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Development of an Object-Oriented Turbomachinery Analysis Code
Within the NPSS Framework

Scott M. Jones
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract
This paper describes the development of a computational method to solve the equations of fluid flow

across a turbomachinery blade row. The work was done within the Numerical Propulsion System
Simulation (NPSS) computational framework and results in a collection of objects which use an implicit
formulation of the turbomachinery equations to solve for the fluid exit conditions across each blade row.
The object-oriented approach allows for easy development and evaluation of the empirical correlations
traditionally used for turbomachinery loss, deviation, and blockage effects.

Introduction
The turbomachinery components in an aircraft gas turbine engine are the most critical to the overall

system energy required to operate. Even with modern Computational Fluid Dynamics (CFD) techniques,
the full 3-D fluid flowfield through the compressor and turbine components is currently impossible to
quickly and reliably predict. Therefore, simpler 2-D methods have evolved to enable rapid estimation of
the expected performance of these components; these methods rely largely on empirical knowledge and
cascade tests to produce acceptable sensitivity to design inputs to narrow down the turbomachinery design
parameters. This preliminary design can then be subjected to more rigorous CFD analysis. This paper
discusses the development of an object-oriented code within the Numerical Propulsion System Simulation
(NPSS) framework to perform the 2-D design and analysis of turbomachinery components.

Nomenclature

A Fluid area
 Fluid massflow rate

h Fluid enthalpy
MN Fluid Mach number
p Fluid (static) pressure
r Radius of fluid element
s Span or spanwise direction
T Fluid (static) temperature
V Fluid velocity

 Swirl, angle between the fluid velocity vector and the meridional plane
 Relative angle between the fluid velocity vector and the meridional plane
 Deviation, angle between the fluid exit relative angle and the blade exit angle
 Fluid density
 Meridional angle, angle between the fluid meridional velocity and machine axis
 Blade row angular speed
 Non-dimensional total pressure loss parameter
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Subscripts:

1 Property at station 1
2 Property at station 2
m Meridional component
r Radial component
t Stagnation or total property
z Axial component
i Property of the ith fluid element
 Tangential component

Background
With the possible exception of the combustor, turbomachinery components are the most complicated

devices to design in a modern gas turbine engine. The 3-D flowfield within these components is
extremely complex. Even neglecting the considerable computational time required, modern CFD
techniques have yet to accurately predict the performance of such devices without being calibrated to
specific known geometries and results. Because of this the turbomachinery designer must rely on
alternative methods to quickly analyze and predict the performance of potential component designs. Such
methods must be sufficiently accurate in order to prevent wasted effort on detailed design, CFD, and testing.

During the preliminary or conceptual design phase of an aircraft engine, the turbomachinery designer
has a need to estimate the effects of a large number of design variables such as flow size, stage count,
blade count, and radial position on the weight and efficiency of a turbomachine. Computer codes are
invariably used to perform this task; however, such codes are often very old (in software terms) and
written in outdated languages such as IBM’s FORTRAN with arcane input files with the original author
and code expert no longer available. Such codes are rarely adaptable to new architectures or
unconventional layouts.

Given the need to perform these kinds of preliminary design trades, a modern 2-D turbomachinery
design and analysis code has been written using the Numerical Propulsion System Simulation (NPSS)
framework (Ref. 1). NPSS was chosen for several reasons: first, NPSS is a recognized and used state-of-
the-art gas turbine engine performance analysis tool and likely to remain so for the foreseeable future.
Adding a rapid 2-D turbomachinery design and analysis capability to NPSS is a logical fit. NPSS is an
object-oriented code; as such, using it gives access to thermodynamics property packages, the
FlowStation state object, and the Solver object immediately without having to code them
separately. The other major advantage of object-oriented code is that, properly written, objects like loss
models and deviation models can be easily updated or even switched as necessary.

OTAC Development Process
Development of the Object-oriented Turbomachinery Analysis Code (OTAC) started with a software

requirements document identifying what the code is meant to do at a basic level. Without going into detail
OTAC is being written to perform 2-D aerodynamic design and analysis of turbomachinery including
compressors and turbines of both axial and centrifugal design. This sets the high-level physics of the
problem that need to be modeled; based on assumptions about the flow a set of governing equations is
developed. With the overall problem in mind the code architecture is then segregated into a set of intuitive
“objects”, each of which serves a specific purpose. For OTAC the existing NPSS FlowStation object
was modified to represent the complete thermodynamic and velocity state of a given mass of fluid,
including relative properties. Two important new objects are the BladeSegment object and the
BladeRow object. The BladeSegment object represents the changes a fluid undergoes along a
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streamline as it passes through a blade, and the BladeRow object represents a single blade row
containing some number of flow streams. The existing NPSS Solver object was used as the means to
solve the governing equations.

