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1.0 INTRODUCTION

Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin,
rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold
voltage of a complementary metallic oxide semiconductor (CMOS) transistor (creating different bit
states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material, thus switching its
resistance and bit state. These polarized states are immune to radiation-induced upset, thus making
MRAM very attractive for space application. These magnetic memory elements also have infinite data
retention and erase/program endurance. Further information regarding MRAM technology and the
MRAM market can be found in Ref. 1.

Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and
Honeywell. The March 17N functional test [2] was applied to the test samples at a variety of temperature
and voltage combinations (“schmoo testing”), and the failure regions were identified.



2.0 DEVICES UNDER TEST (DUTS)

The two parts tested, listed in Table 2.0-1, were a 16Mb from Aeroflex and 1Mb device from Honeywell.
Both parts are marketed for “hi-rel” space application and utilize radiation hardened by design (RHBD)
design methodology to harden the CMOS control circuitry against radiation effects. Everspin in
Chandler, Arizona, does the back-end magnetic memory element processing for both Aeroflex and
Honeywell.

The Aeroflex UT8MR2MS8-40XPC is a 3.3-V device that is organized as 2,097,152 8-bit words and has
single-bit internal error-correcting code (ECC). This particular part number is “prototype” quality,
meaning it was only tested at room temperature by Aeroflex prior to shipment.

The Honeywell HXNVO100AEN is a dual-power supply 3.3-V and 1.8-V device organized as 65,536
16-bit words of and has single-bit ECC. This particular part number is “engineering model” quality,
meaning it was tested at —40°C and 105°C with a 24-hour burn-in by Honeywell.

Table 2.0-1. Devices under test.

Aeroflex Honeywell

Part Number UT8MR2M8-40XPC HXNV0100AEN
Number of Die/Packages 1 1
Date Code 1225 1218
Quality Level “Prototype” “Engineering Model”
Number of Samples 3 3
Recommended Operating Voltage 3.0t03.6V Dual Supply Required:

3.0t03.6 Vand

1.65t01.95V

Manuf. Screening Temperature 25°C -40°C to 105°C




3.0 TEST SETUP

Functional testing of the MRAM samples was carried out with a JD Instruments, LLC (JDI) automated
test vector (ATV) digital tester (Figure 3.0-1). The test program was simply a March 17N algorithm. The
inventors of this algorithm design it to uncover faults specific to MRAM-technology such as soft writes
and erases [2].

Temperature control was provided by a Sun Electronic Systems ECI environmental chamber with a
temperature range of —184°C (LN;) to 300°C.

Figure 3.0-1. JDI ATV tester and Sun Electronic Systems environmental chamber.

Each DUT was tested at a variety of temperature and voltage combinations. At each temperature-voltage
(T-V) combination, the March 17N test was run three times, and the average number of bit errors was
reported.

The voltage and temperature combinations tested are given in Table 3.0-1. The Aeroflex part was tested at
13 voltages and 5 temperatures, for a total of 65 tests per DUT. There is just one table of results for each
Acroflex sample tested. However, because the Honeywell parts require two power supplies, there is an
added dimension to the test matrix. So each DUT has 5 tables of results (one for each V¢, value tested).

Table 3.0-1. Test Voltages and Temperatures.
Aeroflex Honeywell

Voltages Vee: 2.7103.9V (0.1 V step) Vee1: 29V, 30V,33V,36V,3.7V
Veca: 1.5102.1V (0.15 V step)

Case Temperature | -55°C, -40°C, 25°C, 55°C, 65°C | —100°C, -80°C, -40°C, 25°C, 105°C, 115°C
Number of Samples 3 2




4.0 TEST RESULTS

Bit error rates for the March 17N test at the various temperature and voltage combinations is given in the
tables in sections 4.1 and 4.2. Because the temperature and voltage ranges that were tested extend beyond
the manufacturer’s recommended operating ranges, thick black boxes were drawn in the results tables to
illustrate how much margin is provided over the manufacturers’ guaranteed ranges.

