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ABSTRACT 21 

The objective of this study was to compare several approaches to soil moisture (SM) retrieval 22 

using L-band microwave radiometry. The comparison was based on a brightness temperature 23 

(TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field 24 

at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space 25 

Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) 26 

mission, measures multiangular TB data at horizontal and vertical polarization for a range of 27 

incidence angles (30°-60°). Based on a three year data set (2010-2012), several SM retrieval 28 

approaches developed for spaceborne missions including AMSR-E (Advanced Microwave 29 

Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were 30 

compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal 31 

(SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land 32 
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Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical 33 

regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for 34 

three of the algorithms (SCA-H, SCA-V and ‘Mattar’) were obtained from MODIS 35 

observations. The SM retrievals were evaluated against reference SM values estimated from a 36 

multiangular 2-Parameter inversion approach. The results obtained with the current base line 37 

algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the 38 

‘reference’ SM data set derived from the multi-angular observations (R2 � 0.90, 39 

RMSE varying between 0.035 and 0.056 m3/m3 for several retrieval configurations). This 40 

result showed that, provided the relationship between vegetation optical depth and a remotely-41 

sensed vegetation index can be calibrated, the SCA algorithms can provide results very close 42 

to those obtained from multi-angular observations in this study area. The approaches based on 43 

statistical regressions provided similar results and the best accuracy was obtained with the 44 

‘Saleh’ methods based on either bi-angular or bipolarization observations (R2 � 0.93, 45 

RMSE � 0.035 m3/m3). The LPRM and DCA algorithms were found to be slightly less 46 

successful in retrieving the 'reference' SM time series (R2 � 0.75, RMSE � 0.055 m3/m3). 47 

However, the two above approaches have the great advantage of not requiring any model 48 

calibrations previous to the SM retrievals. 49 

 50 

1. Introduction 51 

Surface soil moisture plays a major role in the water and energy budgets of continental 52 

surfaces, which has direct implications for hydrological, climate, and weather forecasting 53 

models. L-band passive microwave remote sensing is one of the most promising approaches 54 

to monitor this variable at the global scale with frequent revisiting times (Jackson et al., 1995; 55 

Kerr et al., 2001, Njoku et al., 2003; De Lannoy et al., 2013). Three recent or planned space 56 

missions use this technology: SMOS (launched end of 2009), Aquarius (launched in June of 57 

2011) and SMAP (launch scheduled in November 2014). 58 

The Soil Moisture and Ocean Salinity (SMOS) mission is the first spaceborne mission 59 

dedicated to soil moisture (SM) mapping. SMOS has multi-angular capabilities which are 60 

exploited by the SM retrieval approach: SM and vegetation optical depth � (used to 61 

parameterize vegetation attenuation and emission) are retrieved simultaneously based on 62 

SMOS multi-configuration observations, in terms of polarizations and incidence angles. 63 

Aquarius is a combined passive/active L-band microwave instrument which consists of a set 64 
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of three radiometers and a scatterometer, operating at 1.4 GHz and 1.26 GHz respectively 65 

(Levine et al., 2010). The primary mission objective of Aquarius is to provide global 66 

observations of surface sea salinity once every 7 days. However, Aquarius has also potential 67 

capabilities to monitor soil moisture at global scales (Luo et al., 2013, Bindlish et al., 2013). 68 

SMAP incorporates a radar and a radiometer, both operating at L-band and at the incidence 69 

(observation) angle � = 40°. The spatial resolutions of the corresponding active- and passive 70 

microwave signatures are ~ 39 km x 47 km and ~ 1 km x 1 km, respectively. The mission 71 

concept is to combine the complementary attributes of the radar observations (high spatial 72 

resolution but lower soil moisture accuracy) and radiometer observations (higher soil moisture 73 

accuracy but coarse spatial resolution) to retrieve SM at a spatial resolution of 9 km, and the 74 

freeze-thaw state at a spatial resolution of 3 km (Entekhabi et al., 2010; O’Neill et al., 2013). 75 

Several SM retrieval approaches have been developed in the context of these L-band space 76 

missions. As noted above, in the operational SMOS SM retrieval algorithm, SM and 77 

vegetation optical depth at nadir (�NAD) are retrieved simultaneously based on SMOS 78 

multiangular and bipolarization observations (Wigneron et al., 1995, 2000; Kerr et al., 2012). 79 

The 2-Parameter (2-P) retrievals of SM and �NAD are obtained from inversion of the L-MEB 80 

(L-band Microwave Emission of the Biosphere) model (Wigneron et al., 2007). This forward 81 

model is based on the so-called �-� model (Mo et al., 1982) and it includes a number of 82 

parameterizations to capture effects of vegetation structure and soil roughness on polarization 83 

and angular properties of L-band TB emitted from land surfaces. The inversion of L-MEB 84 

considering SM and �NAD as the requested parameters (referred to as 'L-MEB 2-P' inversion) 85 

is implemented in the operational algorithms used to compute the Level 2 (distributed by 86 

ESA) and Level 3 (distributed by the Centre Aval de Traitement des Données SMOS 87 

(CATDS), Berthon et al., 2012) SMOS products. In parallel to this operational retrieval 88 

method, several simplified methods have been developed to exploit the capability of L-band 89 

radiometers to provide information on land surface states such as SM. For instance, Wigneron 90 

et al. (2004) and Saleh et al. (2006) have evaluated statistical regressions based on bi-91 

polarization or bi-angular TB data. Mattar et al. (2012) have evaluated similar regression 92 

methods that also use a vegetation index estimated from ancillary remotely sensed 93 

observations (such as the Normalized Difference Vegetation Index (NDVI) or the Leaf Area 94 

Index (LAI)) to account for vegetation effects. Moreover, methods based on Neural Networks 95 

have been and are currently evaluated (Liu et al., 2002; Rodriguez et al., 2003).  96 
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The general retrieval approach proposed for SMAP is different from the operational SMOS 97 

SM retrieval: SMAP observations will be available for the sole incidence angle of 40°, but 98 

make use of the complementary information provided by the active- (radar) and the passive 99 

(radiometer) L-band data. In the initial release of the ATBD (Algorithm Theoretical Basis 100 

Document) written for the retrievals from SMAP’s radiometer (O’Neill et al., 2013), four soil 101 

moisture retrieval algorithms are suggested for evaluation during the pre- and post-launch 102 

calibration and validation activities: (i) the single-channel algorithm at H polarization (SCA-103 

H) which is the current SMAP baseline algorithm, (ii) the single-channel algorithm at V 104 

polarization (SCA-V), (iii) the dual-channel algorithm (DCA), and (iv) the Land parameter 105 

retrieval model (LPRM). In the SCA-H and –V algorithms, vegetation is accounted for by the 106 

�-� model as in L-MEB. However, optical depth at nadir (�NAD) is not retrieved as for SMOS. 107 

Instead it is estimated from the linear relation �NAD = b � VWC between �NAD and vegetation 108 

water content (VWC) (Jackson et al. (1991)). Thereby, values of the b-parameter are assumed 109 

polarization independent and will be provided from a land cover look up table, and the VWC 110 

is estimated from values of the NDVI Index. The DCA retrieval approach is very similar to 111 

the one used for SMOS. The only difference is that the inversion is based on the minimization 112 

of a cost function accounting for the Root Mean Square Error (RMSE) between measured and 113 

simulated bi-polarized TB observations at one incidence angle, whereas multi-angular 114 

observations are used for SMOS. In the LPRM algorithm, the Microwave Polarization 115 