Equations Representing a Meanline Process
The physical relationships and associated equations used in OTAC follow from the software

requirements and object set. Figure 1 shows a fluid element moving through an annulus of arbitrary
radius. The state of the fluid element at any point is completely described by a set of seven attributes or
properties:

A massflow rate or mass flux through a given area normal to the meridional velocity
Two thermodynamic state properties, such as pressure and temperature
Three velocity state properties, such as velocity, tangential (swirl) angle, and meridional angle
A location parameter, such as the fluid element radius

Figure 1.—Fluid flow through an annulus.
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The fluid element begins at state 1, is acted upon by a device such as a blade row, and ends up at
state 2. Given known fluid element properties at station 1, seven equations are required to uniquely
determine its properties at station 2. The fluid element is assumed to undergo an adiabatic, steady state,
circumferentially uniform process in an annulus where its angular momentum is changed by a blade row.
The blade row rotational speed  is known, although it may be zero (i.e., non-rotating). The following
seven equations result:

21 mm mm  (1)

112212 VrVrhh tt  (2)

argsideal loss22 fpp tt  (3)

angleexitmetalblade2  (4)

2stationatradiusmachine2r  (5)

2stationatareamachine2mA  (6)

2stationatangleannulusmachine2  (7)

Equation (1) is meridional continuity; it assumes the blade row can pass the given flow rate without
choking. Equation (2) is the Euler turbomachinery equation. Equation (3) relates the fluid total pressure at
station 2 to the ideal total pressure that would have resulted from an isentropic process minus some kind
of loss; this loss function is an extremely complex relationship and will be discussed later. Equation (4)
assumes the flow is turned such that it follows and exits primarily in the direction of the blade row with a
minor adjustment  equal to the angular deviation of the flow from the blade exit angle. By convention a
positive value of deviation means the flow was not turned as much as it would have been if it had exited
at the same angle as the blade. Estimation of deviation is done through an empirical relationship and will
also be discussed later. Equations (5) to (7) represent the natural assumption that the fluid element is
constrained by the machine and must have the same average radius and cross-sectional area. The flow
meridional direction must also follow the machine average hub and casing angle. These equations assume
that the flow is unseparated with negligible boundary layer at stations 1 and 2.

While a lot of assumptions seem to have been made, these equations are nevertheless sufficient to
describe the process across nearly any type of turbomachine blade row: axial, centrifugal, mixed, radial,
compression or expansion. However, as the fluid mass flow rate and area increase, there will be
substantial change in various fluid properties in the spanwise direction which cannot be adequately
accounted for using a single average condition.

Equations Representing a Streamline Process
When the spanwise fluid property variations are small or are assumed to be reflected in an average

state, a meanline analysis is sufficient. More often, however, it is desired to account for these variations
by dividing the flow into multiple regions as shown in Figure 2. This is called a spanline or streamline
analysis. The equations for a streamline analysis are similar to the meanline equations presented above
but with minor variations. Equations (1) to (4) are unchanged, except to note that the blade exit angle in
Equation (4), a constant in meanline analysis, is now a function of distance along the span. Likewise the
fluid meridional angle in Equation (7) is assumed to be a function of distance along the span. Equations (5)
and (6) are altered under the following assumptions: first, the flow in aggregate must still be at the same
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Figure 2.—Fluid segments for 5 streamlines.

average radius as the machine, and each individual fluid element radius must be such that the entire span
or machine area is covered by the flow without gaps between the fluid elements. Also, by definition of a
streamline, fluid elements are not permitted to cross each other. Finally, a relationship between the fluid
elements in the spanwise direction is enforced. This relationship is commonly referred to as radial
equilibrium as its derivation and frequent use is found in axial flow turbomachine codes. Radial
equilibrium refers to the fact that the flow in a circular arc experiences a centripetal acceleration which
must be equal to a net force in that direction which can only arise from the fluid pressure (Ref. 2). The
form of the radial equilibrium equation changes depending on assumptions that can be made about the
nature of the flowfield, but in its simplest form:

r
V

dr
dp 2

 (8)

Since the flow is not assumed to be exclusively in the axial direction it is more useful to relate the
change in static pressure that occurs in the direction normal to the streamline. With a minor assumption
that flow meridional angle is approximately constant then the incremental change in radius is equal to the
incremental change in the spanwise direction times the cosine of the meridional angle:

r
V

ds
dp cos2

 (9)
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Thus Equation (9) relates the change in static pressure occurring from one fluid element to the next. If
one has n fluid elements whose condition at state 1 is known then there are 7n equations needed to fully
determine all of the fluid elements’ properties at state 2. The modified equation set is shown below with
the required number of each equation preceding it for a total of 7n:

 n
ii mm mm 12  (1)

 n
iiiiii

VrVrhh tt 112212  (2)

 n argsideal22 iii losstt fpp  (3)

 n iii
angleexitmetalblade2 (4)

