
NASA KSC FO – Internship Final Report

Design and Development of Functionally Effective
Human-Machine Interfaces for Firing Room Displays

Henry Cho
 B.S.E. Aerospace Engineering
 University of Michigan, Ann Arbor
 NASA Kennedy Space Center
 KSC FO: Fall Session
 December 20, 2013

Kennedy Space Center 2 of 11 December 20, 2013

Design and Development of Functionally Effective
Human-Machine Interfaces for Firing Room Displays

Henry Cho*

University of Michigan, Ann Arbor, MI 48105
Kennedy Space Center, FL 32899

This project involves creating software for support equipment used on the Space Launch
System (SLS). The goal is to create applications and displays that will be used to remotely
operate equipment from the firing room and will continue to support the SLS launch vehicle
to the extent of its program. These displays include design practices that help to convey
information effectively, such as minimizing distractions at normal operating state and
displaying intentional distractions during a warning or alarm state. The general practice for
creating an operator display is to reduce the detail of unimportant aspects of the display and
promote focus on data and dynamic information. These practices include using minimalist
design, using muted tones for background colors, using a standard font at a readable text
size, displaying alarms visible for immediate attention, grouping data logically, and
displaying data appropriately varying on the type of data. Users of these displays are more
likely to stay focused on operating for longer periods by using design practices that reduce
eye strain and fatigue. Effective operator displays will improve safety by reducing human
errors during operation, which will help prevent catastrophic accidents. This report entails
the details of my work on developing remote displays for the Hypergolic fuel servicing
system. Before developing a prototype display, the design and requirements of the system are
outlined and compiled into a document. Then each subsystem has schematic representations
drawn that meet the specifications detailed in the document. The schematics are then used as
the outline to create display representations of each subsystem. Each display is first tested
individually. Then the displays are integrated with a prototype of the master system, and
they are tested in a simulated environment then retested in the real environment. Extensive
testing is important to ensure the displays function reliably as intended.

I. Introduction

As the end of the space shuttle program approached, NASA announced they would continue their efforts in space
exploration beyond earth orbit. The space shuttles were intended to reach only low earth orbit where the
International Space Station was assembled and where the Hubble Space Telescope was serviced for example. NASA
announced the Orion Multi-Purpose Crew Vehicle, which is a space capsule similar in shape of the Apollo era space
capsules but much larger and with modern technology. The Orion vehicle is designed to carry a crew of a maximum
of six people, twice as many as the Apollo capsules. The Orion vehicle is much safer than the space shuttles because
it is well protected during launch, whereas the space shuttles were exposed to debris collision during launch. It will
launch on a redesigned launch vehicle called the Space Launch System, based on the canceled Ares launch vehicle.
The operations at Kennedy Space Center needed to develop ground support equipment to service these new vehicles.
I accepted an internship and assigned to work on Integrated Launch Operation Applications as part of Control and
Data Systems at KSC. During my internship, I developed display software used to interface the ground servicing
equipment with the launch vehicle and Orion vehicle. An example of one of these displays is shown on Fig. 1.

* Display Developer for Firing Room Applications, Integrated Launch Operations Applications, Kennedy Space
Center, University of Michigan: Ann Arbor.

Kennedy Space Center 3 of 11 December 20, 2013

II. Requirements and Design

A. Schematics
 The schematics of the hardware system of the Hypergolic fueling system were designed by fluids engineers from
another department. These schematics are given to software developers to use as a basis for designing the software
used to control the physical devices in the field. These schematics were used as the direct basis for designing and
developing the remote displays used to control the Hypergolic fueling system. They were adjusted for the displays to
avoid crossing fueling lines to reduce confusion of the direction of flow.