Difference Index (MPDI) and the observed emissivities are used to derive the vegetation 116 

optical depth � (Meesters et al., 2005). In a second step, SM is retrieved with an optimization 117 

routine that minimizes the error between the modelled and observed H-polarized brightness 118 

temperatures (Owe et al., 2008; De Jeu et al., 2009). 119 

In this study, these different retrieval algorithms were compared using a 3-year long 120 

multiangular TB data set acquired by the L-band radiometer ELBARA-II over a vineyard field 121 

(MELBEX-III) at the Valencia Anchor Station (VAS) site (Schwank et al., 2012, Wigneron et 122 

al., 2012). Applications of the retrieval methods can be made at large scales from satellite 123 

observations but also at more local scale for long term SM monitoring from ground based 124 

instruments mounted on different types of platforms: towers as for ELBARA-II (de Rosnay et 125 

al., 2006; Schwank et al., 2012; Schlenz et al., 2012, etc.); trucks (Hornbuckle et al., 2004; 126 

Kurum et al., 2009) or from the top of a mountain as in Pellarin et al. (2013).  127 

ELBARA-II (Schwank et al. 2010), developed by GAMMA Remote Sensing AG 128 

(Switzerland) and funded by the ESA, provides TB at horizontal and vertical polarization for a 129 
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range of observation angles (30°-60°). The ELBARA-II TB observations were acquired since 130 

2010 and a 3-year TB data set is available for the MELBEX-III site. As an accurate estimation 131 

of SM from ground based measurements over the MELBEX-III site could not be achieved 132 

because of very frequent agricultural practices within the field, it was considered that 133 

representative SM values (referred to as 'reference' SM data set) over the ELBARA-II 134 

footprints were obtained from multi-angular 2-P L-MEB retrievals. Moreover, the 2-P L-MEB 135 

approach also provided retrievals of optical depth at nadir (�NAD). These latter values were 136 

used to calibrate the relationships between �NAD and NDVI, which are required in the SCA-H 137 

and SCA-V algorithms. Based on these ‘reference’ SM and �NAD data sets and the ELBARA-138 

II TB observations, seven SM retrieval approaches were evaluated and compared: the four 139 

methods considered presently in the SMAP ATBD based on bi-polarization observations at 140 

one observation angle (� = 40° for SMAP) and three regression methods (Saleh et al, 2006 141 

and Mattar et al., 2012) developed in the framework of SMOS research activities and based 142 

on bi-angular or bipolarization observations. The results of this evaluation are discussed in the 143 

context of the improvement and development of the SM retrieval algorithms. 144 

 145 

 146 

2. Materials and method 147 

2.1. The ELABARA-II radiometer at MELBEX-III (VAS site) 148 

The study was based on TB measurements made by the ELBARA-II radiometer over the 149 

2010-2012 period within the VAS site. ELBARA-II was installed in September 2009 at the 150 

MELBEX-III vineyard field (referred to as M-III), close to Caudete de las Fuentes, on the 151 

Utiel-Requena Plateau at ~ 800 m a.s.l., in the region of Valencia, Spain (39°31'18.18"N, 152 

1°17'29.64"W). This site is one of the reference sites selected by ESA in Europe within the 153 

SMOS science program.   154 

All details concerning the ELBARA-II instrument and the M-III experiment set up are given 155 

in Schwank et al. (2010, 2012), and Wigneron et al. (2012). Only a brief summary of the main 156 

information concerning this experiment is presented here. 157 

The ELBARA-II radiometer was set up 17 meters above ground to monitor a vineyard that is 158 

representative of the main land use of the VAS region. The ELBARA-II was equipped with 159 

an elevation tracker that allows measurements at specific observation angles � varying 160 
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between 30° ≤ � ≤ 330° with � = 180° being the zenith direction. Every 30 minutes, 161 

automated "elevation scans" are carried out that provide TB at horizontal and vertical 162 

polarizations at observation angles between � = 30° and 70° with steps of 5°. Between each 163 

elevation scan, measurements are made at the � = 45° every 10 minutes. Once a day, at 23:55 164 

local time, the radiometer is automatically positioned at 150º to carry out sky calibration 165 

measurements. The absolute accuracy of the ELBARA-II measurements was estimated to be 166 

better than �1 K over the course of 2010-2012. During short time periods, no measurement 167 

could be acquired over the vineyard field due to experiments using reflecting foils (Schwank 168 

et al., 2012) or due to technical issues: in 2010 (DoY 222 - DoY 245, DoY 312 - DoY 337) 169 

and in 2011 (DoY 41 – DoY 62; DoY 84 – DoY 133). The ELBARA-II observations were 170 

slightly affected by Radio Frequency Interferences (RFI) caused by active microwave systems 171 

violating the protected part of the L-Band (1400 MHz – 1427 MHz). Efforts made by the 172 

Spanish administrative authorities in 2010 to mitigate RFI disturbances resulted in a 173 

significant decrease since the beginning of July in 2010 (~ DoY 190). Most RFI events result 174 

in steep increases in the time variations of the measured TB (larger than 30K at minimum) and 175 

unrealistic TB values (larger than 330 K). These RFI events were detected manually from the 176 

ELBARA-II TB data set. To be consistent with the overpass times of SMOS and SMAP, only 177 

TB measurements made at 6 am and 6 pm local time are considered in this study. 178 

 179 

2.2. In situ measurements 180 

Concurrent with the ELBARA-II observations, ground measurements were obtained within 181 

the M-III vineyard. Soil profiles of the volumetric soil moisture [m3�m-3] and temperature 182 

were acquired up to about 1 m (Wigneron et al., 2012). Vineyard cultivation practices are 183 

carried out frequently within the field (for weeding and pest control, winter and summer 184 

pruning, cluster thinning, etc.) so that SM probes could not be installed permanently within 185 

the ELBARA-II footprints. Only two Delta-T Theta Probes measuring the volumetric SM of 186 

the top 0-6cm soil layer were installed at the border of the field where no field work was 187 

carried out. It is our opinion that these SM probes cannot provide SM values representative of 188 

the field conditions as seen by the ELBARA-II instrument and have not been used in the 189 

analysis presented here (Wigneron et al., 2012). 190 
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A meteorological station located at the VAS (coordinates: 39º34’15’’N, 1º17’18’’W, 813 m 191 

a.s.l.), a few kilometres from the M-III site provided the standard meteorological variables (air 192 

temperature, wind speed, air humidity, etc.). Over the VAS site, the average value of the total 193 

yearly precipitation over the ten years prior to 2010 is P = 461 mm. For the three years 194 

considered in this study; 2010 was wet (P = 538.2 mm) and was followed by a ‘dry’ and a 195 

‘very dry’ year in 2011 and 2012 (P = 379.2 mm in 2011 and P = 288.6 mm in 2012). 196 

Details concerning the soil and vegetation conditions at the M-III site are provided in 197 

Wigneron et al. (2012). The field-site observed with ELBARA-II is typical of vineyards in the 198 

VAS region (the spacing between each plant is ~ 2 m and that between each row is ~ 3 m). 199 

Two field experiments in 2007 and 2010 led to similar values of the maximum  Leaf Area 200 

