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A survey of gradient reconstruction methods for cell-centered data on unstruc-
tured meshes is conducted within the scope of accuracy assessment. Formal order
of accuracy, as well as error magnitudes for each of the studied methods, are eval-
uated on a complex mesh of various cell types through consecutive local scaling of
an analytical test function. The tests highlighted several gradient operator choices
that can consistently achieve 15 order accuracy regardless of cell type and shape.
The tests further offered error comparisons for given cell types, leading to the
observation that the “ideal” gradient operator choice is not universal. Practical
implications of the results are explored via CFD solutions of a 2D inviscid stand-
ing vortex, portraying the discretization error properties. A relatively naive, yet
largely unexplored, approach of local curvilinear stencil transformation exhibited
surprisingly favorable properties.

I. Introduction

Computational Fluid Dynamics (CFD) tools are now routinely used for direct support/guidance
of fast-paced engineering design processes. Moreover, a CFD model is expected to represent an
increasingly high level of geometric fidelity of a given design while in many cases, the analyst is
afforded little time to setup the computational mesh. This encourages the trend of preferring ap-
proaches that require little, if any, investment in grid generation. The unstructured methods in CFD
are becoming ubiquitous in the industry due to the attraction of semi-automated meshing coupled
with the capability to resolve boundary layers efficiently through use of high aspect ratio prism cells.

An unstructured mesh, commonly depicted as consisting of tetrahedral elements, can be consid-
ered a superset encompassing any valid cell geometry including hexahedral, tetrahedral and arbitrary
polyhedrals (see Figure 1). Utilization of unstructured meshes offers a great deal of ease and flexi-
bility in terms of mesh generation compared to the traditional, block-structured approach. The lack
of inherent assumptions about the element types and their connectivity helps achieve a somewhat
automated meshing. While the price paid in return is often understood as reduced computational
efficiency for a given mesh size, accuracy of the simulations may also suffer. This is largely due
to the fact that an unstructured volume mesh quality is typically only controlled through limited,
indirect inputs to the mesh generator. Furthermore, lacking a Cartesian structure or a mapping
to one, unstructured meshes do not benefit from properties such as a regular stencil, exact cancel-
lation of truncation errors and independence of spatial dimensions. This requires extra care to be
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Figure 1: Example meshes with (a) Hexahedral, (b) Tetrahedral and (¢) Arbitrary polyhedral cell
types.

taken in order to preserve accuracy for general cell types. In short, giving up the great level of
user involvement and control over the mesh generation process is desirable in terms of the cost of
mesh generation, but the burden is transferred to the unstructured solver to maintain accuracy and
stability despite potentially sub-quality meshes.

During implementation of an unstructured solver, a choice about where to place the discrete data
must be made. Alternative choices include vertices, face-centers, cell-centers or a combination. While
advantages and drawbacks of each approach have been heavily debated in the CFD community, 2
the current authors feel that no clear “best” choice emerges. Since this study is targeted towards
the Launch Vehicle and Ascent Aerodynamics (LAVA) CFD solver,®® the focus will be limited to a
cell-centered, finite-volume scheme. Gradient operator choice for an unstructured solver has a strong
impact on accuracy, efficiency and robustness. While all of these are crucial factors, we limit our
scope to the analysis of accuracy alone.

Aftosmis et al® investigated the behavior of linear reconstruction techniques on unstructured
meshes. Their chief concern was the behavior of limiters and the effect of element types (triangular
vs. quadrilateral) for CFD solutions, particularly for high aspect ratio or irregular elements. They
did however, investigate the least squares (LSQR) and Green-Gauss methods for gradient calculation.
The methods behaved similarly for regular meshes whereas the LSQR was found to be more tolerant
to mesh distortions. Mavriplis” examined the LSQR procedure for gradient reconstruction, observing
that the method produced accurate gradients for isotropic meshes but the accuracy deteriorated for
highly stretched meshes in the presence of curvature. In the latter case, they found the Green-
Gauss reconstruction method to be more accurate. Shima et al® devised an LSQR method where
they incorporate weights based on face areas, attempting to inherit benefits of the Green-Gauss
method for stretched meshes. While they note accuracy improvements, they still resort to a hybrid
approach where Green-Gauss method is used for thin and distorted mesh regions.” A comprehensive
survey of unstructured mesh gradient methods, in the context of computer graphics, is conducted
by Correa et al.' They focus on cost and performance in volume rendering with respect to mesh
resolution, element shapes, neighborhood size and scalar field complexity. They find the inverse
weighted regression method to provide the highest accuracy for irregular meshes and the Green-
Gauss method to perform poorly for badly shaped elements.