 1 machine2mean2 rr  (5a)

 n-1
ii

rr outer2inner2 1
 (5b)

 1 machine2mean2 mm AA  (6a)

 n-1
i

i

i
i

i
r

V

ds
dp

2
2

2
2

2
2

cos  (6b)

 n machine2 f
i

 (7)

Note that these equations reduce to the meanline equations for the case where n = 1 and may therefore
be used as the general set of equations for both meanline and streamline analyses.

The preceding set of equations reflect a direct-design approach where blade metal angles (Eq. (4))
and machine area (Eq. 6(a)) are input at design and the machine performance is the result. It is more
common in conceptual design to use an inverse-design method where the desired machine performance
is specified and the machine blade angles and area then result (Ref. 3). In theory this could be accommo-
dated with an additional equation that relates the input blade metal exit angle to the blade angle that
produces the desired design condition. In practice, the OTAC architecture uses flow angles as inputs with
the blade angles calculated at design so Equation (4) can simply be replaced with a generic relationship
Equation (4’):

 n valuetargetparameterdesign  (4’)

where the design parameter may be pressure ratio across the blade segment, work extracted by the blade
segment, or exit flow angle from the blade segment. The target value is a user-input radial distribution of
the actual value of the variable specified by the design parameter. Similarly, Equation 6(a) can be
replaced by other conditions which effectively set the exit area; for example, having meridional velocity
remain constant through the blade row or specification of an exit axial Mach number both amount to
setting the exit area. At off-design Equations (4) and (6a) take the form originally shown.
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Using NPSS Objects to Solve the Desired Equations
The standard FlowStation object within NPSS represents a 1-D fluid state. The input attributes

for the original FlowStation object were massflow rate, two state properties, and the flow velocity or
Mach number. For OTAC, this object was modified such that it would calculate the 3-D velocity state and
relative properties of a homogenous fluid. This modification requires an additional set of four input
parameters, bringing the total to eight. These four added inputs were chosen to be flow meridional angle,
flow tangential angle, flow radius, and rotational speed of the relative frame. Coupled with the original
inputs, this allows calculation of each velocity component of interest and an upper and lower radial
dimension that bounds the annular flow. Finally, the added rotational speed parameter permits calculation
of fluid properties in a relative frame of reference which are useful quantities in the physics of rotating
blade rows.

NPSS allows declaration of any number of instances of its Solver class. The NPSS Solver is a
Newton-Raphson-based routine with robust features for user customization. Most importantly, the
Solver class allows any number of custom independent variables and desired equations (called
dependent conditions) to be added to its solution matrix. It was decided to make as much use of this as
possible. First, each blade row has its own dedicated Solver. This means iterations to convergence for
each blade row are handled by its Solver and each blade row solution is completed prior to moving to
the next blade row in the machine. Furthermore, using the existing Solver object removes all coding
responsible for solution iteration from the OTAC objects, leaving primarily the engineering and physics
for the user and developer to see. This in turn makes it easier to understand what the code is doing and to
modify it if necessary. Lastly, the ability to add custom independents and dependents means that OTAC
objects can be formulated predominantly as a way to take a set of inputs and governing equations that
define the given problem, eliminating the need to code the iterations and procedures to actually solve it.

Several other objects within the NPSS framework were also of use. The FluidPort object allows
fluid information to be passed from object to object. Thus the fluid properties of a given streamline at the
exit of a blade row are automatically transferred to the entrance of the following blade row. The Shaft
Element is used as the means to input rotational speed of any blade row and its constituent segments. The
DataViewer objects permit custom output to be sent a file.

Bladesegment Object
A diagram of the BladeSegment object is shown in Figure 3. The BladeSegment is an Element

containing two of the modified FlowStation objects to track the incoming fluid state and the exiting
fluid state. The incoming fluid state is known from data coming from the FluidPort, and the
BladeRow ShaftPort provides the rotational speed if applicable. The outgoing fluid state needs to be
determined. Since the rotational speed has already been input, each BladeSegment needs seven
variables to set the fluid exit condition. Shown as the dashed arrow, seven independent variables set the
exit state by fiat, but the values of these variables will be adjusted iteratively by the Solver. With this
provisional exit state known, other calculations then proceed: the ideal exit state can be calculated to find
the segment efficiency and “actual” loss parameter, the segment incidence angle and “actual” deviation
are calculated, and empirical correlations from Subelements provide predictions of exit deviation
angle and loss across the segment. Iterations are done by the Solver to ensure that the provisional exit
state is driven toward a final, converged state such that the actual loss and deviation match the predicted
loss and deviation in addition to satisfying all of the governing equations.