Index, LAIMAX � 2.2. To monitor the time variations in the vegetation characteristics over the 201 

growing season, we used the NDVI index from the MODIS products (16 day NDVI 202 

composite of 250 m MODIS data; MODIS (2010)). As the field was large enough (larger than 203 

300 m x 300 m), it can considered that the MODIS NDVI time variations are representative of 204 

the vegetation conditions as seen by the ELBARA-II radiometer operated at the M-III site. 205 

In order to monitor the evolution of the surface roughness over time, field measurements were 206 

made by means of measuring mechanically two-dimensional profiles of the ground surface. 207 

For this purpose, a 2 m needle board with 201 needles, movable in the vertical direction and 208 

with 1 cm spacing between needles was used (Mialon et al. (2012)). The needle board was 209 

leveled and placed on the ground such that the needles were allowed to fall until they touched 210 

the soil surface. Subsequently, photos of the profile created by the needle heights were taken 211 

and digitized to compute soil roughness parameters. On each of the seven days during 2012 212 

when roughness measurements were performed, approximately 8 to 12 profiles were taken 213 

within the ELBARA-II footprints. Different locations and orientations (perpendicular and 214 

parallel to the vegetation rows) were considered in computing representative information on 215 

the standard deviation of soil surface height (SD, cm), and correlation length (LC, cm). Time 216 

variations in the average values of SD and LC are shown in Fig. 1 for the seven days of 217 

measurements in 2012. The corresponding annual mean values are �SD	 = 2.2 cm, �LC	 218 

= 6.2 cm. 219 

 220 

2.3 L-MEB modelling and inversion 221 
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The data set considered as a reference in this study was obtained using the 2-P L-MEB 222 

inversion approach to obtain retrievals of SM and �NAD (Wigneron et al., 2000). There are 223 

many reasons to use this retrieved data set as a reference.  224 

First, the SM data set retrieved from tower-based remote sensing observations can be 225 

considered as representative of the SM conditions over the whole ELBARA-II footprint (this 226 

is usually a complex task using field probes distributed within the field). Second, the 2-P L-227 

MEB method, based on multi-angular observations, has been validated in many studies 228 

against experimental data sets for a variety of soil and vegetation conditions (Wigneron et al., 229 

1995, 2007; Pardé et al., 2003, 2004, Saleh et al., 2006; Panciera et al., 2009; Cano et al., 230 

2010; Schlenz et al., 2012, etc.), and its accuracy and robustness has been evaluated 231 

theoretically (Wigneron et al., 2000). The 2-P L-MEB method is currently implemented in the 232 

official SMOS retrieval algorithm (Kerr et al, 2012). Third, the 2-P L-MEB approach has the 233 

advantage of providing retrievals of optical depth at nadir (�NAD). These latter values were 234 

used to calibrate the relationships between �NAD and NDVI, which are required in the SCA-H 235 

and SCA-V algorithms. Moreover, it can not be considered that one method can benefit from 236 

the use of 2-P L-MEB retrieval method as a reference: the equations of the L-MEB model, 237 

used in the 2-P L-MEB approach, are also the basis of the SCA-H, SCA-V, DCA and LPRM 238 

algorithms.  239 

A detailed description of the L-MEB model is given in Wigneron et al. (2007) and a brief 240 

summary of the main L-MEB equations and of additional parameterizations developed since 241 

2007 is given in the following. The L-MEB model is based on a zero-order solution of the 242 

radiative transfer equations: the so called �-� model, where the optical depth � accounts for 243 

extinction effects within the canopy and the effective scattering albedo � (-) accounts for 244 

scattering effects (Mo et al., 1982; Kurum et al., 2013). To incorporate the SMOS multi-245 

angular feasibility, several additional parameterizations are used in L-MEB to account for 246 

effects of the vegetation structure and soil roughness on L-band brightness temperatures 247 

emitted from vegetated land surfaces.  248 

In local thermal equilibrium the emissivity eGP of the ground at horizontal (p = H) and vertical 249 

(p = V) polarization is related to the corresponding reflectivity rGP of the soil (the ground) 250 

observed at the angle �: 251 

 eGP (�) = 1 - rGP (�)         (1) 252 
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The soil reflectivity rGP can be expressed as the reflectivity r*GP of a specular surface and the 253 

roughness model parameters QR, HR and NRP as: 254 

 rGP (�) = [(1-QR) r*GP (�) + QR  r*GQ (�)] exp (- HR cosNRP(�))  (2) 255 

In this equation, HR parameterizes the intensity of the roughness effects, QR parameterizes the 256 

polarization mixing effects, and NRP is used to account for the specific effects of roughness on 257 

the trend of soil reflectivity rGP as a function of incidence angle and polarization. The 258 

reflectivity of a specular surface r*GP was computed using the Fresnel equations as a function 259 

of � and of the effective soil dielectric permittivity 
G. The latter was computed from soil 260 

moisture SM, soil effective temperature TG, and from the clay fraction using the dielectric 261 

mixing model of Mironov et al. (2012), referred to as the ‘Mironov’ model in the following. 262 

This is in contrast to the earlier study Wigneron et al. (2007), where the Dobson model 263 

(Dobson et al., 1985) was used to estimate 
G. 264 

We used the recent results of Lawrence et al. (2013) to estimate the values of the roughness 265 

model parameters (QR, HR and NRP). These parameters were assumed as constants in time, 266 

and therefore computed from the annual average value �SD	 of the standard deviation of the 267 

soil surface height and the corresponding annual mean �LC	 of the correlation length (Fig. 1). 268 

To be consistent with the general approach considered for SMAP we assumed that NRV = NRH 269 

= 0 (O’Neill et al., 2013). On that assumption, the roughness parameters HR and QR were 270 

computed as (Lawrence et al., 2013): 271 

HR = 1.762 (1 – exp (-ZS/1.85)) and QR = 0.05 HR    (3) 272 

where ZS=(SD)2 / LC (cm) 273 

Considering the annual mean values �SD	 = 2.2 cm and �LC	 = 6.2 cm measured over the M-III 274 

site in 2012, we obtained ZS = 0.78 cm, HR = 0.606, QR = 0.0303. 275 

In this study, we considered a composite soil-vegetation surface temperature TGC for the 276 

effective temperature TG of the ground (the soil) and the vegetation canopy TC. The composite 277 

effective temperature TGC of the ELBARA-II footprints was computed from the ERA-278 

INTERIM 0-7 cm soil temperature product (TE-07). ERA-INTERIM is the latest ECMWF 279 

(European Centre for Medium-Range Weather Forecasts) global atmospheric reanalysis of the 280 

period 1979 to the present (Dee et al., 2011) with a temporal resolution of 3 hours and a 281 
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spatial resolution of 0.75° (corresponding to about 100 km resolution over the VAS site). The 282 

accuracy of this estimate was considered to be sufficient in several studies investigating SM 283 

retrievals from L-band observations (Pardé et al., 2004; Wigneron et al., 2012).  284 

As noted above, we used the � - � model to compute the upwelling emission (TB) from the 285 

two layer soil-vegetation medium. TBP (p = H, V) is the sum of three terms: (1) the direct 286 

upwelling vegetation emission, (2) the downwelling vegetation emission reflected by the soil 287 

and attenuated by the canopy layer, and (3) upwelling soil emission attenuated by the canopy:  288 