In the following sections, calculation of geometric properties (areas, volumes and centroids) for an
arbitrary polyhedral computational cell is described. We then summarize a few common approaches
(Green-Gauss with various face averaging schemes and Least Squares) to gradient reconstruction,
as well as a simplistic, and largely ignored, approach of applying a local curvilinear transformation.
The alternate methodologies are tested for formal order of accuracy by consistent local refinement of
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a complex unstructured mesh of various cell types and shapes representing those that are commonly
encountered in a practical unstructured CFD meshes. Linear-exactness of the gradient operator
(i.e. ability to exactly reproduce the gradient of a linear function) is verified for several of the
investigated methodologies. This often overlooked property is a necessary condition to achieve a
274 order accurate scheme.'™ 2 Besides the formal order of accuracy, error magnitudes through the
refinement levels for a set of different cell types are compared. The methodologies are also tested
for a 2D standing inviscid vortex problem where the dissipation rate of the vortex, which is purely
due to the numerical discretization error, is compared.

II. Geometric Properties

Given an unstructured mesh of arbitrary polyhedral cell types, the first problem faced with is the
calculation of the geometric properties of cells and faces. While calculating these, care must be taken
to respect some underlying assumptions of a conservative scheme such that Q = UC;, C;NC; = O
for ¢ # j (i.e. the computational cells, C;, should completely cover the domain, €2, and that they
must be non-overlapping). Each control volume should be water-tight and hence the vector sum of

their face areas must be zero,
Nygces

S Ai=0 (1)

i=1
Furthermore, the solver implementation must ensure that the neighboring cells use the same area,
normal and centroid for a shared face. The procedures for calculating consistent geometric properties
of faces and cells are explained below.

II.A. Polygonal Face Area and Centroid

N3

ny
Figure 2: Triangulation of a polygon.

A polyhedral cell consists of a number of polygonal faces forming a closed volume. The area
vector and the centroid location of each face needs to be computed. This can be achieved via
triangulation of the polygon around a given point f as shown in Figure 2. A convenient starting
location for the point f is the midpoint (simple average of the nodes of the polygon).

rp=— T, 2
! anodes " ( )

where Nypodes denotes number of face nodes and 7 is the position vector. The area of each of the
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triangular patches are added to get the area of the polygon face.

Atrii = . . - for ¢ = 17 anodes (3)

and N, 40 +1 = T1-
Centroid of the face is computed in a similar fashion as

Nnodes
— 1 1 = = r
= |/Y | Z ‘Atri,i| (Tni +Tniy T Tf) /3 (5)
fhi=1

Note that the face centroid 7y was initially taken as simply the midpoint of the nodes but it is
updated at the end of the process. In the case of a planar polygon, this updated location reflects
the true centroid of the polygon. However, while not desirable, polygon nodes may be highly non-
coplanar in practice. This introduces ambiguity to the centroid location as no unique definition
exists based solely on the knowledge of the node coordinates. In this case, simply iterating over
Equations 3-5 until convergence provides a reasonable answer.

The triangulated polygonal face, even if non-coplanar, is still attached to each of the vertices
defining it as opposed to an approach where one might fit a planar surface to the vertices. This
ensures that, once all the faces of a cell is processed, a water-tight control volume is achieved.
We note once again that regardless of the aforementioned ambiguity for non-coplanar polygons,
consistency can be retained if the cells sharing a face use the same face centroid and area for their
reconstruction and flux integration.

II.B. Polyhedral Volume and Centroid

Figure 3: Tetrahedralization of a polyhedral (showing a single face).

The volume and the centroid location of a polyhedral cell can be computed via tetrahedralization,
basically by extending the logic presented in the previous section to 3D. Figure 3 shows a single face
of a polyhedral cell and the corresponding tetrahedralization around a midpoint m.

1 Nenodes

= S :
" Ncnodes i—1 " ( )

where Nepodes 18 the number of cell nodes. Volume of each tetrahedral patch formed over the
polygonal face f is then

1 . o
V;Eet,f,i = gAtm',f,i ' (rm - rf) (7)
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where /th t,; and 7 for a given face f is obtained from Equation 3 and Equation 5 respectively.
This usage of face triangulation around the previously calculated centroid ensures that a consistent
volume is obtained.

