational data, removing

Figure 1. (a) The first PC extracted from the radiance data
from row 11 of orbit 10,990, which passed over the Pacific on
08August 2006. (b) The second and third PCs from the analysis.
(c) The fourth and fifth PCs from the analysis. (d) The fitting
residuals for a pixel near Hawaii presumably influenced
by a volcanic plume. The red and black lines represent the
fitting residuals with and without the SO2 absorption term in
equation (2), respectively. The estimated SO2 VCD from the
fitting is 2.21 DU. The green lines in Figures 1a, 1b, and 1d
show the mean N value spectrum of the row, the O3 and SO2

cross sections both at 243K, respectively. All units are in
N values unless otherwise specified.

Figure 2. (a) Monthly mean SO2 for August 2006 retrieved
using the PCA algorithm. Data were gridded to 0.25°� 0.25°.
Pixels outside the center 50 rows, or with radiative cloud frac-
tion> 0.3 or slant column O3> 1500 DU were excluded.
Gray-shaded grid cells have less than five measurements during
the month. (b) Same as in Figure 2a but for the operational OMI
L2 PBL SO2 data.
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the step changes along 30°N and 30°S (probably related to
the O3 profile shape change in the OMTO3 algorithm), the
positive values over the Tibet Plateau and the Rocky
Mountains, and also the large negative values at higher
latitudes. Meanwhile, the major known SO2 source regions
including eastern China, the eastern U.S., Mexico City, the
industrial region in South Africa, as well as various degassing
volcanoes are clearly discernible in the new retrievals. The
SO2 plume in the South Pacific (20°S, 170°W) was from the
submarine eruption of the Home Reef volcano in Tonga that
started on 07 August 2006. A close-up look at the eastern U.S.
(Figure 3) further reveals the improvements made in the
new algorithm. With reduced noise and biases, the large point
sources in the region, such as the power plants in the Ohio
River valley, Atlanta, and mid-Atlantic coast can be more
clearly distinguished. More regional examples are provided
in the supporting information. In some cases, the PCA algo-
rithm may potentially be employed to monitor SO2 pollution
at higher temporal resolutions, as shown in the daily and
weekly SO2 maps also available in the supporting information.
[15] The mean and standard deviation of the PCA SO2 and

the operational OMI PBL SO2 were calculated for the equato-
rial Pacific (10°S–10°N, 120°W–150°W) to compare the noise
levels of the two retrievals (Table 1). For this presumably SO2-
free region, the standard deviation of PCA-retrieved SO2 is
~0.5 DU, half that of the operational OMI product (~1.0 DU).
The day-to-day variation of the mean PCA-retrieved SO2 over
the region (between �0.03 and 0.02 DU) is also smaller than
that of the operational product (between �0.14 and 0.09 DU).

The improvements in the PCA retrievals are likely due to
the use of more wavelengths and better characterization of
orbit-to-orbit measurement artifacts (e.g., due to small changes
in uncorrected detector dark currents).

4. Discussion and Future Work

[16] In summary, we have developed a new SO2 retrieval
algorithm based on principal component analysis of satel-
lite-measured radiance data. Preliminary application of the
new algorithm to OMI suggests that it can greatly reduce sys-
tematic biases in the current operational OMI PBL SO2 data,
and it suppresses the retrieval noise by a factor of 2. Our ap-
proach takes advantage of the fact that usually only a small
portion of each satellite orbit has discernible SO2 absorption
signals, and data from the rest of the orbit can be used to char-
acterize and extract other physical and measurement details.
While also relying on the least squares fitting of the measured
radiances, our method differs from the DOAS approach in
that its forward model contains basis functions mostly de-
rived from the data, instead of various precalculated refer-
ence spectra. This decreases the uncertainties associated
with modeling and instrumental errors and speeds up the cal-
culation. With much less computation required, the new PCA
algorithm is much faster than the full spectral fit and requires
only about 4–5min to process an entire OMI orbit using a
single state-of-the-art CPU.
[17] Another advantage of our PCA-based algorithm is that

it largely eliminates the need to develop specific, empirical

Figure 3. (a) The monthly mean SO2 for August 2006 over the eastern U.S. retrieved using the PCA algorithm. Solid circles
mark the locations of some major SO2 point sources (> 70 kt/yr). (b) Same as in Figure 3a but for the operational OMI L2
PBL SO2 product. Smaller stationary SO2 sources may also be detected by the PCA algorithm, but likely will require data
averaging over a longer period of time.

Table 1. The Statistics of the PCA-Retrieved and the OMI Operational PBL SO2 Over the Equatorial Pacific (10°S–10°N, 120°W–150°W)
in August 2006a

Dateb Number of Pixels PCA SO2 Mean (DU) PCA SO2 SD (DU) Operational Mean (DU) Operational SD (DU)

08/01 10034 �0.002 0.511 0.059 0.949
08/06 8823 0.006 0.512 0.010 0.994
08/11 7056 0.017 0.501 �0.033 1.015
08/16 7007 0.030 0.507 �0.053 0.945
08/21 8299 �0.009 0.486 �0.043 0.937
08/26 9538 �0.017 0.498 0.000 0.952
08/31 9838 �0.012 0.504 0.060 0.946
Rangec �0.020 to 0.030 0.484 to 0.561 �0.140 to 0.094 0.929 to 1.064

aData outside the center 50 rows, or with radiative cloud fraction> 0.3 or slant column O3> 1500 DU excluded.
bDates are formatted as month/day.
cMinimal and maximal values for the entire month.
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corrections to the radiance data for each instrument. Rather,
measurement artifacts are accounted for by the PCs directly
extracted from the radiance data. This reduces the potential
artifacts/biases introduced by instrument-specific data cor-
rection schemes. The algorithm can be easily adapted to other
satellite sensors, and this feature makes it particularly useful
for building long-term, consistent SO2 data records. In fact,
we have tested the algorithm on the Ozone Mapping and
Profiler Suite (OMPS) nadir mapping instrument fly-
ing on the Suomi National Polar-orbiting Partnership
satellite. Using the algorithm with minimal changes (the only
major change being the use of instrument-specific slit func-
tions for SO2 Jacobians), we achieved very consistent, high
quality SO2 retrievals from both OMI and OMPS.
[18] Next, we plan to expand the calculations of SO2

Jacobians to account for different viewing geometries, sur-
face albedo, and O3 and SO2 profiles. This is expected to
further reduce retrieval noise and biases especially for
oceanic regions. We will also more thoroughly evaluate
the data quality, including an analysis of error propagation
to estimate retrieval errors due to measurement noise. For
data validation, the PCA retrievals will also be compared
to existing airborne SO2 measurements over the U.S. and
China, as well as other data sources. Finally, we will inves-
tigate the possibility of applying the algorithm to other
trace gas species. Some trace gases (e.g., HCHO) have
fairly inhomogeneous spatial distributions similar to SO2

and could be suitable for the approach.
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