TBP = (1-�P) (1-�P) (1 + �P rGP) TC + (1-rGP) �P TG    (4)  289 

where TG = TC = TGC = TE-07 is assumed in this study, and rGP is the soil reflectivity computed 290 

with (2) and (3). �P is the vegetation attenuation factor which is related to the optical depth �P 291 

as (Beer’s law): 292 

�P = exp( - �P / cos �)         (5) 293 

To account for vegetation anisotropies, the optical depth �P(�) at the observation angle � is 294 

expressed with a parameterization involving the optical depth �NAD at nadir (� = 0°) : 295 

�P(�) = �NAD (sin2(�).ttP + cos2(�))  (at p = V, H)    (6) 296 

The parameters ttV (-) and ttH (-) account for the angular dependence of �P(�). As found in 297 

Wigneron et al. (2012), we considered that ttH = 1 (default L-MEB value) and that the ttV 298 

parameter is free in the retrieval process, to account for the effects of the vine stocks, with a 299 

preferential vertical orientation. So in reality, a 3-Parameter retrieval approach is made in this 300 

study, but the notation 2-P is kept, as only SM and � can be considered as variables of interest 301 

for applications. 302 

The values of the effective scattering albedo �P were found to be close to zero over most of 303 

the non-forested vegetation covers (Grant et al., 2008; Kurum et al., 2013). The value of �P 304 

was set equal here to 0.02 for both polarizations. A summary of the values of the soil and 305 

vegetation L-MEB parameters used in this study over the M-III site and described above is 306 

given in Table 1.  307 

The 2-P L-MEB inversions were based on bi-polarization and multiangular TB measurements 308 

using a minimization procedure of a cost function evaluating the difference between the L-309 
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MEB simulations and the TB measurements (Wigneron et al., 2000, 2007, 2012). The 310 

retrievals were based on ELBARA-II TB data acquired with the automated elevation scans 311 

(section 2.1) performed for the observation angles � = 30°, 35°, 40°, 45°, 50° (corresponding 312 

roughly to the limit of validity of L-MEB at large incidence angles). As noted above, only TB 313 

measurements made at 6 am and 6 pm will be considered in this study. Especially for the 314 

measurements at 6 am temperature gradients across the vegetation and the soil are minimal 315 

(Kerr et al., 2001). 316 

 317 

2.4 Description of the different SM retrieval methods 318 

As mentioned in the introduction, seven SM retrieval approaches were evaluated and 319 

compared in this study: the four methods considered presently in the SMAP ATBD for the 320 

passive-only product and  three regression methods (described in Saleh et al (2006) and 321 

Mattar et al. (2012)) developed in the context of SMOS. The retrieved SM values were 322 

compared to a 'reference' SM data set obtained from the 2-P L-MEB inversion, which was 323 

assumed to be representative of the SM values over the ELBARA-II footprint. The seven SM 324 

retrieval approaches are described in the following sections. As is the case for the 2-P L-MEB 325 

method, these seven methods use the �-� radiative transfer model (described above) to 326 

account for the vegetation effects and they all assume �NAD is independent of polarization and 327 

incidence angle (�V(0o) = �H(0o ) = �NAD). They are based on the same equation (1) to model 328 

the roughness effects, considering that NRV = NRH = 0. Furthermore, as implemented here they 329 

all use the ‘Mironov’ equations to compute the effective soil dielectric permittivity 
G. All of 330 

the parameters listed in Table 1 for the 2-P L-MEB method are accounted for in the seven SM 331 

retrieval methods considered. Only a very brief description of the SCA-H, SCA-V, DCA and 332 

LPRM methods will be given here as a detailed description of these methods is available in 333 

the initial release of the ATBD. All these four methods were applied to the ELBARA-II TB 334 

data at the incidence angle of 40° corresponding to the SMAP observations. A summary of 335 

the input variables required for the seven different retrieval methods, as well as for the 336 

reference algorithm 2-P L-MEB, is given in Table 2.  337 

 338 

2.4.1 Single Channel Algorithms (SCA-H and SCA-V). 339 
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The Single Channel Algorithm (SCA-H), based on horizontally polarized TB observations, is 340 

the current SMAP baseline, but the same algorithm can also be applied to vertically polarized 341 

TB data (SCA-V). In SCA-H, brightness temperatures are converted to emissivity using a 342 

surrogate for the temperature of the emitting surface layer (in this study, the soil temperature 343 

provided by ECMWF (TE-07) is used). The derived emissivity is corrected for vegetation and 344 

surface roughness to obtain the soil emissivity. Finally, a dielectric mixing model (the 345 

‘Mironov’ model in this study) is used to obtain soil moisture SM from the soil dielectric 346 

constant 
G using the Fresnel equations. 347 

In this investigation, SCA-H and SCA-V are based on the same corrections of vegetation 348 

(using the �-� model), and soil roughness effects (using the HR and QR parameters) as those 349 

used for the 2-P L-MEB method.  350 

�NAD is estimated from the vegetation water content (VWC) as 351 

�NAD = b . VWC        (7) 352 

where b is a proportionality factor mainly depending on the vegetation structure.  353 

For SMAP, values of b will be provided by means of a land cover look up table and the 354 

baseline approach utilizes a set of land cover-based equations to estimate VWC from values 355 

of NDVI. The following equation is used for cropland (O’Neill et al, 2013): 356 

VWC = (1.9134 x NDVI2 - 0.3215 x NDVI) + Stemfactor x (NDVIref - 0.1) / (1 - 0.1)357 

 (8) 358 

where Stemfactor parameter is the product of the average height of a land cover class and the 359 

ratio of sapwood area to leaf area; NDVIref is assumed to be equal to the maximum value of 360 

NDVI time series (the value of NDVIref was set equal here to 0.4696 from the analysis of the 361 

MODIS NDVI observations over the 2010-2012 period). In this study, the b and Stemfactor 362 

parameters were calibrated prior to the inversion process, as described in Section 2.5. 363 

 364 

2.4.2 The Dual Channel Algorithm (DCA) 365 

The Dual Channel Algorithm (DCA) is an extension of the SCA and uses both H-polarized 366 

and V-polarized TB observations to simultaneously retrieve SM and VWC (O’Neill et al, 367 

2013). As in the 2-P L-MEB algorithm, the SM and �NAD variables are adjusted iteratively 368 

until the root mean square difference between the simulated and observed TB is minimized. 369 

There are differences between 2-P L-MEB and DCA algorithms. Firstly, TB data at � = 40° 370 

are used for DCA, while multiangular data are used for 2-P L-MEB. Secondly, the ttV 371 
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parameter (accounting for an angular dependence of �) is retrieved in 2-P L-MEB, while DCA 372 

does not account for this dependence. Except for the ttV and ttH parameters, all vegetation and 373 

soil parameters used in DCA are the same as those used in the 2-P L-MEB method (Table 1). 374 

 375 

2.4.3 Land Parameter Retrieval Model (LPRM) 376 

The LPRM approach uses an analytical solution for the derivation of the vegetation optical 377 

depth. This solution uses the Microwave Polarization Difference Index (MPDI) and the 378 

observed surface emissivity (eH and eV)  as input and is based on the assumption that the 379 

values of the vegetation optical depth are the same for both polarization (�V = �H). The MPDI 380 

index is calculated from the brightness temperature at H- and V polarizations as follows 381 

(Meesters et al., 2005):  382 

 383 

MPDI = (TBV - TBH) / (TBV + TBH)     (8) 384 

 385 

Then based on equation (4) of the �-� omega model, soil moisture is retrieved using an 386 

optimization routine that minimizes the RMSE between the modelled and observed H-387 

polarized brightness temperatures. As for SMOS, the vegetation optical depth at this 388 

optimized soil moisture value is an additional retrieval result. As noted in O’Neill et al. 389 