The integrated volume and the centroid of the polyhedral cell is then calculated via summation
of the contributions from each face as

Nyaces Nfnodes

V=" Y Vi (8)
f=1 =1

1 Nyaces Nfnodes

Te = 4V Z Z (Fag P + 75 + ) View, i (9)
f=1 =1

where Nyqces is the number of faces, Nypnodes is the number of face nodes and 7 N, ... +1 = T1,1-

The arbitrary polyhedral meshes are typically generated via dualization of an initial tetrahedral
mesh. Thus, the polyhedral cells generated this way are inherently tetrahedralizable. However, a
more general procedure based on the Green-Gauss theorem that does not rely on this assumption
could be adopted such that

Nfaces

1 IS
/=1
1 Nfaces
_ 2 ) -
Tei = o4 fz_:l ryiAypi fori=1,2,3 (11)

III. Gradient Calculation

The difficulty in calculating gradients in an unstructured mesh stems from the lack of a consistent,
inherent connectivity. The stencil for gradient calculation, as well as the corresponding coeflicients
vary cell-by-cell and are costly to compute. Hence, those are typically pre-computed and stored.

Two of the most common methods for gradient calculation are the Green-Gauss and the Least
Squares approaches. Both have several common variations, some of which are explained in the
following sections.

III.A. Green-Gauss Gradient Method

o

(a)

Figure 4: Notations for (a) a control volume (b) a computational cell.

The Green-Gauss method represents an intuitive, sound basis for gradient calculation. According
to the Green-Gauss theorem, average gradient of a scalar ¢ in a closed volume V' (Figure 4a) can be
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obtained by

Hj VodV = @8 HidA (12)
174 A
Vo = % ﬁ pidA (13)
A

where 11 is the surface unit normal vector and A is the surface area. For a 2"? order scheme with
midpoint quadrature, the Green-Gauss method takes on the following discrete form for a polyhedral
(Figure 4b):

Nyaces

1 _
Vo= J; Gsiip Ay (14)

where Nyqces is the number of faces and qgf is the average of the scalar over the face f.

Up to this point, average gradient of a linear function at the polyhedral cell centroid is represented
exactly by Equation 14. The potential errors are introduced through the particular choice of a face
averaging method to obtain q_Sf. Several common alternatives in this regard are discussed below.

IT.A.1.  Simple Face Averaging

Figure 5: Simple face averaging.

Simple average of the cell center values at the left and right sides of the face is taken as the face
center value (Figure 5).
éf _ ¢Cleft + ¢Cright
2
As the most basic approach, the simple averaging method is still commonly used due to its attractive
properties of straightforward and cheap implementation. In fact, its usage is usually implied when
cell-centered Green-Gauss gradient method is referred to without mention of the associated face

averaging method. This, in some cases, leads to unfair characterizations of the Green-Gauss method
itself.”®

(15)

II1.A.2.  Inverse Distance Weighted (IDW) Face Interpolation

Another popular approach to face averaging, IDW method utilizes the entire neighbor stencil around
face f (see Figure 6).

5y = Szt /1P
il 1/1d?

where the sum is carried out over the entire stencil and d: = 13 — 7'y represents the distance between
the stencil point and the current face center.

(16)
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Figure 6: Inverse Distance Weighted (IDW) and Least Squares (LSQR) face interpolation stencils.

IDW has shortcomings when the neighboring cell centers are not evenly distributed around the
face but clustered in certain directions; a scenario likely to occur for regions with poor grid quality
or at the interfaces of different cell types in mixed cell type meshes. In addition to this non-isotropy,
potentially large discrepancies in stencil distances may skew the weights significantly, a phenomena
made worse by the usage of squared distances. Nonetheless, the squared weighting seems to be
the most common approach taken with IDW and hence we chose to adopt it for our evaluation.
Variations of this method involving different weightings (e.g. volume, inverse distance, ... ) are
possible but this does not change the fundamental flaws explained above.