B. Software Requirements and Design Specification
 The design phase of a software development lifecycle is the first phase but the most time-consuming phase
because it lays the framework for what is required and how to develop it. The design phase is divided into three sub-
phases: 30% design, 60% design, and 90% design.1 During the 30% phase, only the initial concepts and estimates
are outlined in the SRDS document. This phase includes estimates of the hardware required, size and complexity of
the developing software, and the estimated number of displays. During the 60% phase, the details of the software are
better defined. A software test plan (STP) is developed in the 60% phase which is a brief outline of the expected
results. By the end of the 90% design review, the software design and requirements are refined and detailed. Around
the end of the 90% phase, the team is ready to begin development and implementation of the software designed.

III. Development and Implementation

A. Minimalism
 Minimalism is a design style that reduces the number of non-essential features to produce a clean feel commonly
used to convey information effectively. Minimalism grew in popularity during the computer era and became
widespread more recently when displays and printers advanced to output at high resolutions to be able to produce
curved lines with smooth definition, making individual pixels and dots less apparent. This allowed fonts to be
displayed more defined curves, where each character appear as one object, not as a collection of pixels used to
approximate each character.

 The font Lucida Sans Typewriter that appears in my displays is poorly rendered. I do not know with certainty
whether it is the virtual machine fonts, Linux fonts, or the Java-developed Display Editor that which limits the
quality of the rendering. I speculate that the virtual machine limits the quality of graphical render, most likely to
improve performance. It was decided Lucida Sans Typewriter was the font required to use for text on all displays
because it is a standard font package included on all computers supported by NASA. This font is a sans-serif font, as
indicated in the font name. Sans, meaning “without,” indicates a font that does not have serifs, the protruding
features at the ends of a character such as in Times New Roman.

 Lucida Sans Typewriter is a good font to design displays because it also clarifies the ambiguity of most similarly
shaped characters as shown on Fig. 1. The two most similar characters are the uppercase o and the number 0. The
uppercase o has a slightly larger width than the number 0 but there is no obvious indication to differentiate between
the two characters. Especially the characters uppercase i and lowercase L are often confused in Helvetica-based
fonts. An example of this in Arial, which is very similar to Helvetica, is shown in Fig. 2. These two characters look
almost identical but they are not. The uppercase i is slightly thicker than the lowercase L. Lucida Sans Typewriter
clears this confusion by adding protruding features on these characters.

Kennedy Space Center 4 of 11 December 20, 2013

B. Colors
 Different colors indicate which commodity chemical flow through an active component and helps distinguish
from other commodities. The colors with a specific color name are taken from the X11 color scheme.2 X11 is a
windowing graphical interface for UNIX-like operating systems and is packaged with a list of RGB color values
with specific names. At least one name was assigned to each specific RGB color value. The X11 colors became the
basis for web colors.

 The commodities without color names are off-colors, not based from the X11 color scheme. Two different shades
of yellow were used to differentiate between Hydrazine and Monomethylhydrazine. The last color on Table 1 is not
assigned to a specific commodity but is used to color passive components used throughout all displays. A list of
these passive components is shown on Fig. 3.

i
Lowercase i

l
Lowercase L

I
Uppercase i 1

Number 1 7
Number 7

Figure 2. Comparison of Vertical Shaped Characters in Arial

o
Lowercase o

O
Uppercase o 0

Number 0
l

Lowercase L
7

Number 7 1
Number 1

l
Lowercase L

i
Lowercase i I

Uppercase i

z
Lowercase z Z

Uppercase z 2
Number 2

s
Lowercase s S

Uppercase s 5
Number 5

Figure 1. Comparison of Similarly Shaped Characters in Lucida Sans Typewriter

Kennedy Space Center 5 of 11 December 20, 2013

 Most of my displays have a solid gray color (RGB 204, 204, 204) as a background, intended to reduce eye strain
compared to traditional bright white display backgrounds. My displays that do not have the gray background are my
integrated displays, which are displays that combine smaller displays to better represent the whole system. The
integrated displays have background colors that match the header color of its corresponding display. Refer to
Appendix D for integrated displays.

 The color on the header indicates which commodity gets delivered through that part of the system. For example,
the color on the header is RGB 255, 212, 42, which represents Monomethyhydrazine being delivered. The header
colors on Hypergolic displays include a light-yellow color and a gold color, representing the fuels Hydrazine and
Monomethylhydrazine respectively and a green representing the oxidizer Nitrogen Tetroxide N2O4.