(2013), the LPRM was implemented on multifrequency satellites such as AMSR-E, where 390 

also the Ka-band V-polarized channel is used to retrieve physical temperatures of the scene 391 

observed. This latter can also be estimated from re-analysis or near real time data from 392 

weather prediction centres (Parinussa et al., 2011), as is done in the current SMOS SM 393 

retrieval algorithm (Kerr et al., 2012). Only a few studies (e.g. de Jeu et al., 2009) have 394 

examined the applicability of this model at L-band frequencies, although the analysis of 395 

SMOS data with LPRM is currently underway. All detailed equations of the LPRM approach 396 

are given in (Owe et al., 2001; Meesters et al., 2005, Owe et al., 2008, de Jeu et al., 2009, 397 

Chung et al., 2013). As for DCA, except for the ttV and ttH parameters which are not relevant 398 

here, all vegetation and soil parameters used in LPRM are the same as those used in the 2-P 399 

L-MEB method (Table 1). 400 

 401 

2.4.4 Linear regression methods (Saleh et al., 2006; Mattar et al., 2012) 402 

 403 
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Two methods based on regression equations developed by Saleh et al. (2006) and Mattar et al. 404 

(2012) were evaluated in this study. Both methods were numerically derived from the 405 

equations of the �-� model assuming, as for LPRM, that the value of the effective scattering 406 

albedo is �P = 0, and that the values of optical depth �P are the same for both polarizations p = 407 

H, V. These methods are physically-based. However, as the development of an analytical 408 

formulation would be complex, most of the time they are used as regressions methods. As 409 

shown by Saleh et al. (2006), a key interest in these regression methods is that they can be 410 

used for varying roughness and vegetation conditions over time: no additional information 411 

about temporal changes in these two state variables (such as NDVI or LAI for vegetation for 412 

instance) is required. These regression methods have been used in several studies based on in 413 

situ, airborne or spaceborne (SMOS) observations (Albergel et al., 2011; Parrens et al., 2012; 414 

Calvet et al., 2011, etc.) 415 

The method of Saleh et al. (2006) can be applied to observations made either at the two 416 

incidence angles �1 and �2 (referred to as ‘Saleh’ bi-angular): 417 

 ln(SM) = a2 ln(�P(�1)) + a1 ln(�P(�2)) + a0 (�1, �2, p)    418 

 (9) 419 

or to bi-polarization observations made at one observation angle � (referred to as ‘Saleh’ bi-420 

polarization): 421 

 ln(SM) = b2 ln(�H(�)) + b1 ln(�V(�)) + b0 (�)     422 

 (10) 423 

where �P(�) is the reflectivity of the soil-vegetation system at polarization p (p=V or p=H), 424 

defined as  425 

�P(�) = 1 - TBP (�) / TGC         (11) 426 

where the composite soil vegetation surface temperature TGC was estimated from the ERA-427 

INTERIM 0-7cm soil temperature product (TE-07).  428 

The method of Mattar et al. (2012) is very similar and can be written as (referred to as 429 

‘Mattar’): 430 

 ln (SM) = c2 ln (�P(�)) + c1 NDVI + c0 (�, p)     431 

 (12) 432 

where the NDVI is considered here as a proxy for optical depth, as in the SCA-H and SCA-V 433 

methods. 434 
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In the above equations (9), (10) and (12), the parameters (a0, a1, a2), (b0, b1, b2) and (c0, c1, c2) 435 

are regression coefficients, which are assumed to be constant in time and have to be calibrated 436 

over each pixel. In this study, in the ‘Saleh bi-polarization’ equation (10), we used the 437 

observation angle � = 40° as used in the other retrieval methods. In the ‘Saleh bi-angular’ 438 

equation (9), we used H-polarized bi-angular observations at �1 = 30° and �2 =50°. In the 439 

‘Mattar’ equation (12), we used H-polarized observations at � = 40°. These latter 440 

configurations were found to be the best for SM retrievals (results not shown here). 441 

 442 

2.5 Method calibration 443 

In this study, the SCA-V, SCA-H, DCA and LPRM methods were based on the L-MEB 444 

model parameters given in Table 1. In addition, some model parameters specific to some 445 

methods had to be calibrated. The DCA and LPRM methods did not require any additional 446 

calibration. Conversely, in the SCA-V and SCA-H methods, the two parameters b and 447 

Stemfactor, used to link NDVI and optical depth, had to be calibrated. Moreover, the three 448 

‘regression’ methods ‘Saleh bi-angular’, ‘Saleh bi-polarization’ and ‘Mattar’ did not require 449 

any L-MEB parameters but required the calibration of three coefficients (ai), (bi) or (ci) (i = 0, 450 

1 and 2) used in equations (8), (9) and (11), respectively.  451 

The calibration of the above parameters and coefficients was performed three times, using one 452 

year of data for calibration and the two other years for validation. To calibrate the b and 453 

Stemfactor parameters in SCA-H and SCA-V, a multilinear regression method was used to fit 454 

the optical depth derived from equations (6) and (7) to the ‘reference’ optical depth �NAD 455 

retrieved from the 2-P L-MEB method. The obtained values for all three calibration years 456 

(2010, 2011 and 2012) are given in Table 3. 457 

Similarly, to calibrate the three coefficients in the regression equations of the ‘Saleh bi-458 

angular’, ‘Saleh bi-polarization’ and ‘Mattar’ methods, a multilinear regression method was 459 

used to minimize the difference between the retrieved SM derived from equations (9), (10) or 460 

(12) to the ‘reference’ SM values retrieved from the 2-P L-MEB method. The obtained values 461 

of the coefficients for all three methods and all three calibration years (2010, 2011 and 2012) 462 

are given in Table 3. 463 

 464 

 465 

3. Results  466 
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 467 

3.1. Reference values of SM and ��NAD 468 

As outlined above, the ‘reference’ values of soil moisture (SM) and optical depth at nadir 469 

(�NAD) were retrieved from the multiangular TB data measured by the ELBARA-II instrument. 470 

The TB measured � = 40° for the time period 2010-2012 are shown in Fig. 2. A clear seasonal 471 

cycle in the TB time-series can be seen, with maximum values of TB during summer and lower 472 

TB values during winter. This annual cycle is related to the vegetation growth cycle, 473 

beginning in April and ending in November, and to the soil moisture conditions, which are 474 

generally drier during the summer period.  475 

However, as already noted in Section 2.2, significantly wetter/drier conditions were 476 

encountered in 2010/2012, respectively, which is reflected in the observed TB trends over the 477 

MELBEX-II site with lower values during summer 2010 compared to summer 2012. Based 478 

on these TB observations, the retrieved values of SM and �NAD were computed from the 2-P L-479 

MEB method and they are illustrated in Fig. 3a-b. As discussed in Jackson et al. (2012), 480 

conditions of standing water during or shortly after intensive rainfalls should be flagged. In 481 

this study, to avoid these conditions, all retrieved values of SM which were found to be larger 482 

than the saturation value SMSAT were not considered (SMSAT was set equal to 0.5 m3/m3 over 483 

the M-III site as computed by Juglea et al. (2010)). Note that due to this data filtering, the 484 

number of SM data used in the comparison may vary slightly from one approach to the other. 485 