II1.A.3. Weighted Least Squares (LSQR) Face Interpolation

The weighted /unweighted least squares face interpolation coefficients are derived by considering the
Taylor series expansion of ¢; at the i*" stencil point around the center of the face (see Figure 6):

¢i = ¢f + A$i¢f,x + Ayigf)ﬁy + h.o.t. (17)

where Az; is the z-direction component of the distance vector d; and @, is the z-derivative of
the interpolated scalar ¢ at face f. By considering the Taylor series expansion, a functional can be
obtained as

N
F Wiy 60, Sfar by ) = Y Wi [Ay — Axidra — Ayicrpy — hoot]”, (18)

i=1

where w; are the weights for each stencil point ¢ and A¢; = ¢; — ¢5. In order to derive the stencil
coefficients, the functional f (w;, @i, @z, @5y, ...) is minimized.

of U
L
f =
E ; [Ag of, Yidry ] (19)
of &
_— = Z 2wiAyi [A(bz — A$i¢f@ — Ayiqbf,y — h.O.t.] =0
00y i
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Utilizing Equations 19, a linear system of equations in terms of the stencil values ¢; and ¢¢, and
the derivatives ¢, and ¢, can be written as

-

A‘i;f ZEQZ)’& - (bf = A_lﬁgs; with (ﬁf = [¢f}¢f,wa¢f,y]T7 ¢_§s = [¢1a¢27¢37"']T7 (20)

A=Y wAz; > w;Az? Y wiAr;Ay; |, and B = |wAr; woAx; .| . (21)
Z w; Ayi E wiAa:iAyi z w; Ay? w1 Ayi w29 Ayi

The stencil coefficients C; for each stencil point are contained in the first row of A™*B. The
coefficients can be expressed in the short form notation as:

Ci = Aj 1By, (22)

where A;i is the value in the first row and k** column of A. The interpolated value at the face is
then expressed as

N
b5 = Citi (23)
i=1

Current implementation of this method in LAVA uses inverse distances as the stencil weights for
the LSQR method: .
w; = 1/|dl| (24)

IIT.A.4. Weighted Tri-Linear Face Interpolation (WTLI)

L)

(a) Single triangle (b) Triangle combinations
Figure 7: Weighted Tri-Linear (WTLI) face interpolation stencil selection.

Given data at 3 non-colinear points forming a triangle (4 non-coplanar points in 3D forming a
tetrahedron) around the face f (see Figure 7), a linear regression can be formed as

xr1 T I3 Cl Ty
i Y2 ys| 4Cap =1Yr (25)
1 1 1| |G 1

The stencil coefficients C; can then be used to perform the face interpolation as

¢f =Ci1¢1 + Cip2 + C193 (26)
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The coefficients C; will be positive if the face center f lies within the triangle, ensuring a monotone
interpolation. Figure 7b shows some of the other possible options for the interpolation triangle.
LAVA implements this method by utilizing all the possible triangles (tetrahedra in 3D) enclosing
point f. Each triangle’s stencil coefficients are then weighted with the inverse of triangle center’s
distance from the point f and combined, hence the name Weighted Tri-Linear (WTLI) interpolation.

III.B. Least Squares (LSQR) Gradient Method

g
®

(a) Compact (b) Extended
Figure 8: Least Squares (LSQR) gradient stencils.

The Least Squares gradient method utilizes the same basic technique employed in obtaining the
LSQR face averaging (used for the Green-Gauss method) as described in Section III.A.3. However, in
applying LSQR for direct calculation of the gradient, the stencil is now centered around a cell center
as opposed to the face center. Either a face neighborhood (referred as compact stencil, as shown in
Figure 8a) or the node neighborhood (referred as the extended stencil, as shown in Figure 8b) of the
cell ¢o can be used. Thus, the ¢y in Equations 17-21 is now replaced with ¢¢ and the lower limit of
summations now start from ¢ = 0 (i.e. including the target cell center). The distance vector is now

—

d; =T; — 70 (27)
The resulting gradient stencil coefficients
Ciw = Az 1By (28)
Cioy = Ay LBy, (29)
are used the obtain:
B N
$ra=Y Cizdi (30)
i=0
B N
b1y = Ciydi (31)
i=0

The same inverse distance weighting as shown in Equation 24 is used here as well.
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III.C. Curvilinear Gradient Method

n=1 ®j1
)

Qi1 Qi1
§€=0 &=1

n=0 ®j1

Figure 9: Curvilinear gradient stencil and mapping.