The Aeroflex parts are “prototype” quality guaranteed to operate between 3.0 V to 3.6 V at 25°C. During
our testing the DUTs were subjected to voltages from 2.7 V to 3.9 V and temperatures from —55°C to
65°C.

The Honeywell parts are specified to operate between 1.65 V and 1.95 V (V¢ci), 3.0 Vand 3.6 V (Veen)
and —40°C to 105°C. As was the case with the Aeroflex part, our testing included these ranges and
beyond.

The March 17N algorithm was run three times at each voltage/temperature combination and the average
number of bit errors (order of magnitude) reported. It should be noted that both DUTs have internal error
correction code (ECC) so the number of bit errors reported here are those that could not be corrected by
the internal “single error correct, double error detect (SECDED)” ECC.

41 Aeroflex

Table 4.1-1. March 17N bit errors at various Vcc and temperature combinations, Aeroflex Sample #1.
27V |28V |29V 3.0V |31V |32V |33V |34V |35V 3.6V 3.7V |38V 39V
65°C 10° | 10' | 10* | 10 | 10' | 10' | 10' | 10' { 10 | 10' | 10' | 10" | 10!

55°C 109 | 0 0 0 0 0 0 0 0 0 0 0 102
25°C 109 | O 0 0 0 0 0 0 0 0 0 0 0

-40°C 0 0 0 0 0 0 0 0 0 0 0 0 101
-55°C 0 0 0 0 0 0 0 0 0 0 0 0 104

Table 4.1-2. March 17N bit errors at various Vcc and temperature combinations, Aeroflex Sample #2.
27V |28V |29V 3.0V |31V 32V |33V |34V |35V 3.6V 3.7V 3.8V 39V
65°C 10° | 10' | 10* | 10" | 10' | 10' | 10' | 10' | 10" | 10' | 10' | 103 | 104

55°C 109 | O 0 0 0 0 0 0 0 0 101 | 104 | 104
25°C 109 | O 0 0 0 0 0 0 0 0 0 0 101
-40°C 0 0 0 0 0 0 0 0 0 0 0 0 107
-55°C 0 0 0 0 0 0 0 0 0 0 104 | 108 | 108

Table 4.1-3. March 17N bit errors at various Vcc and temperature combinations, Aeroflex Sample #3
27V |28V |29V | 3.0V |31V 32V |33V |34V |35V 3.6V 3.7V |38V 39V
65°C 100 0 0 0 0 0 0 0 0 0 0 105 | 108

55°C 109 | 0 0 0 0 0 0 0 0 0 0 105 | 109
25°C 109 | O 0 0 0 0 0 0 0 0 0 0 108
-40°C 0 0 0 0 0 0 0 0 0 0 0 109
-55°C 0 0 0 0 0 0 0 0 0 0 0 107




4.2 Honeywell
4.2.1 Sample #1

Table 4.2.1-1. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #1, Vecz = 1.5 V.
29V |30V |33V |36V |37V
115°C | 105 | 105 | 108 | 108 | 108
105°C | 10! 0 0 102 | 105
25°C | 102 | 10" | 102 | 102 | 10¢
-40°C | 106 | 108 | 106 | 107 | 107
-80°C | 106 | 108 | 106 | 107 | 107
-100°C | 106 | 106 | 106 | 107 | 107

Table 4.2.1-2. March 17N bit errors at various Vcc1 and temperature combinations, Honeywell Sample #1, Vec2 = 1.65 V.
29V |3.0V |33V |36V |37V
115°C | 105 | 105 | 108 | 108 | 108

105°C | 0
25°C | 102
-40°C | 102

-80°C | 106 | 106 | 108 | 106 | 108
-100°C | 108 | 108 | 108 | 108 | 108

Table 4.2.1-3. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #1, Vecz = 1.8 V.
29V |30V |33V |36V |37V
115°C | 105 | 105 | 108 | 108 | 108