In accordance with the above-discussed TB trends one can see that rainy conditions led 486 

generally to higher values of SM throughout the year in 2010 and during the winter period in 487 

2011 and 2012 (Fig. 3a). Drier conditions during the second half of 2011 and 2012 led to 488 

rather long time intervals of lower SM values.  489 

The vegetation cycle could be clearly distinguished from the time variations in both the 490 

optical depth at nadir (�NAD) and NDVI index obtained over the 250 m MODIS pixel 491 

including the M-III vineyard (Fig. 3b). Relatively similar maximum values of �NAD were 492 

retrieved during the summer of all three years (maximum values of �NAD are close to 0.24 in 493 

2010 and close to 0.22 in 2011 and 2012). During the winter period, after vine pruning and 494 

defoliation, values of �NAD close to 0.05 were retrieved for all three years. This latter value 495 

corresponds to the estimated value of the optical depth (�_STOCK) of vine stocks (Schwank et 496 
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al., 2012; Wigneron et al., 2012). Superimposed on the long term trend of �NAD, short-time 497 

changes in the time variations of �NAD can be noted. It is likely that these apparent fluctuations 498 

result from unaccounted for changes in the roughness conditions over the field as discussed in 499 

Patton and Hornbuckle (2013) and Jackson et al. (2012) for SMOS observations. It can be 500 

noted too that very low values of �NAD were retrieved during a short period of time in May of 501 

2011 and 2012, just before the vine vegetation growth. We assumed that this could be caused 502 

by specific effects during this period related to soil roughness or to vegetation structure. For 503 

instance, this effect could be linked to lower roughness conditions in relation to field works in 504 

May. As the roughness parameterization is set as constant over the 3 year period, actual lower 505 

roughness conditions in the field would lead to retrievals of lower �NAD values and, to a lesser 506 

extent, higher SM values. Our field observations of roughness for the year 2012 (Fig. 1) are 507 

not accurate enough to confirm clearly this assumption but they seem to be leaning in that 508 

direction. 509 

A maximum value of NDVI is reached in the middle of July (~ DoY 200): NDVIMAX � 0.45 510 

in 2010 and 2011 and NDVIMAX � 0.36 in 2012. It is likely the lower value of NDVIMAX in 511 

2012 can be related to the drier conditions during that year. In comparison with the year 2011, 512 

it seems that the very dry conditions during 2012 impact the NDVI values, but do not impact 513 

the time variations of �NAD considerably. 514 

A scatter plot of the retrieved values of the optical depth �NAD versus the NDVI index is 515 

shown in Fig. 4. It can be seen that the results are generally consistent from one year to the 516 

other. One specific pattern can be noted in 2011; it corresponds to very low values of �NAD 517 

retrieved while vegetation is fully developed (NDVI � 0.45), which was already discussed 518 

above. 519 

 520 

3.3 Comparison of SM Retrievals  521 

The retrieved values of SM from all retrieval methods presented in section 2 were compared 522 

to the reference SM values retrieved with the 2-P L-MEB method applied to the 523 

measurements performed during the years 2010-2012. A summary of this comparison is given 524 

in Table 4, in terms of coefficient of determination (R2), bias (m3/m3), RMSE (m3/m3) and 525 

unbiased RMSE (ubRMSE, m3/m3) as defined by Entekhabi et al. (2010). To illustrate the 526 
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results, scatter plots of retrieved SM values versus ‘reference’ SM values are given for all 527 

methods considered in this study (Fig. 5).  528 

All five methods requiring a calibration step, e.g. SCA-V, SCA-H, ‘Saleh’ bi-angular, ‘Saleh’ 529 

bi-polarization and ‘Mattar’ (the calibration was made using one year and the evaluation with 530 

the two other years), provided SM retrievals that were in good agreement with the ‘reference’ 531 

SM data (R2 is generally higher than 0.90, and the RMSE is lower than 0.045 m3/m3). If we 532 

consider the years used for calibration, best performances in terms of R2 for all four methods 533 

were obtained when year 2010 (corresponding to rather ‘wet’ conditions) was used for 534 

calibration, while lower performances were obtained using the year 2012 (corresponding to 535 

‘very dry’ conditions) for calibration. Results for the year 2011 are generally close to those 536 

obtained for the year 2010. A closer inspection shows that both the SCA-V and the SCA-H 537 

methods provide generally very similar performances in SM retrievals (the SCA-V method 538 

providing a slightly better accuracy in terms of R2, bias, RMSE and ubRMSE). The three 539 

methods based on regression equations (‘Saleh’ bi-polarization, ‘Saleh’ bi-angular, and 540 

‘Mattar’) provided very similar results too. Slightly lower performances were obtained for the 541 

‘Mattar’ method (especially when using the year 2010 for calibration), while best 542 

performances were obtained for ‘Saleh bi-angular’. Considering the ubRMSE criteria, the 543 

performances of the SCA and the regression methods were even closer. Except for the DCA 544 

and LPRM algorithm, the ubRMSE is always around or below the target accuracy for SMAP 545 

of 0.04 m3/m3. This is a direct consequence of the fact that values of the bias were found to be 546 

higher for the SCA methods (bias � 0.020 m3/m3) than for the regression methods (bias � 547 

0.010 m3/m3). 548 

As could be expected, results obtained from methods which did not require parameter 549 

calibration (DCA and LPRM) provided results with a lower accuracy: the RMSE was similar 550 

for both methods (RMSE � 0.55 m3/m3), while slightly better R2 values were obtained for 551 

DCA (R2 = 0.79) than for LPRM (R2 = 0.725). For both methods, the bias in the retrievals 552 

was found to be very low (bias = 0.021 m3/m3 for DCA, and bias = 0.013 m3/m3 for LPRM).  553 

The scatter plots (Fig. 5) showing the comparison between retrieved SM values versus 554 

‘reference’ SM values are given to illustrate these different results. For methods requiring 555 

calibration (SCA-V, SCA-H, ‘Saleh’ bi-angular, ‘Saleh’ bi-polarization and ‘Mattar’), we 556 

used the year 2010 in Fig. 5 (this year provided best performances in terms of R2). Note that 557 
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the number of data used in the comparison may vary from one approach to the other. This can 558 

be explained by two reasons. First, for DCA and LPRM, the comparison was made over three 559 

years (2010 - 2012), while it was made over two years (2011 -2012) for the other methods. 560 

Second, retrieved SM values larger than the saturation value SMSAT (SMSAT = 0.5 m3/m3) 561 

were removed in the comparison (a very low number of observations was concerned by this 562 

filtering). 563 

It can be seen that a very low bias was obtained generally. However, in wet conditions, the 564 

methods LPRM and DCA provided underestimated SM values (for SM > 0.3 m3/m3); while 565 

the ‘Saleh’ and ‘Mattar’ methods provided overestimated SM values (for SM > 0.2 m3/m3) 566 

with respect to the reference SM. For DCA and LPRM (methods with do not require any 567 

calibration), it can be seen that the SM retrieval performances are lower in a small SM 568 

interval, for values of SM comprised between ~ 0.1 and 0.15 m3/m3. These SM conditions 569 

generally correspond to periods of vegetation growth at the end of spring and of full 570 

vegetation development in the summer period. 571 

 572 

4. Discussion and conclusion 573 

This study presents an inter-comparison of several SM retrieval methods based on a three year 574 

data set of passive L-band microwave observations acquired over a vineyard site at the VAS 575 

site.  576 

A careful interpretation of the results should be made, and the results cannot be easily 577 

generalized to operational applications for spaceborne sensors. We will discuss these different 578 

aspects and the main conclusions of the study in the following. First, it is important to 579 

consider that the results were obtained at the field scale and over only one type of vegetation 580 