The curvilinear gradient method imitates a structured-grid approach by mapping the local cell
gradient stencil to a uniform Cartesian mesh. For this mapping, a 4 point stencil (6 points in 3D)
needs to be selected from the available cell neighbors. Figure 9 shows one such selection. The
selection procedure evaluates every possible combination of stencil point pairs to pick curvilinear
directions € and 7. Once the stencil is selected, central differencing yields

0
78? = ¢i+1 — Pi1 (32)
0
£ = ¢jr1— Pj1 (33)

The gradient in Cartesian coordinates can then be arrived as

09 09 z 0
{aa;} — gt {85} with J = F% 81511 _ [(xiﬂ —xi1)  (Yiy1 — Yi-1) (34)

2 P or o
szyS a% o (i1 —25-1)  (Yje1 —Yj-1)

In the current implementation, the stencil pairs that produce the largest determinant of the
Jacobian |J| are selected out of all the possible options. Considering that only a compact neighbor-
hood consisting of face sharing cells are considered for the stencil selection. The largest Jacobian
determinant criteria usually identifies the most orthogonal £ and n directions.

Figure 10: Shared-point curvilinear gradient stencil for a triangle.

Note that the stencil pairs are allowed to share points (see Figure 10). This enables application of
the curvilinear method to the cell types which have less than 6 faces (e.g. tetrahedron). Among the

10 of 24

American Institute of Aeronautics and Astronautics



gradient calculation methods described herein, the curvilinear method results in the most compact
stencil (at most 6 points in 3D).

IV. Order of Accuracy Assessment

IV.A. Methodology

Figure 11: Test mesh for gradient order of accuracy assessment.

The gradient calculation methods outlined in the previous section are assessed on a test mesh
(see Figure 11) that contains various cell types.

Table 1. Test mesh cell types.

Quadrilateral Triangular Polyhedral
Square Equilateral Random
Stretched Regular patterned right

Stretched with curvature | Random patterned right
Stretched
Stretched with curvature

Random

Maximum aspect ratio of the stretched cells is around 2000.

In order to assess the order of accuracy (OOA), the numerical gradient of a known test function is
compared to its analytical value on consecutively refined meshes. This requires consistent refinement,
which is not easily attained for unstructured mesh types. Instead of global refinement, we adopt a
method where each cell and its immediate neighbors that form its gradient stencil are locally scaled
down for each refinement level k. In the implementation, this is effectively achieved by scaling the
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Figure 12: Local scaling of a cell and its gradient stencil.

distribution of the test function:

;= (1 +ay;+ag; + Il,ixQ,i) el W] = | +sin 47; (35)

7
where
" T4
Tl = 75— 36
1 2k|6min‘ ( )
« T2
IQ,Z‘ - 2k|€maw| (37)
21 = (7 — 7o) - do, (38)
2o = (75 = 70) - do, (39)
07;1 _ imzn and d_;cl % J;Jz =0 (40)

where 7 is the stencil point (neighbor cell center), k is the refinement level, €,,;, and €., are the
shortest and longest edge vectors respectively. The function ¢ is evaluated on a local coordinate
system with an origin at the center ¢g (see Figure 12) and aligned with the direction of the shortest
edge €,i, of the cell in question. The distribution is also anisotropic, i.e. the function changes more
rapidly in the direction of the shortest edge. The function is evaluated for each cell (and its stencil)
repeatedly through several refinement levels and the error in the resulting numerical gradient is
calculated,

618 = ’vqsg,numerical - V(bo,ewact’ (41)

enabling estimation of gradient order of accuracy for cell 0 as

_ log (5" /<f)

@)
0 log 2

(42)

IV.B. Results

The gradient order of accuracy (OOA) for various aforementioned methodologies are presented in
Figures 14-20. The OOA, calculated between refinement levels 19 and 20, are shown separately in x
and y directions. Note that, for a 2" order scheme, a gradient operator OOA of at least 1 is needed.

Figure 14 shows the distribution of OOA for the LSQR scheme with compact stencil. The
operator is able to produce at least 15¢ order accuracy in the entire field. The cells with a uniformly
spaced stencil that are aligned with z or y directions exhibit 2" order accuracy in the corresponding
directions. This is due to perfect cancellation of 15¢ order errors and it breaks down as soon as mesh
uniformity is lost.
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LSQR with the extended stencil yields similar results (see Figure 15) to that of the compact sten-
cil, with the exception that the 2"¢ order accurate region is narrower as expected. The cancellation
leading to the increased order now needs to be satisfied in a wider stencil.

The Green-Gauss method with simple averaging as well as IDW fails to achieve 1% order accuracy
as seen in Figures 16 and 17 respectively. Both of these methods neglect to incorporate directionality
of their stencils and neither is linear-exact, i.e. can’t reproduce gradient of a linear function exactly.
Even a 1D scenario with non-uniform spacing (see Figure 13) is sufficient to show that their leading
error term is 0" order. This is demonstrated below for the case of the simple averaging.

i-1/2 i+1/2

i-1 i i+1

Ax;y Ax; AXiy

Figure 13: A 1D stencil with non-uniform spacing.