105°C | 10!
25°C | 102
-40°C | 102

-80°C | 106 | 106 | 108 | 106 | 108
-100°C | 108 | 108 | 108 | 108 | 108

Table 4.2.1-4. March 17N bit errors at various Vcc1 and temperature combinations, Honeywell Sample #1, Vec2 = 1.95 V.
29V |3.0V |33V |36V |37V
115°C | 105 | 105 | 108 | 108 | 108

105°C | 102
25°C | 102
-40°C | 102

-80°C | 106 | 106 | 108 | 106 | 108
-100°C | 108 | 108 | 108 | 108 | 108




Table 4.2.1-5. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #1, Vecz = 2.1 V.
29V |(3.0V |33V 36V 3.7V
115°C 105 | 105 | 108 | 108 | 108

105°C | 102
25°C 102
-40°C 108

-80°C 106 | 106 | 106 | 106 | 106
-100°C | 108 | 108 | 108 | 108 | 108

4.2.2 Sample #2

Table 4.2.2-1. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #2, Vecz = 1.5 V.
29V |3.0V |33V |36V |37V
115°C | 0 10 0 10" | 10!
105°C | 10' | 10' | 10 0
25°C | 10" | 10! 0 10
-40°C | 102 | 10! 0 0
-80°C | 102 0 0 0
-100°C | 102 0 104 | 107 | 107

Table 4.2.2-2. March 17N bit errors at various Vcc1 and temperature combinations, Honeywell Sample #2, Vecz2 = 1.65 V.

29V |30V 33V |36V |37V
115°C | 0 0 0 0 0
105°C | 0 0 0 0 0
25°C | 1021 O 0 0 0
-40°C | 10 0 0 0 0
-80°C | 102 | 0 0 0 0
-100°C | 10! 0 0 0 0

Table 4.2.2-3. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #2, Vecz = 1.8 V.

29V |30V |33V |36V |37V
115°C | 0 0 0 0 0
105°C | 0 0 0 0 0
25°C | 1021 O 0 0 0
-40°C | 102 ] © 0 0 0
-80°C | 102 | 0 0 0 0
-100°C | 102 | 0 104 | 107 | 107




Table 4.2.2-4. March 17N bit errors at various Vcc1 and temperature combinations, Honeywell Sample #2, Vec2 = 1.95 V.

29V |30V |33V |36V |37V
115°C | 0 0 0 0 0
105°C | 10! 0 0 0 0
25°C | 1021 O 0 0 0
-40°C | 102 ] © 0 0 0
-80°C | 102 | 0 0 0 0
-100°C | 102 | 0 0 0 0

Table 4.2.2-5. March 17N bit errors at various Vccr and temperature combinations, Honeywell Sample #2, Viecz = 2.1 V.

29V |30V 33V |36V |37V
115°C | 102 | O 0 0 0
105°C | 102 | 0 0 0 0
25°C | 102 | O 0 0 0
-40°C | 102 | 0 0 0 0
-80°C | 102 | 0 102 | 102 | 102
-100°C | 102 | 0 104 | 107 | 107




5.0 CONCLUSION

The parts tested never failed in the regions tested/guaranteed by the manufacturer. And in most cases
worked well beyond the specified voltage and temperature limits.

Voltage appears to be more critical than temperature. Bit errors were seen in many cases at voltages right
outside the manufacturers’ recommended operating ranges.

As for the Honeywell parts, they operated well above and below the min/max operating temperature
limits. We did not test beyond +115°C or —100°C, so they could have operated beyond those values.

As for the Aeroflex part, it did not perform as well. This is because the parts tested were materially
different than the fully-tested space quality devices. There are “trim settings” that Aeroflex adjusts on
each chip during fabrication that adjusts the read and write control circuitry in order to achieve datasheet
operation over a wide range of temperatures. The prototype quality parts tested here did not have those
trim settings adjusted. So although they worked at cold temperatures, they began to fail at only 65°C,
even though the space part is specified to work up to 125°C.

Future reliability study of these devices should include fully-tested, space quality devices. At a price of
about $5000/part, the study would need to budget at least $30,000 just for parts.
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