(a vineyard canopy) with some specific features (no litter layer, relatively low LAI and 581 

biomass conditions, frequent agricultural practices leading to changes in soil roughness, etc.). 582 

Several effects related to changes in the soil roughness conditions or in the vegetation 583 

structure (in relation with the crop growth and the agricultural practices) may have a 584 

significant impact on the results of the present study. It is likely that the impact of these 585 

effects would average out and, therefore, become much less important if we had considered 586 

larger footprints of spaceborne radiometric observations, including a large variety in the types 587 

of vegetation (natural or cultivated canopies), in the soil conditions and in the agricultural 588 
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practices. For instance, specific effects related to the vegetation structure could be revealed 589 

over the vineyard field and the values of optical depth for both polarizations (�H(�) and �V(�)) 590 

could not be considered as equal for that canopy type (Wigneron et al., 2012). This result has 591 

frequently been obtained from in situ radiometric observations (Pardé et al., 2003, 2004; 592 

Wigneron et al., 2004) but it has never been noted, to our knowledge, from spaceborne 593 

observations. For instance, Owe et al. (2001) found that �V = �H over test sites in the US over 594 

a variety of land covers based on SMMR (Scanning Multichannel Microwave Radiometer) 595 

observations at C-band. It is likely that these vegetation structure effects can be a limitation 596 

for presented evaluation of the methods, which all assume �H = �V. So, several similar studies 597 

based on in situ observations over a variety of vegetation types are required to provide a more 598 

in-depth evaluation of the method performances. 599 

It should be noted too that the performances of the different methods cannot be compared 600 

directly as some methods had to be calibrated while some methods did not require any 601 

parameter calibration step (DCA and LRPM). The two methods SCA-H and SCA-V, require 602 

the calibration of the relationship between optical depth and a remotely sensed vegetation 603 

index (NDVI); the three methods based on regression equations, ‘Saleh bi-angular’, ‘Saleh bi-604 

polarization’ and ‘Mattar’, require the calibration of three coefficients. This calibration step 605 

could be done in the present study as we considered that a ‘reference’ data set describing the 606 

time variations in SM and �NAD (and derived from multi-angular observations) was available 607 

from the ELBARA-II tower-based observations. However, for operational spatial 608 

applications, it is generally very difficult to obtain such a reference data set. 609 

In spite of the limitations discussed above, some key results obtained in this study from 610 

tower-based observations could be of value to future operational applications. It was found 611 

that the two methods, which did not require any a priori calibration (DCA and LPRM) could 612 

provide good SM retrievals and have relatively similar performances (R2 ~ 0.72-0.79; 613 

RMSE ~ 0.054-0.58 m3/m3) over the three year period. The methods requiring parameter 614 

calibration (two parameters in SCA-H and SCA-V; three coefficients in the three regression 615 

methods) provided results closer to the reference: for instance the R2 coefficient increased 616 

generally to values larger than 0.90 for all methods. The methods which require additional 617 

information concerning the vegetation development (the NDVI variable is required in the 618 

SCA-H, SCA-V and ‘Mattar’ algorithms) provided slightly lower performances when year 619 

2012 was used for calibration. For that year the NDVI values were lower than for the two 620 
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other years (maximum NDVI values � 0.45 in 2010 and 2011 and � 0.36 in 2012), while the 621 

maximum values of �NAD were found to be relatively similar over all three years ( � 0.22 – 622 

0.24). It is likely that nonlinearities between �NAD and NDVI led to these slightly lower 623 

performances in SM retrievals for the year 2012 for the SCA and ‘Mattar’ algorithms. 624 

In the present study, the computed performances are “optimal” performances as it is assumed 625 

that a good parameter calibration can be made from a SM data set which can be considered as 626 

a reference. This calibration step was possible in this study based on in situ tower-based 627 

observations obtained over a homogeneous vineyard field, but this step is much more 628 

complex for operational applications based on space borne sensors. Several options are 629 

possible to calibrate these different retrieval methods for spaceborne applications. For 630 

instance, the reference SM or �NAD values which are required in the calibration step can be 631 

estimated: 632 

(i) from networks of in situ measurement sites such as SCAN in the USA (Schaefer et al., 633 

2007), OZNET in Australia (Smith et al., 2012) or SMOSMANIA in France (Albergel et al., 634 

2012), etc. Then, based on results obtained over a variety of soil and vegetation conditions, a 635 

look up table providing the calibrated parameters as function of the land cover types can be 636 

built. 637 

(ii) from model re-analyses (ERA-Interim (Dee et al., 2011) or MERRA Land (Reichle et al., 638 

2012) for instance), in regions where the simulated SM values can be considered to be 639 

accurate. As mentioned above, in a second step, a look up table can be built for a variety of 640 

land covers. 641 

(iii) by combining observations from different remote sensing sensors. For instance, the 642 

estimation of optical depth �NAD retrieved from SMOS or other satellites (e.g. AMSR-2) could 643 

be used to calibrate the vegetation parameters required in the SCA-H and SCA-V algorithms 644 

(Lawrence et al., 2014). 645 

Future work will consider these different options to evaluate the retrieval capabilities of the 646 

different methods requiring calibration (SCA, ‘Saleh’ or Mattar’) for operational applications 647 

based on spaceborne sensors.  648 

 649 
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 841 

Table 1.  842 

L-MEB soil and vegetation parameters over the M-III vineyard (VAS site). All these parameters, 843 
except ttH and ttV which are specific to L-MEB, are valid for the other SM retrieval methods. 844 

 Unit Value or used Model 
Soil dielectric 
permittivity (
G) 

(-) Mironov et al. (2012) 

Clay fraction (-) 0.26 (in situ measurements; Juglea et al., 2010) 
TG=TC=TGC K ECMWF ERA Interim temperature (TE-07)   
HR (-) 0.6060 (calibrated, Lawrence et al., 2013) 
QR (-) 0.0303 (calibrated, Lawrence et al., 2013) 
NRH (-) 0 
NRV (-) 0 
ttH (-) 1 
ttV (-) Free parameter in the retrieval process 
� (-) 0.02 

� (-) Free parameter in the retrieval process 
SM m3/ m3 Free parameter in the retrieval process 

 845 

846 
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Table 2. 847 

Input variables required in the different retrieval algorithms 848 

 849 

Algorithm Input variables 
SCA-H TBH(�=40°) 

ECMWF temperature (TE-07)   
NDVI 

SCA-V TBV(�=40°) 
ECMWF temperature (TE-07)   
NDVI 

DCA TBH(�=40°), TBV(�=40°) 
ECMWF temperature (TE-07)   

LPRM TBH(�=40°), TBV(�=40°) 
ECMWF temperature (TE-07)  

‘Saleh’ 
bi-polarization 

TBH(�=40°), TBV(�=40°) 
ECMWF temperature (TE-07)   

‘Saleh’,  
bi-angular  

TBH(�=30°), TBH(�=50°) 
ECMWF temperature (TE-07)   