The simple face averages,

i + O
Gir1/2 = % (43)
i—1 + @i
Gi—1/2 = % (44)
are used to calculate the gradient via the Green-Gauss method as
GG, _ Pit12 —bicrj2  Git1 — dia
Taylor series expansions around point 4 in forward and backward directions,
Az; + Az Az + Aziy)’
bir1 = ¢; + v@# + v2¢iw +O(Az?) (46)
Az; + Az Az + Az;q)?
Gi-1 =i — V(ﬁi% + VQ@% +O(Az?) (47)
are substituted in Equation 45 to yield:
1 Az + Ax,;
GGy , oy oAl T ARl
V& ¢, Az, {th (sz + 5 )
202 (Aziy1 — Amiy) + Aa? ) — Azl
+ V2, zi(Azip1 — A 81) ri ., — Axj +(’)(A:p3)]
B 1 A$i+1 + Ax;_1 2 AZCiJrl — Az, szerl - Ax?71 2
=V (2 Ly v ) + V¢; 3 " 16Az, + O(Az7)
1 Awmiy + Az
— Vi + Ve (—2 + m) +0(Az)
(48)

Equation 48 shows that the leading error term in the simple face averaged Green-Gauss gradient
operator is 0 order. We also observe that when Ax; = Az, = Aw;yq, 2" order accuracy is
attained. The equation can also be cast as

VG, = CV¢; + O(Ax) (49)
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where C is a constant (with uniform refinement):

c_ 1 . Azip1 + Axi_y

This implies that the estimated gradient will converge to a value in a 1% order accurate manner.
However, the converged value will be different from the exact value by a factor of C. In other words,
the method is intrinsically inconsistent. This is easy to overlook in practice, since the value of C is
regularly close to 1. This, although, should not be taken as granted since a general unstructured
mesh for a complicated geometry can contain cell groups leading to a gross violation of this property,
hence producing large local errors.

A similar analysis can easily be performed for the IDW method, with the same conclusions.
These two methods (Green-Gauss with simple face averaging or IDW), although commonly applied
in practice, are inconsistent and should not be preferred.

The WTLI and LSQR face interpolation methods for the Green-Gauss gradient yields very similar
results (see Figures 18 and 19). Thanks to their linear-exact property, they are able to achieve 15!
order accuracy, with the exception of a limited number of cells. Recall that the plotted OOA
distributions are generated using the error drop between refinement levels 19 and 20. The cells that
appear to fail the test here were indeed 1°¢ order accurate at around 15" refinement level. Also
observing that this group of cells exhibit a rather greater variation of length scales in their stencils,
it is not far-fetched to assume that the ailment is an early onset of the round-off error. Nonetheless,
this still exposes a poor quality of these schemes compared to the pure LSQR gradient.

The curvilinear gradient results, as shown in Figure 20, are much like those of the LSQR with
compact stencil. This is not surprising as both methods are linear-exact and both utilize compact
stencils. Note that the curvilinear gradient operator has the most compact stencil of the alternative
methods in scope here, utilizing at most 4 points (for 2D).

The Figures 14-20 also report the minimum and maximum order of accuracies observed in the
entire domain. For the LSQR and curvilinear methods, the min/max order of accuracies are bounded
between 1 and 2, indicating that all the cells in the domain, including the thin cells next to the
boundary, achieve at least 15¢ order. The other methods produce at least a few cells that violate this
range and exhibit a large positive or even negative order of accuracy. Note that these min/max values
are obtained from the error comparisons between 19" and 20" refinement levels (see Equations 35-
40). The cells that stall in error convergence earlier exhibit fluctuations in error magnitudes with
further refinement levels. These fluctuation magnitudes can be relatively large compared to the
expected error corresponding to 1%t order accuracy at level 20 , hence resulting in the seemingly
random order of accuracies greatly deviating from the reasonable range of 0 to 2.

14 of 24

American Institute of Aeronautics and Astronautics



e 1 2 6 1 2

Max=2.02 Max=2.01

Min=1.00 Min=e.95
(x-direction) (y-direction)

Figure 14: Gradient order of accuracy distribution for the LSQR Compact method.

o N E= .

[¢] 1 2 0 1 2
Max=2.00 Max=2.00
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(x-direction) (y-direction)
Figure 15: Gradient order of accuracy distribution for the LSQR Extended method.