 For Hypergolic displays, the active components are grouped in rectangles with a fill color corresponding to the
commodity that flows through it. An example of an active component, a solenoid valve, is shown in Fig. 4, which is
grouped in a pale turquoise indicating gaseous Nitrogen flows through it. The vehicle interface panels have a
solenoid valve that mixes the flow of two gases, Helium and Nitrogen. These components are grouped using a
rectangle with a color gradient from tan to pale turquoise to represent the mixture. Refer to Appendix C for vehicle
interface panels.

C. Components
 The displays are comprised of passive components and active components. Passive components include
background shapes with fill colors, lines and arrows directing the path of the flow, and text box labels. These
components help group certain information together and help flow information in a certain direction. Passive
components specific to the Hypergolic fueling system are shown in Fig. 3. These symbols represent physical devices
out in the field, where personnel would have to be physically present in the field to operate, such as a manual valve.

Table 1. Common Commodity Colors

Commodity Color Name R G B Hexadecimal Example

Air Light Steel Blue 176 196 222 #B0C4DE

Ammonia Light Pink 255 182 193 #FFB6C1

Freon Aquamarine 127 255 212 #7FFFD4

Helium Tan 210 180 140 #D2B48C

Hydraulic Fluid Salmon 250 128 114 #FA8072

Hydrazine – 255 236 117 #FFEC75

Monomethylhydrazine – 255 212 42 #FFD42A

Hydrogen Khaki 240 230 140 #F0E68C

Nitrogen Pale Turquoise 175 238 238 #AFEEEE

Nitrogen-Tetroxide – 51 128 0 #338000

Oxygen Pale Green 152 251 152 #98FB98

Water Medium Blue 0 0 204 #0000CD

– – 96 74 123 #604A7B

Kennedy Space Center 6 of 11 December 20, 2013

 Active components of a display include the command buttons, measurements, and state indicators. Examples of
active components are shown in the solenoid valve below in Fig. 4, which include command buttons and state
indicators. These active components use a name called a Compact Unique Identifier (CUI), which is a set of alpha-
numeric characters, effectively a global system variable that carries a command or measurement signal. There are
naming convention guidelines when creating CUIs that identifies its project, system, and subsystem.3 An example of
a CUI is shown on Fig. 5. The fifteenth character represents the data type the CUI carries listed on Table 2.4 A CUI
is inserted into the properties of each component to uniquely identify the command or data measurement that passes
through the system. Command buttons have a command type CUI. Both alarm indicators and valve position
indicators have enumeration type CUIs, which is a data type with choices preset in the system. For example on Fig.
6, alarm indicators can display one of four possible states: Default, On, Off, and Error. The images are used to
visually represent the data, such as for valve position indicator states in Fig. 7 with six possible states. The centerline
on the Closed image in Fig. 7 is intended to represent a blocked path, perpendicular to a horizontally represented
fueling path. Use of either the vertical or horizontal centerline depends on whether the fueling path is horizontally or
vertically represented to correctly indicate a closed fueling path.

� Reference Number Numbers used to easily identify active components, e.g. SV105
� Find Number Numbers from the schematic used to uniquely identify every part, e.g. A185574
� Open Command button to open valve
� Close Command button to close valve
� Pulse Command button to open valve for a set valve between 0.0 s to 5.0 s, then closes
� Alarm Indicator Displays an alarm state of Default, On, Off, or Error

Figure 4. Solenoid Valve Comprised of Passive and Active Components

Relief Valve Eductor

Filter Check Valve

Manual Valve Orifice

Manual Regulator Pressure Gauge

Figure 3. Display Symbols of Passive Components

Reference Number

Open

Close
Pulse

Find Number

Alarm Indicator

Fueling Path

Valve Position Indicator

Kennedy Space Center 7 of 11 December 20, 2013

� Valve Position Indicator Displays a valve state of Default, Open, Closed, OPPRI, OPSEC, or Error