‘Mattar’  TBH(�=40°) 
ECMWF temperature (TE-07)   
NDVI 

 850 

851 
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 852 

Table 3.  853 

Calibrated parameters of the different retrieval algorithms: one year (2010, 2011 or 2012) is used for 854 
calibration; the two other years are used for validation  855 

SCA H/V, TBH(�=40) or TBV(�=40) 856 

Calibration b Stemfactor 

2010 0.61679 0.20874 

2011 0.31756 0.44014 

2012 0.92819 0.05840 

‘Saleh bi-angular’, TBH(�=30), TBH(�=50) 857 

Calibration a0 a1 a2 

2010 1.4171 -0.3560 0.8374 

2011 1.0972 -0.2806 0.2613 

2012 2.2857 -1.5674 0.1300 

 858 
‘Saleh bi-polarization’, TBH(�=40), TBV(�=40) 859 

Calibration bO b1 b2 

2010 0.3524 0.7734 1.1401 

2011 0.2595 0.6208 0.4879 

2012 -0.3914 1.1927 0.7263 

‘Mattar’, TBH(�=40)  860 

Calibration c0 c1 C2 

2010 1.2530 0.9491 0.9147 

2011 0.9844 0.5748 0.3702 

2012 1.0954 2.6578 0.0183 

 861 
 862 

863 
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Table 4.  864 

Performances of the different SM retrieval algorithms in terms of coefficient of determination (R2), 865 
bias (m3/m3), RMSE (m3/m3) and ubRMSE (m3/m3). For SCA-H, SCA-V, ‘Saleh bi-angular’, ‘Saleh 866 
bi-polarization’ and ‘Mattar’, one year (2010, 2011 or 2012) is used for calibration; the two others are 867 
used for validation. For LPRM and DCA, no calibration is required. 868 

 869 

Method Calibration Validation R2 Bias (m3/m3) RMSE  

(m3/m3) 

ubRMSE  

(m3/m3) 

 

SCA-H 2010 2011, 2012 0.915 -0.025 0.050 0.043 

2011 2010, 2012 0.905 -0.041 0.054 0.035 

2012 2010, 2011 0.852 -0.020 0.056 0.052 

       

SCA-V 2010 2011, 2012 0.928 -0.014 0.035 0.032 

2011 2010, 2012 0.919 -0.024 0.040 0.032 

2012 2010, 2011 0.861 -0.010 0.045 0.043 

       

DCA   0.789 0.021 0.054 0.050 

       

LPRM   0.725 0.013 0.058 0.056 

       

Saleh  

Bi-angular 

 

2010 2011, 2012 0.950 0.004 0.037 0.037 

2011 2010, 2012 0.941 0.007 0.028 0.027 

2012 2010, 2011 0.934 0.009 0.036 0.035 

      

Saleh  

Bi-
polarization 

 

2010 2011, 2012 0.946 0.010 0.040 0.039 

2011 2010, 2012 0.924 -0.001 0.031 0.031 

2012 2010, 2011 0.920 0.004 0.033 0.033 

      

Mattar 2010 2011, 2012 0.946 0.009 0.041 0.040 

2011 2010, 2012 0.927 -0.001 0.030 0.030 

2012 2010, 2011 0.869 0.017 0.048 0.045 
870 
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Figure Captions 871 

Fig. 1 Temporal variations in the standard deviation of soil surface heights SD and correlation 872 
length LC estimated from measurements during seven days in 2012 performed at the M-III 873 
vineyard field. The annual mean values are �SD	 = 2.2 cm, �LC	 = 6.2 cm.  874 

Fig. 2. Time–series of measured ELBARA-II TB over the M-III vineyard during three years 875 

(2010-2012) at H (‘o’) and V (‘x’) polarizations and at the observation angle � = 40°. The TB 876 

data are acquired ~ every 30 minutes but only data measured at 6 am are shown. Diurnal 877 

precipitation P is represented with vertical lines 878 

Fig. 3. Soil moisture SM (a) and optical depth �NAD (b) retrieved with the multiangular 2-P L-879 

MEB method applied to the measurements at the M-III site. The diurnal retrievals are shown 880 

for 6 am and 6 pm, respectively. These retrieved values are considered as a reference in this 881 

study. Diurnal precipitation is represented with vertical lines. In Fig 3b, the time-series of 882 

NDVI index obtained over the 250 m MODIS pixel including the M-III vineyard is shown. 883 

Fig. 4. Scatter plot of retrieved values of the optical depth �NAD, retrieved with the 884 

multiangular 2-P L-MEB method, versus the NDVI index obtained over the 250m MODIS 885 

pixel including the M-III vineyard. Retrieved values of �NAD computed at 6 am and 6 pm are 886 

used. 887 

Fig. 5. Scatter plots of the retrieved SM values versus the reference SM values for all 888 

methods: SCA-H (a), SCA-V (b), DCA (c), LPRM (d), ‘Saleh’ bi-angular (e), ‘Saleh’ bi-889 

polarization (f) and ‘Mattar’ (g). Retrieved values of SM are computed at 6 am and 6 pm.  In 890 

Fig. 5a-b-e-f-g, retrieved values of SM for years 2011 and 2012 are shown (the year 2010 was 891 

used for calibration). In Fig. 5c-d (for DCA and LPRM) retrieved values of SM for years 892 

2011, 2012 and 2013 are shown (no calibration was required). 893 

894 
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Fig. 1 Temporal variations in the standard deviation of soil surface heights SD and correlation 895 
length LC estimated from measurements during seven days in 2012 performed at the M-III 896 
vineyard field. The annual mean values are �SD	 = 2.2 cm, �LC	 = 6.2 cm.  897 

 898 
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Fig. 2. Time–series of measured ELBARA-II TB over the M-III vineyard during three years 900 

(2010-2012) at H (‘o’) and V (‘x’) polarizations and at the observation angle � = 40°. The TB 901 

data are acquired ~ every 30 minutes but only data measured at 6 am are shown. Diurnal 902 

precipitation P is represented with vertical lines. 903 

904 
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Fig. 3. Soil moisture SM (a) and optical depth �NAD (b) retrieved with the multiangular 2-P L-905 
MEB method applied to the measurements at the M-III site. The diurnal retrievals are shown 906 
for 6 am and 6 pm, respectively. These retrieved values are considered as a reference in this 907 
study. Diurnal precipitation is represented with vertical lines. In Fig 3b, the time-series of 908 
NDVI index obtained over the 250 m MODIS pixel including the M-III vineyard is shown. 909 

a) 910 
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Fig. 4. Scatter plot of retrieved values of the optical depth �NAD, retrieved with the 916 
multiangular 2-P L-MEB method, versus the NDVI index obtained over the 250m MODIS 917 
pixel including the M-III vineyard. Retrieved values of �NAD computed at 6 am and 6 pm are 918 
used. 919 
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Fig. 5. Scatter plots of the retrieved SM values versus the reference SM values for all 921 
methods: SCA-H (a), SCA-V (b), DCA (c), LPRM (d), ‘Saleh’ bi-angular (e), ‘Saleh’ bi-922 
polarization (f) and ‘Mattar’ (g). Retrieved values of SM are computed at 6 am and 6 pm.  In 923 
Fig. 5a-b-e-f-g, retrieved values of SM for years 2011 and 2012 are shown (the year 2010 was 924 
used for calibration). In Fig. 5c-d (for DCA and LPRM) retrieved values of SM for years 925 
2011, 2012 and 2013 are shown (no calibration was required). 926 
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