While order of accuracy is a crucial property to inspect, it is pertinent to look at the actual error
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Figure 16: Gradient order of accuracy distribution for the Green-Gauss Simple method.

i .
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Max=2.00
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Figure 17: Gradient order of accuracy distribution for the Green-Gauss IDW method.
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Figure 18: Gradient order of accuracy distribution for the Green-Gauss WTLI method.
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Figure 19: Gradient order of accuracy distribution for the Green-Gauss LSQR method.
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Figure 20: Gradient order of accuracy distribution for the Curvilinear method.
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Figure 21: Global error norms for x-direction gradient for various gradient methods.

levels as several of the gradient operator choices were demonstrated to satisfy 1°¢ order accuracy.
Figure 21 shows the L., and Lo error norms with respect to the refinement level. First we would
like to clear the peculiar behavior of the Green-Gauss method with simple and IDW face averaging.
Both seem to approach a 1% order convergence rate before stalling at a fixed error level. This is due
to the aforementioned inconsistency as they converge, in a 15! order manner, to a gradient value that
is not consistent with the exact value. Note here that without a deep enough convergence study,
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this issue could have been overlooked, leading to a false conclusion that these methods are 1%¢ order
accurate.

The rest of the operators are all linear-exact, and consequently they all consistently exhibit 15¢
order accuracy as it was apparent from the OOA distributions shown earlier on the test mesh. The
error norms shown in Figure 21 now reveal that the Green-Gauss methods (with WTLI or LSQR
face averaging) yield significantly larger errors compared to the curvilinear or the LSQR methods.
Within the latter group, the LSQR compact has slightly lower error then the LSQR extended while
the curvilinear method places in between.

Further drilling down on the results, we inspect errors for individual cells of various cell types
as seen in Figures 22 and 23. Note that each cell type is sampled from the test mesh (Figure 11) so
that their stencils are also the same type.

For regular cell types (square, equilateral triangle and right triangle), all the gradient operators
are able to produce at least 1°¢ order accuracy. In fact, the square cell type stencil yields 2"¢ order
accuracy for each method. The curvilinear method produces a notably smaller error for this case.
For irregular stencils, which are of greater practical interest, we start observing the familiar result
of convergence stalling for the inconsistent schemes, namely the Green-Gauss method with simple
or IDW face averaging.

Discarding the special case of the square stencil, the LSQR gradient operator consistently pro-
duces the lowest errors except for the cases of thin triangles and thin quadrilaterals (commonly
encountered in boundary layer regions of CFD meshes). For the thin cells, the trend reverses and
the LSQR method yields the largest errors while the consistent Green-Gauss methods perform the
best. Note that the thin cells mentioned here were sampled near the curved boundary region of
the test mesh. Whereas the Green-Gauss method exhibited mediocre performance elsewhere, its
favorable behavior in the crucial boundary layer type meshes demonstrates its appeal.

The errors associated with the curvilinear method were erratic, yielding the best result for the
square cells and placing among the lower error range elsewhere with two exceptions; the thin quadri-
lateral and the arbitrary polyhedral where it exhibited the largest errors. This suggests that a
smarter logic for stencil reduction (in 2D, down-selection of 4 stencil points) needs to be developed.
Otherwise, we consider this method promising, considering that it has the most compact stencil,
hence the lowest computational cost.
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Figure 23: X-gradient error vs. levels of refinements for various cell types in the domain. (Continued)

V. Decay of an Inviscid Vortex

The previous section examined the accuracy property of various gradient operator choices. In
this section, we look into some practical implications in terms of the discretization error of a CFD
solver.

The cell-centered, 2"¢ order accurate MUSCL!'3 scheme of LAVA uses a piecewise linear recon-
struction to cell faces as

uf = Ue + Ve - (TFf — 7e) (51)
While the gradient operators, as explained in the previous sections, are not upwinded, the fluxes at
the faces are evaluated using the AUSMPW+'4 upwind flux function.