As with many turbomachinery programs, the user may specify an input variable set that is not
physically possible, such as a large rise in pressure ratio associated with small turning or slow blade
speed. In such cases the code will not converge to a solution and inform the user.
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Figure 3.—Blade segment object schematic.

It is important to remain cognizant of the fact that the BladeSegment name can be misleading. The
BladeSegment Element tracks the thermodynamic state changes and velocity state changes of an
individual streamline as it passes through a segment of a blade. The BladeSegment does not represent
a fixed, spanwise section of a blade: it represents a radially-varying segment of flow moving along a
streamline through a blade row. Therefore its entrance and exit radii vary with the flow conditions.

Bladerow Object
The BladeRow object is schematically represented by Figure 4 for a five streamline example. The

BladeRow is an Assembly containing a BladeSegment, FluidInputPort, and
FluidOutputPort for each streamline desired by the user; a ShaftPort is also present if the
BladeRow is rotating. While the behavior of each BladeSegment object must be independent of any
other existing BladeSegments from an object-oriented programming perspective, the physical
assumption of radial equilibrium requires that the solution for a particular BladeSegment depend upon
the solution of other BladeSegments: the purpose of the BladeRow is to enable this.

Rather than create an onerous input burden for the user, it was decided to allow the user to simply
input the number of streams desired and have each BladeRow object at runtime instantiate the
appropriate number of BladeSegments within it; a consequence of this is that it also necessitated
creation and instantiation of a set of Solver Dependent objects, the number of which varies
depending on the number of streamlines. All of the Independent objects reside within the scope of the
BladeSegments themselves: each BladeSegment contains its own seven Independents which
for this example produces 35 Independents for the BladeRow as a whole. Of the 35 Dependents,
some reside in the BladeSegments and the rest are contained in the BladeRow object. Five
Dependent objects, representing Equations (1) to (4) and (7), reside in each BladeSegment. The
BladeRow always has two Dependents representing Equations (5a) and (6a). This leaves eight
Dependents to be created at runtime by the BladeRow; these Dependents are always 2*(n-1) in
number and represent Equations (5b) and (6b).
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Figure 4.—BladeRow object schematic.

In addition to instantiation of all the necessary objects, the BladeRow performs some basic
calculations given the state of the streamlines (i.e., BladeSegments) it contains such as determining
mean radius and total power of the entire blade row. It must also estimate the pressure derivative used in
the radial equilibrium equation; this is currently done with a simple finite difference between adjacent
BladeSegments. The BladeRow also promotes each BladeSegment FluidInputPort and
FluidOutputPort to the Assembly border so that BladeRow objects can be linked to other
objects, including other BladeRows.

Since an inverse-design procedure is assumed, the BladeRow must also save the values of the blade
metal angles determined at design. The values are used at off-design to determine by interpolation the
entrance and exit metal angles associated with the changing flow radius of each BladeSegment.

Loss and Deviation Subelements
Loss mechanisms in turbomachinery cannot be analytically predicted; thus the designer uses

empirical correlations to estimate such losses. OTAC uses Subelement objects located within the
BladeSegment for this purpose. The Subelement returns a single value for the relative total
pressure loss, , across the BladeSegment based on its internal calculations. The advantage of this
approach is that loss models remain a separate entity allowing development of a suite of loss models
applicable to specific kinds of loss mechanisms and specific types of turbomachinery. These loss models
can be easily selected, switched out, modified, or stacked together by the user. The preceding discussion
applies to deviation models as well, although they are typically not as complex as loss models. The
deviation Subelement returns a value for  based on its internal calculations.
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Summary and Current Status
With the above objects it becomes possible to model any type of turbomachine. The user creates an

input file with instances of BladeRow objects, each of which has its own attributes—rotating, non-
rotating, design pressure ratio, loss model(s), etc. Based on the number of streams desired, OTAC will
populate each BladeRow with the appropriate number of BladeSegments and set up the Solver
objects for that BladeRow. The Solver then varies the exit state of each BladeSegment stream until
the entire BladeRow solution has converged. The process then repeats for the next BladeRow until the
entire machine design performance is completed. Operating characteristics may then be modified to run
any number of off-design cases.

Currently an alpha release of OTAC has verified the capability of the code to perform its intended
function. A beta release is planned for next year; the beta version will add default loss and deviation
models, overall stage performance calculations, and additional elements to account for secondary flow
addition/subtraction and radial mixing between blade rows.
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