Default Open Closed OPPRI OPSEC Error

Figure 7. Valve Position Indicator States

Default On Off Error

Figure 6. Alarm Indicator States

Table 2. Data Types of Compact Unique Identifiers

Fifteenth
Characte
r

Data Type

–A.. Array
–B.. Boolean
–D.. Derived
–E.. Enumerated
–F.. Floating point
–G.. Group
–H.. Hexadecimal
–I.. Integer
–K.. Command
–M.. Modifiable command
–P.. Predefined command
–R.. Raw command
–S.. Command structure
–T.. Text
Z D d i

GSHGHG6FUSV574EY

Figure 5. Compact Unique Identifier for a Valve Position
Indicator for the Hypergolics System with an Enumerated Data

T

Data type

Unit type Project

System

Subsyste

Subsystem
ID

Component

Component
ID

Reference
Number

Kennedy Space Center 8 of 11 December 20, 2013

IV. Future Work and Improvements

A. Displays

1. All the display navigation buttons, which link to other displays, need to be corrected to their corresponding
file names.

2. All the pressure and temperature transducers active components, represented by the prefixes PX- and TX- on
the reference names, need to be added into the displays.

3. All the sidebars need to be updated with the correct components.

4. All the displays need to be tested to ensure that their active components correctly control the intended
device.

B. Display Editor

As I was working with the Display Editor, I discovered that there are basic capabilities missing, those of which
are often found in common graphical editing software. I also found bugs and imagined potentially new features
while working with the Display Editor, which should be corrected and added in future versions of the Display
Editor.

1. Copy and Paste Problem
When I select an object then copy it and I select another object without copying it, when I paste the Display

Editor will paste the second object I selected. Copy and paste does not function as a user would expect because the
Display Editor should retain the copied object. The problem is especially apparent when copying and pasting across
two displays. The problem should be fixed such that the copied object is retained as the correct object to be pasted.

2. Misleading Background and Foreground Color Options
The options to change the background and foreground colors are misleading shown in Fig. 8. Initially, my

supervisor and I thought the option to change the background color was to apply a background color on an entire
display. We thought it was a non-functional option until I discovered changing the background changes the fill color
of an object. Shortly after, I discovered the foreground color is used to change stroke color of an object. The naming
convention should be changed from “Background color” to “Fill color” and “Foreground color” to “Stroke color”

3. Rotate and Flip Options
The option to rotate or flip an object does not exist in the Display Editor. There should be options to rotate an

object 90º, 180º, 270º, and at an arbitrary degree set by the user. There should also be options to flip an object
horizontally and vertically. Rotating and flipping achieve different results, which is apparent when applied to
irregularly shaped objects.

Figure 8. Background Color and Foreground Color in LCS Display Editor

Background color

Foreground color

Kennedy Space Center 9 of 11 December 20, 2013

4. Unintended Alignment of Group Objects
When grouping a set of objects, the Display Editor does not create a new coordinate for the center or new height

and width dimensions of the group. Then, when aligning grouped objects with other objects, each separate object
within the group uses its own dimensions to align. For example, when aligning the vertical centers with a group of
objects, each separate object within will align its center coordinate with the other center coordinates as shown on
Fig. 9 below. When grouping a set of objects, a new center coordinate should be created as well as new width and
height dimensions such that the group should function as a single object.

5. False-Movable Object Moves During Alignment
When an object’s movable property is set to false, the Display Editor only restricts the user’s direct control of an

object’s location. The object is not allowed to move by clicking and dragging the object. However, when aligning
the false-movable object with another object, it will still change its location coordinates to satisfy the alignment.
This makes it difficult to precisely align objects on the header and sidebar. Setting the editable property to false also
continues to allow its coordinates to change during alignment. This should be fixed such that the false-movable
object remains unable to move and movable objects would align to its center.