In order to compare the influence of each gradient operator on the scheme’s discretization error,
a 2D inviscid standing vortex test case was adopted. The initial conditions were chosen to match
those published by Pulliam'® as

2
T="7T. — ‘/8 (’y — 1)62Gs(1—7'2)

* 16Gyn?
1
p= T G-
52
= M — Yo — )G 1) 5
U = Moo 9 (y 2/0)6
T
v, >
v = E(x — x)eCe(=m)
with
Mo =0, Too =1, and y = 1.4 (53)

The vortex strength is taken as Vy = 5 and the Gaussian width scale is G5 = 0.5. The vortex
core origin is at (xg,yo) = (0,0) and the radial coordinate is defines as

r=/(z—20)%>+ (y — y0)? (54)

The initial pressure distribution for the vortex is plotted in Figure 24. Time integration was
carried out using an implicit, 2% order accurate dual time stepping scheme with a step size of
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At = 0.05 for 10000 steps. A dual iteration residual drop of at least 8 orders of magnitude was
enforced for each time step (Ls norm of the continuity equation residual was used).

Figure 24: Initial pressure distribution for the 2D inviscid vortex.

Two different meshes were utilized; a square cell type and a random triangulation using a uniform
cell spacing of Az = 0.1. Both meshes spanned a range 20 unit lengths around the vortex core.
Although both meshes use the same cell spacing, the triangular mesh naturally ended up having
about twice as many cells, hence, degrees of freedom.

Note that in the ideal case, the vortex is expected to stay stationary and retain its initial condition
indefinitely since there is no physical mechanism to dissipate it. However, it gradually loses its
strength over time due to the numerical dissipation. As an indicator of the vortex strength, the
minimum pressure in the domain was tracked throughout the time integration. The test is repeated
for several choices of gradient operators on both meshes, while everything else is held identical.
Figure 25 shows the results for both the square and the random triangular meshes. The ideal
behavior is for the quantity (Pref — Pmin)/Pres (plotted on the vertical axis) to remain constant.
The observed decay is the result of the numerical scheme’s discretization error which seems to be
quite sensitive to the particular gradient operator choice.

An immediate observation is that there is a stark difference between the decay rates of the 1%¢
and 2"¢ order accurate schemes (the former assuming a constant distribution of variables within
each cell, hence simply assuming a zero gradient).

On the square mesh, all the compact stencil operators (LSQR compact, Green-Gauss simple and
curvilinear) yielded relatively lower decay rates. In fact, they delivered identical results. The other
two gradient methods (LSQR extended and Green-Gauss LSQR) which operate on larger stencils,
were comparable to each other while having a relatively higher decay rates.

On the random triangular mesh, similar observations with regards to the stencil compactness
hold true. However, the inconsistent Green-Gauss simple averaging method exhibited a severely
large amount of dissipation, coming closer to the 15 order scheme than the family of 2" order
results. Another notable issue is that the LSQR compact method, initially exhibiting a slightly
lower dissipation than the curvilinear method, was unstable on this mesh and diverged at around
3500 steps. We should note here that no limiters were used in these simulations and that the
robustness, while a crucial property, is not in the scope of the current paper but left for a future
study.
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Figure 25: Dissipation of an inviscid standing vortex.

VI. Conclusions

A detailed accuracy study of gradient calculation methods for cell-centered unstructured data
is presented. Necessity of the linear-exactness property for 1%¢ order gradient accuracy, and conse-
quently a 2" order scheme, is emphasized. A straightforward, yet novel, approach utilizing local
curvilinear transformation is proposed. The curvilinear method offers the most compact gradient
stencil among those studied here.

Two commonly used methods, namely the Green-Gauss with either simple or IDW face averaging
(neither are linear-exact), was shown to be inconsistent and 0! order accurate. This was only
observed for irregular meshes and was revealed through a deep refinement study. Depending on the
combination of the test function and the test mesh scale, this handicap may well be overlooked if
only limited levels of refinement were applied.

No clear “best” method emerged but strengths and shortcomings of the investigated methodolo-
gies for different cell types are exposed. Gradient operators with compact stencils, namely LSQR
compact and curvilinear, generally exhibited lower errors. LSQR compact scheme caused stability
issues for the solution of the inviscid standing vortex problem on the random triangulated mesh.
The curvilinear scheme, on the other hand, had an erratic behavior for different cell types, yielding
overall low error levels but exhibiting a large error for a sample arbitrary polyhedral cell. This
suggests that the method could benefit from development of a smarter stencil reduction logic (to
down-select 4 points from the available stencil in 2D).

The Green-Gauss method stood out with lower errors for thin triangular or quadrilateral cell
types, such as those found in typical boundary layer meshes. While this sounds like a niche property,
it is a very attractive quality for CFD solvers.

The current study is planned to be followed up by a systematic evaluation of robustness and
consideration of a hybrid approach whereby strengths of different gradient operators are leveraged
based on the local cell types.
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