6. Unconventional Controls of Zoom Magnification
The controls for zoom magnification are inverted compared to most conventions, such as those in Microsoft

Word and modern web browsers. Currently, the Display Editor zooms in with ctrl + scroll down and zooms out with
ctrl + scroll up. This is inverted from most magnification conventions. Normally to increase magnification, the user
would use ctrl + scroll up and to decrease magnification use ctrl + scroll down. I think the controls should be
corrected to meet this convention. Also, a new feature should be implemented that zooms towards and from the
coordinates of the mouse cursor when zooming in and out. Currently, it zooms in and out at the center of the display
area, having to adjust with the scroll bars.

7. Shortcut Keys
Shortcut keys should be mapped to commonly used actions and commonly accessed options such as setting

alignment, accessing the prompts to insert the CUI and image arguments, and toggling the grid with different grid
spacing settings. Usage of the mouse was an improvement for ease of learning how to use computers through
graphical interfaces. However, users should return to using keyboard shortcuts and even proceed towards scripted
automation if possible. The repetitive motions from using only the mouse to access a tool and then return to the
location to apply the tool is inefficient, when the other hand on the keyboard is immediately available to push a
button to access the same tool, all the while the mouse cursor is at the location to use it. Keyboard shortcuts are
necessary to optimally use design applications. This is apparent in Adobe creative applications and computer-aided
engineering software.

V. Conclusion
 In conclusion, human-machine interfaces that will be used to control potentially hazardous devices should be
designed to convey information effectively to reduce the likelihood of human error. For this reason, the displays for
the firing rooms are designed with a minimalistic style that is intended to be clean and intuitive while still conveying

(a) (b)

Figure 9. (a) Grouped Manual Valve Constructed from Two Rectangle Objects and One Thick-
Stroke Line, (b) Grouped Manual Valve Aligned at Vertical Center

Kennedy Space Center 10 of 11 December 20, 2013

the necessary information to operate the interface. A functionally effective interface also includes fonts that
differentiate between each character clearly and certain colors to focus on certain groups of information as well as to
differentiate one group from another group. Future improvements to these displays will likely continue to use a
minimalistic style but with the focus of information readjusted, such as increasing the contrast between background
elements and dynamic information components.

Kennedy Space Center 11 of 11 December 20, 2013

Appendix A. Acronyms and Abbreviations

Acronym/Abbreviation Description

CAE Computer-Aided Engineering

CM Crew Module

CUI Compact Unique Identifier

DE Display Editor

GHe Gaseous Helium

HP GHe High Pressure Gaseous Helium

Hz Hydrazine

LCS Launch Control System

MMH Monomethylhydrazine

MPPF Multi-Purpose Processing Facility

PCMP Propellant Container Manifold Panel

PF Post-Flight

PPP Pressurization and Purge Panel

RGB Red-Green-Blue color model

SLS Space Launch System launch vehicle

SM Service Module

SRDS Software Requirements and Design Specification document

STP Software Test Plan

SV Solenoid Valve

VIP Vehicle Interface Panel

Kennedy Space Center 12 of 11 December 20, 2013

Acknowledgments

Henry Cho thanks NASA Education for their internship program, Cheryle Mako for requesting interns through their
program, Kurt Leucht for his guidance during my internship, Joey Parkerson for his guidance on the software I
helped developed, and Gregory Clements for reviewing this report before publication.

References
1Leucht, K., “ILOA Software Development Lifecycle,” 2013, pp. 10-16 [cited 21 November 2013].

2dawes, “rgb.txt,” XFree86 CVS Repository, Rev. 1.1,
URL: http://cvsweb.xfree86.org/cvsweb/xc/programs/rgb/rgb.txt?rev=1.1&content-type=text/vnd.viewcvs-markup
[cited 21 November 2013].

3Leucht, K., “ILOA Implementation Standards,” 2013, pp. 21-22 [cited 3 December 2013].

4 “CUI Character Lists,” Integrated Launch Operations Application Software Wiki Home Page, August 2009, URL:
https://nasa-
ice.nasa.gov/confluence/display/GOLCSILOA/LCS+Integrated+Launch+Operations+Application+Software
[cited 4 December 2013].

